Meta-learning approach to neural network optimization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20227243
DOI
10.1016/j.neunet.2010.02.003
PII: S0893-6080(10)00045-6
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- biologické modely MeSH
- nervová síť * MeSH
- neuronové sítě * MeSH
- neurony MeSH
- počítačová simulace MeSH
- rozpoznávání automatizované MeSH
- učení * MeSH
- umělá inteligence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Optimization of neural network topology, weights and neuron transfer functions for given data set and problem is not an easy task. In this article, we focus primarily on building optimal feed-forward neural network classifier for i.i.d. data sets. We apply meta-learning principles to the neural network structure and function optimization. We show that diversity promotion, ensembling, self-organization and induction are beneficial for the problem. We combine several different neuron types trained by various optimization algorithms to build a supervised feed-forward neural network called Group of Adaptive Models Evolution (GAME). The approach was tested on a large number of benchmark data sets. The experiments show that the combination of different optimization algorithms in the network is the best choice when the performance is averaged over several real-world problems.
Citace poskytuje Crossref.org
Disregarding population specificity: its influence on the sex assessment methods from the tibia