Development of DNA Markers From Physically Mapped Loci in Aegilops comosa and Aegilops umbellulata Using Single-Gene FISH and Chromosome Sequences
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34211490
PubMed Central
PMC8240756
DOI
10.3389/fpls.2021.689031
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops comosa, Aegilops umbellulata, chromosome flow sorting and sequencing, chromosome rearrangements, goat grasses, homoeologous relationships, molecular markers, single-gene FISH,
- Publikační typ
- časopisecké články MeSH
Breeding of agricultural crops adapted to climate change and resistant to diseases and pests is hindered by a limited gene pool because of domestication and thousands of years of human selection. One way to increase genetic variation is chromosome-mediated gene transfer from wild relatives by cross hybridization. In the case of wheat (Triticum aestivum), the species of genus Aegilops are a particularly attractive source of new genes and alleles. However, during the evolution of the Aegilops and Triticum genera, diversification of the D-genome lineage resulted in the formation of diploid C, M, and U genomes of Aegilops. The extent of structural genome alterations, which accompanied their evolution and speciation, and the shortage of molecular tools to detect Aegilops chromatin hamper gene transfer into wheat. To investigate the chromosome structure and help develop molecular markers with a known physical position that could improve the efficiency of the selection of desired introgressions, we developed single-gene fluorescence in situ hybridization (FISH) maps for M- and U-genome progenitors, Aegilops comosa and Aegilops umbellulata, respectively. Forty-three ortholog genes were located on 47 loci in Ae. comosa and on 52 loci in Ae. umbellulata using wheat cDNA probes. The results obtained showed that M-genome chromosomes preserved collinearity with those of wheat, excluding 2 and 6M containing an intrachromosomal rearrangement and paracentric inversion of 6ML, respectively. While Ae. umbellulata chromosomes 1, 3, and 5U maintained collinearity with wheat, structural reorganizations in 2, 4, 6, and 7U suggested a similarity with the C genome of Aegilops markgrafii. To develop molecular markers with exact physical positions on chromosomes of Aegilops, the single-gene FISH data were validated in silico using DNA sequence assemblies from flow-sorted M- and U-genome chromosomes. The sequence similarity search of cDNA sequences confirmed 44 out of the 47 single-gene loci in Ae. comosa and 40 of the 52 map positions in Ae. umbellulata. Polymorphic regions, thus, identified enabled the development of molecular markers, which were PCR validated using wheat-Aegilops disomic chromosome addition lines. The single-gene FISH-based approach allowed the development of PCR markers specific for cytogenetically mapped positions on Aegilops chromosomes, substituting as yet unavailable segregating map. The new knowledge and resources will support the efforts for the introgression of Aegilops genes into wheat and their cloning.
Agricultural Research Centre Field Crops Research Institute Cairo Egypt
ELKH Centre for Agricultural Research Agricultural Institute Martonvásár Hungary
Wheat Genetics Resource Center Kansas State University Manhattan KS United States
Zobrazit více v PubMed
Akpinar B. A., Lucas S. J., Vrána J., Doležel J., Budak H. (2015). Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnol. J. 13, 740–752. 10.1111/pbi.12302 PubMed DOI
Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., et al. . (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. 10.1126/science.aar7191 PubMed DOI
Badaeva E. D., Amosova A. V., Samatadze T. E., Zoshchuk S. A., Shostak N. G., Chikida N. N., et al. . (2004). Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst. Evol. 246, 45–76. 10.1007/s00606-003-0072-4 DOI
Badaeva E. D., Friebe B., Gill B. S. (1996a). Genome differentiation in Aegilops. 1. distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39, 293–306. 10.1139/g96-040 PubMed DOI
Badaeva E. D., Friebe B., Gill B. S. (1996b). Genome differentiation in Aegilops. 2. physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. Genome 39, 1150–1158. 10.1139/g96-145 PubMed DOI
Bansal M., Adamski N. M., Toor P. I., Kaur S., Molnár I., Holušová K., et al. . (2020). Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theor. Appl. Genet. 133, 903–915. 10.1007/s00122-019-03514-x PubMed DOI
Bansal M., Kaur S., Dhaliwal H. S., Bains N. S., Bariana H. S., Chhuneja P., et al. . (2017). Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol. 66, 38–44. 10.1111/ppa.12549 DOI
Bedbrook J. R., Jones J., O'Dell M., Thompson R. D., Flavell R. B. (1980). A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560. 10.1016/0092-8674(80)90529-2 PubMed DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Burt C., Nicholson P. (2011). Exploiting co-linearity among grass species to map the Aegilops ventricosa-derived Pch1 eyespot resistance in wheat and establish its relationship to Pch2. Theor. Appl. Genet. 123, 1387–1400. 10.1007/s00122-011-1674-9 PubMed DOI
Cabrera A., Martin A., Barro F. (2002). In-situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chrom. Res. 10, 49–54. 10.1023/A:1014270227360 PubMed DOI
Chapman J. A., Ho I., Sunkara S., Luo S., Schroth G. P., Rokhsar D. S. (2011). Meraculous: de novo genome assembly with short paired-end reads. PLoS ONE 6:e23501. 10.1371/journal.pone.0023501 PubMed DOI PMC
Danilova T. V., Akhunova A. R., Akhunov E. D., Friebe B., Gill B. S. (2017a). Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). Plant J. 92, 317–330. 10.1111/tpj.13657 PubMed DOI
Danilova T. V., Friebe B., Gill B. S. (2012). Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121, 597–611. 10.1007/s00412-012-0384-7 PubMed DOI
Danilova T. V., Friebe B., Gill B. S. (2014). Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor. Appl. Genet. 127, 715–730. 10.1007/s00122-013-2253-z PubMed DOI PMC
Danilova T. V., Friebe B., Gill B. S., Poland J. A., Jackson E. G. (2017b). Development of a complete set of wheat–barley group-7 Robertsonian translocation chromosomes conferring an increased content of β-glucan. Theor Appl Genet 131, 377–388. 10.1007/s00122-017-3008-z PubMed DOI
Devos K. M., Atkinson M. D., Chinoy C. N., Francis H. A., Harcourt R. L., Koebner R. M. D., et al. . (1993). Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85, 673–680. 10.1007/BF00225004 PubMed DOI
Doležel J., Bartoš J., Voglmayr H., Greilhuber J. (2003). Nuclear DNA content and genome size of trout and human. Cytometry A 51, 127–128; author reply 129. 10.1002/cyto.a.10013 PubMed DOI
Edae E. A., Olivera P. D., Jin Y., Poland J. A., Rouse M. N. (2016). Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat. BMC Genom. 17:1039. 10.1186/s12864-016-3370-2 PubMed DOI PMC
Edae E. A., Olivera P. D., Jin Y., Rouse M. N. (2017). Genotyping-by-sequencing facilitates a high-density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat. G3 7, 1551–1561. 10.1534/g3.117.039966 PubMed DOI PMC
Eddy S. R. (2009). A new generation of homology search tools based on probabilistic inference. Genome Inform. 23, 205–211. 10.1142/9781848165632_0019 PubMed DOI
Eilam T., Anikster Y., Millet E., Manisterski J., Sagi-Assif O., Feldman M. (2007). Genome size and genome evolution in diploid Triticeae species. Genome 50, 1029–1037. 10.1139/G07-083 PubMed DOI
El-Gebali S., Mistry J., Bateman A., Eddy S. R., Luciani A., Potter S. C., et al. . (2019). The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432. 10.1093/nar/gky995 PubMed DOI PMC
Endo T. R. (1996). Allocation of a gametocidal chromosome of Aegilops cylindrica to wheat homoeologous group 2. Genes Genet. Syst. 71, 243–246. 10.1266/ggs.71.243 DOI
Endo T. R., Katayama Y. (1978). Finding of a selectively retained chromosome of Aegilops caudata L. in common wheat. Wheat Inf. Serv. 47/48, 32–35.
Endo T. R., Tsunewaki K. (1975). Sterility of common wheat with Aegilops triuncialis cytoplasm. J Hered 66, 13–18. 10.1093/oxfordjournals.jhered.a108562 DOI
Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87. 10.1007/BF00035277 DOI
Friebe B. R., Tuleen N. A., Gill B. S. (1999). Development and identification of a complete set of Triticum aestivum- Aegilops geniculata chromosome addition lines. Genome 42, 374–380. 10.1139/g99-011 DOI
Furuta Y. (1970). DNA content per nucleus in Aegilops species. Wheat Inf. Serv. 30, 20–22.
Gale M. D., Devos K. M. (1998). Plant comparative genetics after 10 years. Science 282, 656–659. 10.1126/science.282.5389.656 PubMed DOI
Gerlach W. L., Bedbrook J. R. (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7, 1869–1885. 10.1093/nar/7.7.1869 PubMed DOI PMC
Gill B. S., Sharma H. C., Raupp W. J., Browder L. E., Hatchett J. H., Harvey T. L., et al. . (1985). Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, hessian fly, and greenbug. Plant Dis. 69, 314–316.
Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. (2013). FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLOS ONE 8:e57994. 10.1371/journal.pone.0057994 PubMed DOI PMC
Glémin S., Scornavacca C., Dainat J., Burgarella C., Viader V., Ardisson M., et al. . (2019). Pervasive hybridizations in the history of wheat relatives. Sci. Adv. 5:eaav9188. 10.1126/sciadv.aav9188 PubMed DOI PMC
Han H., Bai L., Su J., Zhang J., Song L., Gao A., et al. . (2014). Genetic rearrangements of six wheat-Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS ONE 9:e91066. 10.1371/journal.pone.0091066 PubMed DOI PMC
Howard T., Rejab N. A., Griffiths S., Leigh F., Leverington-Waite M., Simmonds J., et al. . (2011). Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J. Exp. Bot. 62, 2217–2228. 10.1093/jxb/erq423 PubMed DOI PMC
Huynh S., Marcussen T., Felber F., Parisod C. (2019). Hybridization preceded radiation in diploid wheats. Mol. Phylogenet. Evol. 139:106554. 10.1016/j.ympev.2019.106554 PubMed DOI
Karafiátová M., Bartoš J., Kopecký D., Ma L., Sato K., Houben A., et al. . (2013). Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Res. 21, 739–751. 10.1007/s10577-013-9380-x PubMed DOI
Kato A., Albert P. S., Vega J. M., Birchler J. A. (2006). Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 81, 71–78. 10.1080/10520290600643677 PubMed DOI
Kato A., Lamb J. C., Birchler J. A. (2004). Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl. Acad. Sci. U.S.A. 101, 13554–13559. 10.1073/pnas.0403659101 PubMed DOI PMC
Kilian B., Mammen K., Millet E., Sharma R., Graner A., Salamini F., et al. . (2011).Aegilops, in Wild Crop Relatives: Genomic and Breeding Resources (New York, NY: Spring-Verlag; ), 1–76. Available online at: https://www.academia.edu/19236227/Aegilops (accessed August 20, 2020).
King J., Grewal S., Yang C.-Y., Hubbart S., Scholefield D., Ashling S., et al. . (2017). A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol. J. 15, 217–226. 10.1111/pbi.12606 PubMed DOI PMC
Kubaláková M., Kovářová P., Suchánková P., Číhalíková J., Bartoš J., Lucretti S., et al. . (2005). Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170, 823–829. 10.1534/genetics.104.039180 PubMed DOI PMC
Kynast R. G., Friebe B., Gill B. S. (2000). Fate of multicentric and ring chromosomes induced by a new gametocidal factor located on chromosome 4Mg of Aegilops geniculata. Chromosome Res. 8, 133–139. 10.1023/A:1009294519798 PubMed DOI
Liu C., Gong W., Han R., Guo J., Li G., Li H., et al. . (2019). Characterization, identification and evaluation of a set of wheat-Aegilops comosa chromosome lines. Sci. Rep. 9:4773. 10.1038/s41598-019-41219-9 PubMed DOI PMC
Lucas S. J., Akpinar B. A., Šimková H., Kubaláková M., Doležel J., Budak H. (2014). Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genom. 15:1080. 10.1186/1471-2164-15-1080 PubMed DOI PMC
Mayer K. F. X., Taudien S., Martis M., Simková H., Suchánková P., Gundlach H., et al. . (2009). Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 151, 496–505. 10.1104/pp.109.142612 PubMed DOI PMC
McIntosh R. A., Miller T. E., Chapman V. (1982). Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z Pflanzenzüht 89, 295–306.
Miller T. E., Reader S. M., Singh D. (1988). Spontaneous non-robertsonian translocations between wheat chromosomes and an alien chromosome,” in Proceedings of the Seventh International Wheat Genetics Symposium, held at Cambridge, UK, 13-19 July 1988 (Cambridge: Institute of Plant Sciences Research; ), 387–390. Available online at: https://www.cabdirect.org/cabdirect/abstract/19891606463 (accessed August 20, 2020).
Molnár I., Benavente E., Molnár-Láng M. (2009). Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52, 156–165. 10.1139/G08-114 PubMed DOI
Molnár I., Cifuentes M., Schneider A., Benavente E., Molnár-Láng M. (2011). Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann. Bot. 107, 65–76. 10.1093/aob/mcq215 PubMed DOI PMC
Molnár I., Kubaláková M., Šimková H., Farkas A., Cseh A., Megyeri M., et al. . (2014). Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. Theor. Appl. Genet. 127, 1091–1104. 10.1007/s00122-014-2282-2 PubMed DOI
Molnár I., Šimková H., Leverington-Waite M., Goram R., Cseh A., Vrána J., et al. . (2013). Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species brachypodium and rice as revealed by COS markers. PLOS ONE 8:e70844. 10.1371/journal.pone.0070844 PubMed DOI PMC
Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É., et al. . (2016). Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 88, 452–467. 10.1111/tpj.13266 PubMed DOI
Molnár-Láng M., Ceoloni C., Doležel J. eds. (2015). Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. Cham: Springer International Publishing. Available online at: https://www.springer.com/gp/book/9783319234939 (accessed January 30, 2019).
Molnár-Láng M., Linc G., Sutka J. (1996). Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90, 301–305. 10.1007/BF00027480 DOI
Nagaki K., Tsujimoto H., Isono K., Sasakuma T. (1995). Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38, 479–486. 10.1139/g95-063 PubMed DOI
Naranjo T. (2019). The effect of chromosome structure upon meiotic homologous and homoeologous recombinations in Triticeae. Agronomy 9:552. 10.3390/agronomy9090552 DOI
Nasuda S., Friebe B., Gill B. S. (1998). Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics 149, 1115–1124. 10.1093/genetics/149.2.1115 PubMed DOI PMC
Olivera P. D., Rouse M. N., Jin Y. (2018). Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front. Plant Sci. 9:1719. 10.3389/fpls.2018.01719 PubMed DOI PMC
Parisod C., Badaeva E. D. (2020). Chromosome restructuring among hybridizing wild wheats. N. Phytol. 226, 1263–1273. 10.1111/nph.16415 PubMed DOI
Peil A., Korzun V., Schubert V., Schumann E., Weber W. E., Röder M. S. (1998). The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor. Appl. Genet. 96, 138–146. 10.1007/s001220050720 DOI
Riley R., Chapman V., Johnson R. (1968a). Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217, 383–384. 10.1038/217383a0 DOI
Riley R., Chapman V., Johnson R. (1968b). The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res. 12, 199–219. 10.1017/S0016672300011800 DOI
Said M., Hřibová E., Danilova T. V., Karafiátová M., Čížková J., Friebe B., et al. . (2018). The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor. Appl. Genet. 131, 2213–2227. 10.1007/s00122-018-3148-9 PubMed DOI PMC
Said M., Kubaláková M., Karafiátová M., Molnár I., Doležel J., Vrána J. (2019). Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome 12:180096. 10.3835/plantgenome2018.12.0096 PubMed DOI
Saintenac C., Falque M., Martin O. C., Paux E., Feuillet C., Sourdille P. (2009). Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181, 393–403. 10.1534/genetics.108.097469 PubMed DOI PMC
Schneider A., Molnár I., Molnár-Láng M. (2008). Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163, 1–19. 10.1007/s10681-007-9624-y DOI
Sears E. R. (1956). The transfer of leaf-rust resistance from Aegilops umbellulata to wheat, in Brook-Haven Symposia in Biology 1956. Available online at: https://www.cabdirect.org/cabdirect/abstract/19581600184 (accessed September 22, 2020).
Šimková H., Svensson J. T., Condamine P., Hřibová E., Suchánková P., Bhat P. R., et al. . (2008). Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom. 9:294. 10.1186/1471-2164-9-294 PubMed DOI PMC
Tanaka S., Yoshida K., Sato K., Takumi S. (2020). Diploid genome differentiation conferred by RNA sequencing-based survey of genome-wide polymorphisms throughout homoeologous loci in Triticum and Aegilops. BMC Genomics 21, 246. 10.1186/s12864-020-6664-3 PubMed DOI PMC
Tiwari V. K., Wang S., Danilova T., Koo D. H., Vrána J., Kubaláková M., et al. . (2015). Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of Aegilops geniculata. Plant J. 84, 733–746. 10.1111/tpj.13036 PubMed DOI
Todesco M., Owens G. L., Bercovich N., Légaré J.-S., Soudi S., Burge D. O., et al. . (2020). Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584, 602–607. 10.1038/s41586-020-2467-6 PubMed DOI
Tsujimoto H. (1995). Gametocidal genes in wheat and its relatives. IV. functional relationships between six gametocidal genes. Genome 38, 283–289. 10.1139/g95-035 PubMed DOI
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. . (2012). Primer3–new capabilities and interfaces. Nucleic Acids Res. 40:e115. 10.1093/nar/gks596 PubMed DOI PMC
van Slageren M. W. S. J. M. (1994). Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae) : A Revision of All Taxa Closely Related to Wheat, Excluding Wild Triticum Species, With Notes on Other Genera in the Tribe Triticcae, Especially Triticum. Wageningen; Aleppo: Wageningen Agricultural University; International Center for Agricultural Research in the Dry Areas.
Vrána J., Cápal P., Cíhalíková J., Kubaláková M., Doležel J. (2016a). Flow sorting plant chromosomes. Methods Mol. Biol. 1429, 119–134. 10.1007/978-1-4939-3622-9_10 PubMed DOI
Vrána J., Čápal P., Šimková H., Karafiátová M., Cížková J., Doležel J. (2016b). Flow analysis and sorting of plant chromosomes. Curr. Protoc. Cytometry 78, 5.3.1–5.3.43. 10.1002/cpcy.9 PubMed DOI
Vrána J., Kubaláková M., Šimková H., Číhalíková J., Lysák M. A., Doležel J. (2000). Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156, 2033–2041. 10.1093/genetics/156.4.2033 PubMed DOI PMC
Zhang H., Jia J., Gale M. D., Devos K. M. (1998). Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor. Appl. Genet. 96, 69–75. 10.1007/s001220050710 DOI
Gametocidal genes: from a discovery to the application in wheat breeding
Flow Cytometric Analysis and Sorting of Plant Chromosomes
An unusual tandem kinase fusion protein confers leaf rust resistance in wheat
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis
Dryad
10.5061/dryad.wpzgmsbk9