DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1

. 2024 Nov 07 ; 114 (6) : 122. [epub] 20241107

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39508930
Odkazy

PubMed 39508930
PubMed Central PMC11543725
DOI 10.1007/s11103-024-01520-2
PII: 10.1007/s11103-024-01520-2
Knihovny.cz E-zdroje

Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed Ub- and Mb-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub-genome chromosomes and 4,266 to Mb-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb-genome chromatin, predominantly the chromosomes 4Mb and 5Mb. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5MbL recombination were identified. A possible effect of the 5MbL distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.

Zobrazit více v PubMed

Abrouk M, Wang Y, Cavalet-Giorsa E, Troukhan M, Kravchuk M, Krattinger SG (2023) Chromosome-scale assembly of the wild wheat relative PubMed DOI PMC

Adhikari L, Raupp J, Wu S, Koo DH, Friebe B, Poland JA (2023) Genomic characterization and gene bank curation of PubMed DOI PMC

Akhunov ED, Goodyear AW, Geng S et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763. 10.1101/gr.808603 PubMed DOI PMC

Bansal M, Adamski NM, Toor PI et al (2020) PubMed DOI

Cao S, Xu D, Hanif M et al (2020) Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet 133:1811–1823. 10.1007/s00122-020-03562-8 PubMed DOI

Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078. 10.1093/jxb/erj124 PubMed DOI

Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid PubMed DOI

Damania AB, Pecetti L (1990) Variability in a collection of

Darkó E, Khalil R, Dobi Z, Kovács V, Szalai G, Janda T, Molnár I (2020) Addition of PubMed DOI PMC

Dimov A, Zaharieva M, Mihova S (1993) Rust and powdery mildew resistance in

Dreisigacker S, Kishii M, Lage J, Warburton M (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59:413–420. 10.1071/AR07225 DOI

Dulai S, Molnár I, Szopkó D, Darkó É, Vojtkó A, Sass-Gyarmati A, Molnár-Láng M (2014) Wheat- PubMed DOI

Edae EA, Olivera PD, Jin Y, Poland JA, Rouse MN (2016) Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in PubMed DOI PMC

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:1–10. 10.1371/journal.pone.0019379 PubMed DOI PMC

Endo TR (1990) Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn J Genet 65:135–152. 10.1266/jjg.65.135 DOI

Endo TR (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res 15:67–75. 10.1007/s10577-006-1100-3 PubMed DOI

Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307. 10.1093/oxfordjournals.jhered.a023003 DOI

Farkas A, Molnár I, Dulai S, Rapi S, Oldal V, Cseh A, Kruppa K, Molnár-Láng M (2014) Increased micronutrient content (Zn, Mn) in the 3 Mb(4B) wheat- PubMed DOI

Farkas A, Gaál E, Ivanizs L et al (2023) Chromosome genomics facilitates the marker development and selection of wheat- PubMed DOI PMC

Friebe BR, Tuleen NA, Gill BS (1999) Development and identification of a complete set of DOI

Geibel J, Reimer C, Weigend S, Weigend A, Pook T, Simianer H (2021) How array design creates SNP ascertainment bias. PLoS ONE 16:0245178. 10.1371/journal.pone.0245178 PubMed DOI PMC

Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. 10.1093/nar/7.7.1869 PubMed DOI PMC

Gong W, Han R, Li H et al (2017) Agronomic traits and molecular marker identification of wheat- PubMed DOI PMC

Ivanizs L, Monostori I, Farkas A et al (2019) Unlocking the genetic giversity and population structure of a wild gene source of wheat, PubMed DOI PMC

IWGSC (2014) A chromosome-based draft sequence of the hexaploid bread wheat ( PubMed DOI

IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191. 10.1126/science.aar7191 PubMed DOI

Jing HC, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in PubMed DOI PMC

Kalinka A, Achrem M (2020) The distribution pattern of 5-methylcytosine in rye ( PubMed DOI PMC

Keilwagen J, Lehnert H, Berner T, Badaeva E, Himmelbach A, Börner A, Kilian B (2022) Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci Rep 12. 10.1038/s41598-022-05865-w PubMed PMC

King IP, Purdie KA, Rezanoor HN, Koebner RMD, Miller TE, Reader SM, Nicholson P (1993) Characterization of PubMed DOI

King J, Grewal S, Yang CY et al (2017) A step change in the transfer of interspecific variation into wheat from PubMed DOI PMC

Koo DH, Liu W, Friebe B, Gill BS (2017) Homoeologous recombination in the presence of PubMed DOI

Kumar A, Seetan R, Mergoum M et al (2015) Radiation hybrid maps of the D-genome of PubMed DOI PMC

Kuraparthy V, Sood S, Gill BS (2009) Molecular genetic description of the cryptic wheat- PubMed DOI

Kwiatek MT, Błaszczyk L, Wiśniewska H, Apolinarska B (2012) PubMed DOI PMC

Kwiatek MT, Wiśniewska H, Apolinarska B (2013) Cytogenetic analysis of PubMed DOI PMC

Kwiatek MT, Majka M, Ślusarkiewicz-Jarzina A, Ponitka A, Pudelska H, Belter J, Wiśniewska H (2016) Transmission of the PubMed DOI PMC

Kwiatek MT, Wiśniewska H, Ślusarkiewicz-Jarzina A, Majka J, Majka M, Belter J, Pudelska H (2017) Gametocidal factor transferred from PubMed PMC

Li H, Dong Z, Ma C, Tian X, Xiang Z, Xia Q, Ma P, Liu W (2019) Discovery of powdery mildew resistance gene candidates from PubMed DOI PMC

Makkouk KM, Comeau A, Ghulam W (1994) Resistance to barley yellow dwarf luteovirus in DOI

Molnár I, Gáspár L, Sárvári É, Dulai S, Hoffmann B, Molnár-Láng M, Galiba G (2004) Physiological and morphological responses to water stress in PubMed DOI

Molnár I, Benavente E, Molnár-Láng M (2009) Detection of intergenomic chromosome rearrangements in irradiated PubMed DOI

Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J (2011) Chromosome isolation by flow sorting in PubMed DOI PMC

Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Doležel J, Molnár-Láng M, Griffiths S (2013) Syntenic relationships between the U and M genomes of PubMed DOI PMC

Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J (2016) Dissecting the U, M, S and C genomes of wild relatives of bread wheat ( PubMed DOI

Monneveux P, Zaharieva M, Rekika D (2000) The utilisation of

Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among PubMed DOI

Narang D, Kaur S, Steuernagel B, Ghosh S, Dhillon R, Bansal M, Uauy C, Wulff BBH, Chhuneja P (2019) Fine mapping of PubMed DOI

Nyine M, Wang S, Kiani K, Jordan K, Liu S, Byrne P, Haley S, Baenziger S, Chao S, Bowden R, Akhunov ED (2019) Genotype imputation in winter wheat using first-generation haplotype map SNPs improves genome-wide association mapping and genomic prediction of traits. G3 9:125–133. 10.1534/g3.118.200664 PubMed PMC

Olivera PD, Kilian A, Wenzl P, Steffenson BJ (2013) Development of a genetic linkage map for Sharon goatgrass ( PubMed DOI

Olivera PD, Rouse MN, Jin Y (2018) Identification of new sources of resistance to wheat stem rust in PubMed DOI PMC

Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of DOI

Rakszegi M, Molnár I, Lovegrove A, Darkó É, Farkas A, Burton R (2017) Addition of PubMed DOI PMC

Rakszegi M, Darkó É, Lovegrove A, Molnár I, Láng L, Bedő Z, Molnár-Láng M, Shewry P (2019) Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/ PubMed DOI PMC

Rekika D, Monneveux P, Havaux M (1997) The in vivo tolerance of photosynthetic membranes to high and low temperatures in cultivated and wild wheats of the DOI

Rey E, Molnár I, Doležel J (2015) Genomics of wild relatives and alien introgressions. In: M. Molnár-Láng, C. Ceoloni, and J. Dolezel (eds) Alien introgression in wheat. Springer International Publishing, pp 347–38

Rosyara U, Kishii M, Payne T, Sansaloni CP, Singh RP, Braun HJ, Dreisigacker S (2019) Genetic contribution of synthetic hexaploid wheat to CIMMYT’s spring bread wheat breeding germplasm. Sci Rep 9:12355. 10.1038/s41598-019-47936-5 PubMed DOI PMC

Said M, Holušová K, Farkas A et al (2021) Development of DNA markers from physically mapped loci in PubMed DOI PMC

Said M, Gaál E, Farkas A, Molnár I, Bartoš J, Doležel J, Cabrera A, Endo TR (2024) Gametocidal genes: from a discovery to the application in wheat breeding. Front Plant Sci 15:1396553. 10.3389/fpls.2024.1396553 PubMed DOI PMC

Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of PubMed DOI

Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. 10.1093/oxfordjournals.aob.a087847 DOI

Singh BD, Singh A (2015) Marker-assisted plant breeding: principles and practices. Springer, New Delhi

Song L, Zhao H, Zhang Z, Zhang S, Liu J, Zhang W, Zhang N, Ji J, Li L, Li J (2020) Molecular cytogenetic identification of wheat- PubMed DOI PMC

Song J, Xu D, Dong Y et al (2022) Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theor Appl Genet 135:3237–3246. 10.1007/s00122-022-04182-0 PubMed DOI

Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F (2020) The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18. 10.1111/pbi.13361 PubMed PMC

Tan F, Zhou J, Yang Z, Yong Z, Pan L, Ren Z (2009) Characterization of a new synthetic wheat– DOI

Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov ED, Kalia B, Sabir J, Gill BS (2014) SNP Discovery for mapping alien introgressions in wheat. BMC Genomics 15:273. 10.1186/1471-2164-15-273 PubMed DOI PMC

Tsujimoto H, Tsunewaki K (1984) Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from DOI

Türkösi E, Ivanizs L, Farkas A et al (2022) Transfer of the PubMed DOI PMC

van Slageren (1994) Wild wheats: a monograph of

Wendler N, Mascher M, Nöh C, Himmelbach A, Scholz U, Ruge-Wehling B, Stein N (2014) Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol J 12:1122–1131. 10.1111/pbi.12219 PubMed DOI

Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920. 10.1073/pnas.0401076101 PubMed DOI PMC

Winfield MO, Allen AM, Burridge AJ et al (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206. 10.1111/pbi.12485 PubMed DOI PMC

Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative DOI

Zhou JP, Yao CH, Yang EN, Yin MQ, Liu C, Ren ZL (2014) Characterization of a new wheat- PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...