-
Je něco špatně v tomto záznamu ?
Meta-learning approach to neural network optimization
P. Kordík, J. Koutník, J. Drchal, O. Kovářík, M. Čepek, M. Šnorek
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- biologické modely MeSH
- nervová síť MeSH
- neuronové sítě MeSH
- neurony MeSH
- počítačová simulace MeSH
- rozpoznávání automatizované MeSH
- učení MeSH
- umělá inteligence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Optimization of neural network topology, weights and neuron transfer functions for given data set and problem is not an easy task. In this article, we focus primarily on building optimal feed-forward neural network classifier for i.i.d. data sets. We apply meta-learning principles to the neural network structure and function optimization. We show that diversity promotion, ensembling, self-organization and induction are beneficial for the problem. We combine several different neuron types trained by various optimization algorithms to build a supervised feed-forward neural network called Group of Adaptive Models Evolution (GAME). The approach was tested on a large number of benchmark data sets. The experiments show that the combination of different optimization algorithms in the network is the best choice when the performance is averaged over several real-world problems.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12025129
- 003
- CZ-PrNML
- 005
- 20240814142657.0
- 007
- ta
- 008
- 120816s2010 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neunet.2010.02.003 $2 doi
- 035 __
- $a (PubMed)20227243
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kordík, Pavel $7 _AN047405 $u Department of Computer Science and Engineering, FEE, Czech Technical University, Prague, Czech Republic. kordikp@fel.cvut.cz
- 245 10
- $a Meta-learning approach to neural network optimization / $c P. Kordík, J. Koutník, J. Drchal, O. Kovářík, M. Čepek, M. Šnorek
- 520 9_
- $a Optimization of neural network topology, weights and neuron transfer functions for given data set and problem is not an easy task. In this article, we focus primarily on building optimal feed-forward neural network classifier for i.i.d. data sets. We apply meta-learning principles to the neural network structure and function optimization. We show that diversity promotion, ensembling, self-organization and induction are beneficial for the problem. We combine several different neuron types trained by various optimization algorithms to build a supervised feed-forward neural network called Group of Adaptive Models Evolution (GAME). The approach was tested on a large number of benchmark data sets. The experiments show that the combination of different optimization algorithms in the network is the best choice when the performance is averaged over several real-world problems.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a učení $7 D007858
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a nervová síť $7 D009415
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a neurony $7 D009474
- 650 _2
- $a rozpoznávání automatizované $7 D010363
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1#
- $a Koutník, Jan $7 _AN047488
- 700 1_
- $a Drchal, Jan $7 xx0320790
- 700 1#
- $a Kovářík, Oleg $7 _AN070963
- 700 1_
- $a Čepek, Miroslav $7 xx0146652
- 700 1#
- $a Šnorek, Miroslav $7 ntka174609
- 773 0_
- $w MED00011811 $t Neural networks $x 1879-2782 $g Roč. 23, č. 4 (2010), s. 568-582
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20227243 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20240814142653 $b ABA008
- 999 __
- $a ok $b bmc $g 947171 $s 782475
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 23 $c 4 $d 568-582 $e 20100220 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
- LZP __
- $a Pubmed-20120816/10/02