Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BT/IN/UK/08/PC/2012
Department of Biotechnology
BB/JO12017/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/P016855/1
Biotechnology and Biological Sciences Research Council - United Kingdom
MBBISP
Monsanto Beachell Borlaug International Scholars Programme
CZ.02.1.01/0.0/0.0/16_019/0000827
ERDF
PubMed
31894365
DOI
10.1007/s00122-019-03514-x
PII: 10.1007/s00122-019-03514-x
Knihovny.cz E-zdroje
- MeSH
- Aegilops genetika MeSH
- Basidiomycota růst a vývoj patogenita MeSH
- chromozomy rostlin MeSH
- fenotyp MeSH
- genetické markery MeSH
- genová introgrese MeSH
- jednonukleotidový polymorfismus MeSH
- listy rostlin genetika mikrobiologie MeSH
- mapování chromozomů MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem genetika MeSH
- pšenice genetika mikrobiologie MeSH
- rekombinace genetická MeSH
- rostlinné geny MeSH
- šlechtění rostlin MeSH
- telomery genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- genetické markery MeSH
Lr76 and Yr70 have been fine mapped using the sequence of flow-sorted recombinant 5D chromosome from wheat-Ae. umbellulata introgression line. The alien introgression has been delineated to 9.47-Mb region on short arm of wheat chromosome 5D. Leaf rust and stripe rust are among the most damaging diseases of wheat worldwide. Wheat cultivation based on limited number of rust resistance genes deployed over vast areas expedites the emergence of new pathotypes warranting a continuous deployment of new resistance genes. In this paper, fine mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance genes Lr76 and Yr70 is being reported. We flow sorted and paired-end sequenced 5U chromosome of Ae. umbellulata, recombinant chromosome 5D (5DIL) from wheat-Ae. umbellulata introgression line pau16057 and 5DRP of recurrent parent WL711. Chromosome 5U reads were mapped against the reference Chinese Spring chromosome 5D sequence, and alien-specific SNPs were identified. Chromosome 5DIL and 5DRP sequences were de novo assembled, and alien introgression-specific markers were designed by selecting 5U- and 5D-specific SNPs. Overall, 27 KASP markers were mapped in high-resolution population consisting of 1404 F5 RILs. The mapping population segregated for single gene each for leaf rust and stripe rust resistance. The physical order of the SNPs in pau16057 was defined by projecting the 27 SNPs against the IWGSC RefSeq v1.0 sequence. Based on this physical map, the size of Ae. umbellulata introgression was determined to be 9.47 Mb on the distal most end of the short arm of chromosome 5D. This non-recombining alien segment carries six NB-LRR encoding genes based on NLR annotation of assembled chromosome 5DIL sequence and IWGSC RefSeq v1.1 gene models. The presence of SNPs and other sequence variations in these genes between pau16057 and WL711 suggested that they are candidates for Lr76 and Yr70.
John Innes Centre Norwich NR4 7UH UK
School of Agricultural Biotechnology Punjab Agricultural University Ludhiana Punjab 141 004 India
Zobrazit více v PubMed
Adato O, Ninyo N, Gophna U, Snir S (2015) Detecting horizontal gene transfer between closely related taxa. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1004408 PubMed DOI PMC
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Arzani A, Ashraf M (2017) Cultivated ancient wheats (Triticum spp.): a potential source of health-beneficial food products. Compr Rev Food Sci Food Saf 16:477–488
Bansal M, Kaur S, Dhaliwal HS, Bains NS, Bariana HS, Chhuneja P, Bansal UK (2017) Mapping of Aegilops umbellulata-derived new leaf rust and stripe rust resistance loci in wheat. Plant Pathol 66:38–44
Bulgarelli D, Biselli C, Collins NC, Consonni G, Stanca AM, Schulze-Lefert P, Vale G (2010) The CC-NB-LRR-Type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS ONE 5:e12599 PubMed PMC
Bulos M, Echarte M, Sala C (2006) Occurrence of the rust resistance gene Lr37 from Aegilops ventricosa in Argentine cultivars of wheat. Electron J Biotechnol 9:580–586
Ceoloni C, Kuzmanovic L, Ruggeri R, Rossini F, Forte P, Cuccurullo A, Bitti A (2017) Harnessing genetic diversity of wild gene pools to enhance wheat crop production and sustainability: Challenges and opportunities. Diversity 9:55. https://doi.org/10.3390/d9040055 DOI
Cox TS (1998) Deepening the wheat gene pool. Journal of Crop Production 1:1–25
Cox TS, Raupp WJ, Gill BS (1994) Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343
Eitas TK, Nimchuk ZL, Dangl JL (2008) Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. PNAS 105:6475–6480 PubMed
Feldman M, Levy AA (2012) Genome evolution due to allopolyploidization. Genetics 192:763–774 PubMed PMC
Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32 PubMed
Forrest K, Pujol V, Bulli P, Pumphrey M, Wellings C, Herrera-Foessel S, Huerta-Espino J, Singh R, Lagudah E, Hayden M, Spielmeyer W (2014) Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach. Mol Breed 34:2109–2118
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S (2013) FISHIS: fluorescence In situ hybridization in suspension and chromosome flow sorting made easy. PLoS ONE 8:e57994. https://doi.org/10.1371/journal.pone.0057994 PubMed DOI PMC
Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 97/98/NT. Nucl Acid Symp 41:95–98
Hussain W, Baenziger PS, Belamkar V, Guttieri MJ, Venegas JP, Easterly A, Sallam A, Poland J (2017) Genotyping-by-Sequencing derived high-density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Sci Rep 7:16394. https://doi.org/10.1038/s41598-017-16006-z PubMed DOI PMC
Hussien T, Bowden RL, Gill BS, Cox TS (1997) Chromosome location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat. Crop Sci 37:1764–1766
International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788-1–125178811
International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. https://doi.org/10.1126/science.aar7191 DOI
Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle
Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJA, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JDG, Hein I (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genom 13:75
Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 11:639–647
Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen MJ, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen CK, Hovmøller MS, Distelfeld A, Chalhoub B, Dubcovsky J, Korol AB, Schulman AH, Fahima T (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9:3735 PubMed PMC
Kubaláková M, Macas J, Doležel J (1997) Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor Appl Genet 94:758–763
Kumari N, Gina BG, Li H (2013) Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21. Mol Breed 31:233–237
Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007a) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with novel leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389 PubMed
Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007b) A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003
Lee HA, Yeom SI (2015) Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Briefings Funct Genom 14:233–242
Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509 PubMed DOI PMC
Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM [arXiv preprint]. arXiv:1303.3997
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler Transform. Bioinformatics 25:1754–1760 PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352 PubMed DOI PMC
Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5:378–388. https://doi.org/10.1093/bib/5.4.378 PubMed DOI
Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski N, Boyd L, Mcintosh R, Wulff B, Berry S, Lagudah E, Uauy C (2018) BED-domain containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants 4:662–668 PubMed
Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Muñoz-Amatriaín M, Close TJ, Wise RP, Schulman AH, Himmelbach VA, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727 PubMed PMC
McIntosh RA (1983) Genetic and cytogenetic studies involving Lr18 resistance to Puccinia recondita. In: Sakamoto M (ed) Proceedings 6th International Wheat Symposium, pp 777–783, Kyoto, Japan
McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia XC (2013). Catalogue of gene symbols for Wheat: 2013 supplement. In: KOMUGI–Integrated Wheat Science http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/2013/GeneCatalogueIntroduction.pdf
Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130 PubMed
Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J (2011) Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Plos One 6:e27708 PubMed PMC
Mondal S, Rutkoski JE, Velu G, Singh PK, Crespo-Herrera LA, Guzmán C, Bhavani S, Lan C, He X, Singh RP (2016) Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Frontiers in Plant Science 7:991 PubMed PMC
Narang D, Kaur S, Steuernagel B, Ghosh S, Dhillon R, Bansal M, Uauy C, Wulff BBH, Chhuneja P (2019) Fine mapping of Aegilops peregrina co-segregating leaf and stripe rust resistance genes to distal most end of 5DS. Theoret Appl Genet. https://doi.org/10.1007/s00122-019-03293-5 DOI
Peterson RF, Campbell AB, Hannah AE (1948) A diagnostic scale for estimating rust severity on leaves and stem of cereals. Can J Res Sect C Bot Sci 26:490–500
Pirseyedi SM, Somo M, Poudel RS, Cai X, McCallum B, Saville B, Fetch T, Chao S, Marais F (2015) Characterization of recombinants of the Aegilops peregrina-derived Lr59 translocation of common wheat. Theor Appl Genet 128:2403–2414 PubMed
Poland JA, Brown PJ, Sorrells ME, Jannink JE (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by- sequencing approach. PLoS ONE 7:e32253 PubMed PMC
Qiagen (2016) White paper on de novo assembly in CLC Assembly Cell4.0 [White paper]. retrieved from: https://www.qiagenbioinformatics.com/files/whitepapers/whitepaper-denovo-assembly.pdf
Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015a) PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039 PubMed PMC
Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015b) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624
Raupp WJ, Singh S, Brown-Guedira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352
Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715
Rowland GG, Kerber ER (1974) Telocentric mapping hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144
Šafář J, Šimková H, Kubaláková M, Číhalíková J, Suchánková P, Bartoš J, Doležel J (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223 PubMed
Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BBH (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221–227 PubMed PMC
Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp in Biol. No. 9, Genetics in Plant Breeding, pp 1–22
Sears ER, Okamoto M (1958) Intergenomic chromosome relationship in hexaploid wheat. In: Paper presented at the proceedings of the 10th international. Congress of Genetics, Montreal, pp 258–259
Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, Bartoš J, Šafář J, Close TJ, Doležel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom 9:294
Singh H, Dhaliwal HS (2000) Intraspecific genetic diversity for resistance to wheat rusts in wild Triticum and Aegilops species. Wheat Inf Serv 90:21–30
Steuernagel B, Jupe F, Witek K, Jones JDG, Wulff BBH (2015) NLR-parser: rapid annotation of plant NLR complements. Bioinformatics 31:1665–1667 PubMed PMC
Thind AK, Wicker T, Šimková H, Fossati D, Moullet O, Brabant C, Vrána J, Doležel J, Krattinger SG (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793–796 PubMed
Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov E, Kalia B, Sabir J, Gill BS (2014) SNP Discovery for mapping alien introgressions in wheat. BMC Genom 15:273–284
Toor PI, Kaur S, Bansal M, Yadav B, Chhuneja P (2016) Genetic mapping of an adult plant stripe rust resistance gene transferred from Aegilops caudata into bread wheat. J Genet 95:933–938 PubMed
Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105 PubMed
Valkoun J, Hammer K, Kučerová D, Bartoš P (1985) Disease resistance in the genus Aegilops L.—stem rust, leaf rust, stripe rust and powdery mildew. Kulturpflanze 33:133–153
Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J (2000) Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041 PubMed PMC
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796 PubMed PMC
Winfield M, Allen AM, Burridge AJ, Barker GLA, Benbow HR, Wilkinson PA et al (2016) High density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206. https://doi.org/10.1111/pbi.12485 DOI
Wulff BBH, Moscou MJ (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci 5:692 PubMed PMC
Picard Tools. Broad Institute. http://broadinstitute.github.io/picard/