• Something wrong with this record ?

Meta-learning approach to neural network optimization

P. Kordík, J. Koutník, J. Drchal, O. Kovářík, M. Čepek, M. Šnorek

. 2010 ; 23 (4) : 568-582. [pub] 20100220

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Optimization of neural network topology, weights and neuron transfer functions for given data set and problem is not an easy task. In this article, we focus primarily on building optimal feed-forward neural network classifier for i.i.d. data sets. We apply meta-learning principles to the neural network structure and function optimization. We show that diversity promotion, ensembling, self-organization and induction are beneficial for the problem. We combine several different neuron types trained by various optimization algorithms to build a supervised feed-forward neural network called Group of Adaptive Models Evolution (GAME). The approach was tested on a large number of benchmark data sets. The experiments show that the combination of different optimization algorithms in the network is the best choice when the performance is averaged over several real-world problems.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12025129
003      
CZ-PrNML
005      
20240814142657.0
007      
ta
008      
120816s2010 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1016/j.neunet.2010.02.003 $2 doi
035    __
$a (PubMed)20227243
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kordík, Pavel $7 _AN047405 $u Department of Computer Science and Engineering, FEE, Czech Technical University, Prague, Czech Republic. kordikp@fel.cvut.cz
245    10
$a Meta-learning approach to neural network optimization / $c P. Kordík, J. Koutník, J. Drchal, O. Kovářík, M. Čepek, M. Šnorek
520    9_
$a Optimization of neural network topology, weights and neuron transfer functions for given data set and problem is not an easy task. In this article, we focus primarily on building optimal feed-forward neural network classifier for i.i.d. data sets. We apply meta-learning principles to the neural network structure and function optimization. We show that diversity promotion, ensembling, self-organization and induction are beneficial for the problem. We combine several different neuron types trained by various optimization algorithms to build a supervised feed-forward neural network called Group of Adaptive Models Evolution (GAME). The approach was tested on a large number of benchmark data sets. The experiments show that the combination of different optimization algorithms in the network is the best choice when the performance is averaged over several real-world problems.
650    _2
$a algoritmy $7 D000465
650    _2
$a umělá inteligence $7 D001185
650    _2
$a počítačová simulace $7 D003198
650    _2
$a učení $7 D007858
650    _2
$a biologické modely $7 D008954
650    _2
$a nervová síť $7 D009415
650    _2
$a neuronové sítě $7 D016571
650    _2
$a neurony $7 D009474
650    _2
$a rozpoznávání automatizované $7 D010363
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1#
$a Koutník, Jan $7 _AN047488
700    1_
$a Drchal, Jan $7 xx0320790
700    1#
$a Kovářík, Oleg $7 _AN070963
700    1_
$a Čepek, Miroslav $7 xx0146652
700    1#
$a Šnorek, Miroslav $7 ntka174609
773    0_
$w MED00011811 $t Neural networks $x 1879-2782 $g Roč. 23, č. 4 (2010), s. 568-582
856    41
$u https://pubmed.ncbi.nlm.nih.gov/20227243 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120816 $b ABA008
991    __
$a 20240814142653 $b ABA008
999    __
$a ok $b bmc $g 947171 $s 782475
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2010 $b 23 $c 4 $d 568-582 $e 20100220 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
LZP    __
$a Pubmed-20120816/10/02

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...