DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1

. 2024 Nov 07 ; 114 (6) : 122. [epub] 20241107

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39508930
Odkazy

PubMed 39508930
PubMed Central PMC11543725
DOI 10.1007/s11103-024-01520-2
PII: 10.1007/s11103-024-01520-2
Knihovny.cz E-zdroje

Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed Ub- and Mb-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub-genome chromosomes and 4,266 to Mb-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb-genome chromatin, predominantly the chromosomes 4Mb and 5Mb. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5MbL recombination were identified. A possible effect of the 5MbL distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.

Zobrazit více v PubMed

Abrouk M, Wang Y, Cavalet-Giorsa E, Troukhan M, Kravchuk M, Krattinger SG (2023) Chromosome-scale assembly of the wild wheat relative Aegilops umbellulata. Sci Data 10:739. 10.1038/s41597-023-02658-2 PubMed PMC

Adhikari L, Raupp J, Wu S, Koo DH, Friebe B, Poland JA (2023) Genomic characterization and gene bank curation of Aegilops: the wild relatives of wheat. Front Plant Sci 14:1268370. 10.3389/fpls.2023.1268370 PubMed PMC

Akhunov ED, Goodyear AW, Geng S et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763. 10.1101/gr.808603 PubMed PMC

Bansal M, Adamski NM, Toor PI et al (2020) Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theor Appl Genet 133:903–915. 10.1007/s00122-019-03514-x PubMed

Cao S, Xu D, Hanif M et al (2020) Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet 133:1811–1823. 10.1007/s00122-020-03562-8 PubMed

Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078. 10.1093/jxb/erj124 PubMed

Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34–42. 10.1159/000082379 PubMed

Damania AB, Pecetti L (1990) Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in Northern Syria. Genet Resour Crop Evol 44:97–102

Darkó E, Khalil R, Dobi Z, Kovács V, Szalai G, Janda T, Molnár I (2020) Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci Rep 10:22327. 10.1038/s41598-020-79372-1 PubMed PMC

Dimov A, Zaharieva M, Mihova S (1993) Rust and powdery mildew resistance in Aegilops accessions from Bulgaria. In: Damania AB (ed) Biodiversity and Wheat Improvement. Wiley, Chichester, UK, pp 165–169

Dreisigacker S, Kishii M, Lage J, Warburton M (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59:413–420. 10.1071/AR07225

Dulai S, Molnár I, Szopkó D, Darkó É, Vojtkó A, Sass-Gyarmati A, Molnár-Láng M (2014) Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. J Plant Physiol 171:509–517. 10.1016/j.jplph.2013.11.015 PubMed

Edae EA, Olivera PD, Jin Y, Poland JA, Rouse MN (2016) Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat. BMC Genomics 17:1039. 10.1186/s12864-016-3370-2 PubMed PMC

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:1–10. 10.1371/journal.pone.0019379 PubMed PMC

Endo TR (1990) Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn J Genet 65:135–152. 10.1266/jjg.65.135

Endo TR (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res 15:67–75. 10.1007/s10577-006-1100-3 PubMed

Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307. 10.1093/oxfordjournals.jhered.a023003

Farkas A, Molnár I, Dulai S, Rapi S, Oldal V, Cseh A, Kruppa K, Molnár-Láng M (2014) Increased micronutrient content (Zn, Mn) in the 3 Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome 57:61–67. 10.1139/gen-2013-0204 PubMed

Farkas A, Gaál E, Ivanizs L et al (2023) Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines. Sci Rep 13:20499. 10.1038/s41598-023-47845-8 PubMed PMC

Friebe BR, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivum—Aegilops geniculata chromosome addition lines. Genome 42:374–380. 10.1139/g99-011

Geibel J, Reimer C, Weigend S, Weigend A, Pook T, Simianer H (2021) How array design creates SNP ascertainment bias. PLoS ONE 16:0245178. 10.1371/journal.pone.0245178 PubMed PMC

Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. 10.1093/nar/7.7.1869 PubMed PMC

Gong W, Han R, Li H et al (2017) Agronomic traits and molecular marker identification of wheat-Aegilops caudata addition lines. Front Plant Sci 8:1743. 10.3389/fpls.2017.01743 PubMed PMC

Ivanizs L, Monostori I, Farkas A et al (2019) Unlocking the genetic giversity and population structure of a wild gene source of wheat, Aegilops biuncialis Vis., and its relationship with the heading time. Front Plant Sci 10:1531. 10.3389/fpls.2019.01531 PubMed PMC

IWGSC (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788–1251788. 10.1126/science.1251788 PubMed

IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191. 10.1126/science.aar7191 PubMed

Jing HC, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 10:458–474. 10.1186/1471-2164-10-458 PubMed PMC

Kalinka A, Achrem M (2020) The distribution pattern of 5-methylcytosine in rye (Secale L.) chromosomes. PLoS ONE 15:0240869. 10.1371/journal.pone.0240869 PubMed PMC

Keilwagen J, Lehnert H, Berner T, Badaeva E, Himmelbach A, Börner A, Kilian B (2022) Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci Rep 12. 10.1038/s41598-022-05865-w PubMed PMC

King IP, Purdie KA, Rezanoor HN, Koebner RMD, Miller TE, Reader SM, Nicholson P (1993) Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPDs) and genomic in situ hybridization. Theor Appl Genet 86:895–900. 10.1007/BF00211038 PubMed

King J, Grewal S, Yang CY et al (2017) A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol J 15:217–226. 10.1111/pbi.12606 PubMed PMC

Koo DH, Liu W, Friebe B, Gill BS (2017) Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma 126:531–540. 10.1007/s00412-016-0622-5 PubMed

Kumar A, Seetan R, Mergoum M et al (2015) Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics 16:800–813. 10.1186/s12864-015-2030-2 PubMed PMC

Kuraparthy V, Sood S, Gill BS (2009) Molecular genetic description of the cryptic wheat-Aegilops geniculata introgression carrying rust resistance genes Lr57 and Yr40 using wheat ESTs and synteny with rice. Genome 52:1025–1036. 10.1139/G09-076 PubMed

Kwiatek MT, Błaszczyk L, Wiśniewska H, Apolinarska B (2012) Aegilops-Secale amphiplchromosomemosome categorisation, pollen viability and identification of fungal disease resistance genes. J Appl Genet 53:37–40. 10.1007/s13353-011-0071-z PubMed PMC

Kwiatek MT, Wiśniewska H, Apolinarska B (2013) Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (X Triticosecale Witt.) Breeding. J Appl Genet 54:147–155. 10.1007/s13353-013-0133-5 PubMed PMC

Kwiatek MT, Majka M, Ślusarkiewicz-Jarzina A, Ponitka A, Pudelska H, Belter J, Wiśniewska H (2016) Transmission of the Aegilops ovata chromosomes carrying gametocidal factors in hexaploid triticale (×Triticosecale Wittm.) Hybrids. J Appl Genet 57:305–315. 10.1007/s13353-015-0332-3 PubMed PMC

Kwiatek MT, Wiśniewska H, Ślusarkiewicz-Jarzina A, Majka J, Majka M, Belter J, Pudelska H (2017) Gametocidal factor transferred from Aegilops geniculata Roth can be adapted for large-scale chromosome manipulations in cereals. Front Plant Sci 8. 10.3389/fpls.2017.00409 PubMed PMC

Li H, Dong Z, Ma C, Tian X, Xiang Z, Xia Q, Ma P, Liu W (2019) Discovery of powdery mildew resistance gene candidates from Aegilops biuncialis chromosome 2 Mb based on transcriptome sequencing. PLoS ONE 14:0220089. 10.1371/journal.pone.0220089 PubMed PMC

Makkouk KM, Comeau A, Ghulam W (1994) Resistance to barley yellow dwarf luteovirus in Aegilops species. Can J Plant Sci 74:631–634. 10.4141/cjps94-113

Molnár I, Gáspár L, Sárvári É, Dulai S, Hoffmann B, Molnár-Láng M, Galiba G (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct Plant Biol 31:1149–1159. 10.1071/FP03143 PubMed

Molnár I, Benavente E, Molnár-Láng M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum– Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52:156–165. 10.1139/G08-114 PubMed

Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J (2011) Chromosome isolation by flow sorting in Aegilops umbellulata and ae. Comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS ONE 6:27708. 10.1371/journal.pone.0027708 PubMed PMC

Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Doležel J, Molnár-Láng M, Griffiths S (2013) Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS ONE 8:70844. 10.1371/journal.pone.0070844 PubMed PMC

Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J (2016) Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J 88:452–467. 10.1111/tpj.13266 PubMed

Monneveux P, Zaharieva M, Rekika D (2000) The utilisation of Triticum and Aegilops species for the improvement of durum wheat. In: Royo C, Nachit M, Fonzo N, Araus JL (eds) Durum Wheat Improvement in the Mediterranean Region: New Challenges. pp 71–81

Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38:479–486. 10.1139/g95-063 PubMed

Narang D, Kaur S, Steuernagel B, Ghosh S, Dhillon R, Bansal M, Uauy C, Wulff BBH, Chhuneja P (2019) Fine mapping of Aegilops Peregrina co-segregating leaf and stripe rust resistance genes to distal-most end of 5DS. Theor Appl Genet 132:1473–1485. 10.1007/s00122-019-03293-5 PubMed

Nyine M, Wang S, Kiani K, Jordan K, Liu S, Byrne P, Haley S, Baenziger S, Chao S, Bowden R, Akhunov ED (2019) Genotype imputation in winter wheat using first-generation haplotype map SNPs improves genome-wide association mapping and genomic prediction of traits. G3 9:125–133. 10.1534/g3.118.200664 PubMed PMC

Olivera PD, Kilian A, Wenzl P, Steffenson BJ (2013) Development of a genetic linkage map for Sharon goatgrass (Aegilops Sharonensis) and mapping of a leaf rust resistance gene. Genome 56:367–376. 10.1139/gen-2013-0065 PubMed

Olivera PD, Rouse MN, Jin Y (2018) Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front Plant Sci 871:1–7. 10.3389/fpls.2018.01719 PubMed PMC

Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091. 10.1007/s001220050666

Rakszegi M, Molnár I, Lovegrove A, Darkó É, Farkas A, Burton R (2017) Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front Plant Sci 8:1–18. 10.3389/fpls.2017.01529 PubMed PMC

Rakszegi M, Darkó É, Lovegrove A, Molnár I, Láng L, Bedő Z, Molnár-Láng M, Shewry P (2019) Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE 14:0211892. 10.1371/journal.pone.0211892 PubMed PMC

Rekika D, Monneveux P, Havaux M (1997) The in vivo tolerance of photosynthetic membranes to high and low temperatures in cultivated and wild wheats of the Triticum and Aegilops Genera. J Plant Physiol 150:734–738. 10.1016/S0176-1617(97)80291-X

Rey E, Molnár I, Doležel J (2015) Genomics of wild relatives and alien introgressions. In: M. Molnár-Láng, C. Ceoloni, and J. Dolezel (eds) Alien introgression in wheat. Springer International Publishing, pp 347–38

Rosyara U, Kishii M, Payne T, Sansaloni CP, Singh RP, Braun HJ, Dreisigacker S (2019) Genetic contribution of synthetic hexaploid wheat to CIMMYT’s spring bread wheat breeding germplasm. Sci Rep 9:12355. 10.1038/s41598-019-47936-5 PubMed PMC

Said M, Holušová K, Farkas A et al (2021) Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front Plant Sci 12:689031. 10.3389/fpls.2021.689031 PubMed PMC

Said M, Gaál E, Farkas A, Molnár I, Bartoš J, Doležel J, Cabrera A, Endo TR (2024) Gametocidal genes: from a discovery to the application in wheat breeding. Front Plant Sci 15:1396553. 10.3389/fpls.2024.1396553 PubMed PMC

Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome 48:1070–1082. 10.1139/G05-062 PubMed

Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. 10.1093/oxfordjournals.aob.a087847

Singh BD, Singh A (2015) Marker-assisted plant breeding: principles and practices. Springer, New Delhi

Song L, Zhao H, Zhang Z, Zhang S, Liu J, Zhang W, Zhang N, Ji J, Li L, Li J (2020) Molecular cytogenetic identification of wheat-Aegilops biuncialis 5Mb disomic addition line with tenacious and black glumes. Int J Mol Sci 21:1–13. 10.3390/ijms21114053 PubMed PMC

Song J, Xu D, Dong Y et al (2022) Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theor Appl Genet 135:3237–3246. 10.1007/s00122-022-04182-0 PubMed

Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F (2020) The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18. 10.1111/pbi.13361 PubMed PMC

Tan F, Zhou J, Yang Z, Yong Z, Pan L, Ren Z (2009) Characterization of a new synthetic wheat–Aegilops biuncialis partial amphiploid. Afr J Biotechnol 8:3215–3218. 10.5897/AJB09.359

Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov ED, Kalia B, Sabir J, Gill BS (2014) SNP Discovery for mapping alien introgressions in wheat. BMC Genomics 15:273. 10.1186/1471-2164-15-273 PubMed PMC

Tsujimoto H, Tsunewaki K (1984) Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. Can J Genet Cytol 26:78–84. 10.1139/g84-013

Türkösi E, Ivanizs L, Farkas A et al (2022) Transfer of the ph1b deletion chromosome 5B from Chinese spring wheat into a winter wheat line and induction of chromosome rearrangements in wheat-Aegilops biuncialis hybrids. Front Plant Sci 13:875676. 10.3389/fpls.2022.875676 PubMed PMC

van Slageren (1994) Wild wheats: a monograph of Aegilops L. Wageningen Agricultural University/ICARDA

Wendler N, Mascher M, Nöh C, Himmelbach A, Scholz U, Ruge-Wehling B, Stein N (2014) Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol J 12:1122–1131. 10.1111/pbi.12219 PubMed

Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920. 10.1073/pnas.0401076101 PubMed PMC

Winfield MO, Allen AM, Burridge AJ et al (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206. 10.1111/pbi.12485 PubMed PMC

Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth. Crop Sci 41:1321–1329. 10.2135/cropsci2001.4141321x

Zhou JP, Yao CH, Yang EN, Yin MQ, Liu C, Ren ZL (2014) Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genet Mol Res 13:660–669. 10.4238/2014.January.28.11 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...