DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39508930
PubMed Central
PMC11543725
DOI
10.1007/s11103-024-01520-2
PII: 10.1007/s11103-024-01520-2
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops biuncialis, Chromosome addition lines, DArTseq analysis, Thousand-grain weight, Wheat-Aegilops introgressions,
- MeSH
- Aegilops * genetika MeSH
- chromatin * genetika metabolismus MeSH
- chromozomy rostlin * genetika MeSH
- genetické markery MeSH
- genom rostlinný * MeSH
- genotyp MeSH
- genotypizační techniky MeSH
- genová introgrese MeSH
- mapování chromozomů MeSH
- pšenice * genetika MeSH
- šlechtění rostlin metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin * MeSH
- genetické markery MeSH
Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed Ub- and Mb-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub-genome chromosomes and 4,266 to Mb-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb-genome chromatin, predominantly the chromosomes 4Mb and 5Mb. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5MbL recombination were identified. A possible effect of the 5MbL distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.
Zobrazit více v PubMed
Abrouk M, Wang Y, Cavalet-Giorsa E, Troukhan M, Kravchuk M, Krattinger SG (2023) Chromosome-scale assembly of the wild wheat relative Aegilops umbellulata. Sci Data 10:739. 10.1038/s41597-023-02658-2 PubMed PMC
Adhikari L, Raupp J, Wu S, Koo DH, Friebe B, Poland JA (2023) Genomic characterization and gene bank curation of Aegilops: the wild relatives of wheat. Front Plant Sci 14:1268370. 10.3389/fpls.2023.1268370 PubMed PMC
Akhunov ED, Goodyear AW, Geng S et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763. 10.1101/gr.808603 PubMed PMC
Bansal M, Adamski NM, Toor PI et al (2020) Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theor Appl Genet 133:903–915. 10.1007/s00122-019-03514-x PubMed
Cao S, Xu D, Hanif M et al (2020) Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet 133:1811–1823. 10.1007/s00122-020-03562-8 PubMed
Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078. 10.1093/jxb/erj124 PubMed
Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34–42. 10.1159/000082379 PubMed
Damania AB, Pecetti L (1990) Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in Northern Syria. Genet Resour Crop Evol 44:97–102
Darkó E, Khalil R, Dobi Z, Kovács V, Szalai G, Janda T, Molnár I (2020) Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci Rep 10:22327. 10.1038/s41598-020-79372-1 PubMed PMC
Dimov A, Zaharieva M, Mihova S (1993) Rust and powdery mildew resistance in Aegilops accessions from Bulgaria. In: Damania AB (ed) Biodiversity and Wheat Improvement. Wiley, Chichester, UK, pp 165–169
Dreisigacker S, Kishii M, Lage J, Warburton M (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59:413–420. 10.1071/AR07225
Dulai S, Molnár I, Szopkó D, Darkó É, Vojtkó A, Sass-Gyarmati A, Molnár-Láng M (2014) Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. J Plant Physiol 171:509–517. 10.1016/j.jplph.2013.11.015 PubMed
Edae EA, Olivera PD, Jin Y, Poland JA, Rouse MN (2016) Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat. BMC Genomics 17:1039. 10.1186/s12864-016-3370-2 PubMed PMC
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:1–10. 10.1371/journal.pone.0019379 PubMed PMC
Endo TR (1990) Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn J Genet 65:135–152. 10.1266/jjg.65.135
Endo TR (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res 15:67–75. 10.1007/s10577-006-1100-3 PubMed
Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307. 10.1093/oxfordjournals.jhered.a023003
Farkas A, Molnár I, Dulai S, Rapi S, Oldal V, Cseh A, Kruppa K, Molnár-Láng M (2014) Increased micronutrient content (Zn, Mn) in the 3 Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome 57:61–67. 10.1139/gen-2013-0204 PubMed
Farkas A, Gaál E, Ivanizs L et al (2023) Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines. Sci Rep 13:20499. 10.1038/s41598-023-47845-8 PubMed PMC
Friebe BR, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivum—Aegilops geniculata chromosome addition lines. Genome 42:374–380. 10.1139/g99-011
Geibel J, Reimer C, Weigend S, Weigend A, Pook T, Simianer H (2021) How array design creates SNP ascertainment bias. PLoS ONE 16:0245178. 10.1371/journal.pone.0245178 PubMed PMC
Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. 10.1093/nar/7.7.1869 PubMed PMC
Gong W, Han R, Li H et al (2017) Agronomic traits and molecular marker identification of wheat-Aegilops caudata addition lines. Front Plant Sci 8:1743. 10.3389/fpls.2017.01743 PubMed PMC
Ivanizs L, Monostori I, Farkas A et al (2019) Unlocking the genetic giversity and population structure of a wild gene source of wheat, Aegilops biuncialis Vis., and its relationship with the heading time. Front Plant Sci 10:1531. 10.3389/fpls.2019.01531 PubMed PMC
IWGSC (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788–1251788. 10.1126/science.1251788 PubMed
IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191. 10.1126/science.aar7191 PubMed
Jing HC, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 10:458–474. 10.1186/1471-2164-10-458 PubMed PMC
Kalinka A, Achrem M (2020) The distribution pattern of 5-methylcytosine in rye (Secale L.) chromosomes. PLoS ONE 15:0240869. 10.1371/journal.pone.0240869 PubMed PMC
Keilwagen J, Lehnert H, Berner T, Badaeva E, Himmelbach A, Börner A, Kilian B (2022) Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci Rep 12. 10.1038/s41598-022-05865-w PubMed PMC
King IP, Purdie KA, Rezanoor HN, Koebner RMD, Miller TE, Reader SM, Nicholson P (1993) Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPDs) and genomic in situ hybridization. Theor Appl Genet 86:895–900. 10.1007/BF00211038 PubMed
King J, Grewal S, Yang CY et al (2017) A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol J 15:217–226. 10.1111/pbi.12606 PubMed PMC
Koo DH, Liu W, Friebe B, Gill BS (2017) Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma 126:531–540. 10.1007/s00412-016-0622-5 PubMed
Kumar A, Seetan R, Mergoum M et al (2015) Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics 16:800–813. 10.1186/s12864-015-2030-2 PubMed PMC
Kuraparthy V, Sood S, Gill BS (2009) Molecular genetic description of the cryptic wheat-Aegilops geniculata introgression carrying rust resistance genes Lr57 and Yr40 using wheat ESTs and synteny with rice. Genome 52:1025–1036. 10.1139/G09-076 PubMed
Kwiatek MT, Błaszczyk L, Wiśniewska H, Apolinarska B (2012) Aegilops-Secale amphiplchromosomemosome categorisation, pollen viability and identification of fungal disease resistance genes. J Appl Genet 53:37–40. 10.1007/s13353-011-0071-z PubMed PMC
Kwiatek MT, Wiśniewska H, Apolinarska B (2013) Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (X Triticosecale Witt.) Breeding. J Appl Genet 54:147–155. 10.1007/s13353-013-0133-5 PubMed PMC
Kwiatek MT, Majka M, Ślusarkiewicz-Jarzina A, Ponitka A, Pudelska H, Belter J, Wiśniewska H (2016) Transmission of the Aegilops ovata chromosomes carrying gametocidal factors in hexaploid triticale (×Triticosecale Wittm.) Hybrids. J Appl Genet 57:305–315. 10.1007/s13353-015-0332-3 PubMed PMC
Kwiatek MT, Wiśniewska H, Ślusarkiewicz-Jarzina A, Majka J, Majka M, Belter J, Pudelska H (2017) Gametocidal factor transferred from Aegilops geniculata Roth can be adapted for large-scale chromosome manipulations in cereals. Front Plant Sci 8. 10.3389/fpls.2017.00409 PubMed PMC
Li H, Dong Z, Ma C, Tian X, Xiang Z, Xia Q, Ma P, Liu W (2019) Discovery of powdery mildew resistance gene candidates from Aegilops biuncialis chromosome 2 Mb based on transcriptome sequencing. PLoS ONE 14:0220089. 10.1371/journal.pone.0220089 PubMed PMC
Makkouk KM, Comeau A, Ghulam W (1994) Resistance to barley yellow dwarf luteovirus in Aegilops species. Can J Plant Sci 74:631–634. 10.4141/cjps94-113
Molnár I, Gáspár L, Sárvári É, Dulai S, Hoffmann B, Molnár-Láng M, Galiba G (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct Plant Biol 31:1149–1159. 10.1071/FP03143 PubMed
Molnár I, Benavente E, Molnár-Láng M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum– Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52:156–165. 10.1139/G08-114 PubMed
Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J (2011) Chromosome isolation by flow sorting in Aegilops umbellulata and ae. Comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS ONE 6:27708. 10.1371/journal.pone.0027708 PubMed PMC
Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Doležel J, Molnár-Láng M, Griffiths S (2013) Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS ONE 8:70844. 10.1371/journal.pone.0070844 PubMed PMC
Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J (2016) Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J 88:452–467. 10.1111/tpj.13266 PubMed
Monneveux P, Zaharieva M, Rekika D (2000) The utilisation of Triticum and Aegilops species for the improvement of durum wheat. In: Royo C, Nachit M, Fonzo N, Araus JL (eds) Durum Wheat Improvement in the Mediterranean Region: New Challenges. pp 71–81
Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38:479–486. 10.1139/g95-063 PubMed
Narang D, Kaur S, Steuernagel B, Ghosh S, Dhillon R, Bansal M, Uauy C, Wulff BBH, Chhuneja P (2019) Fine mapping of Aegilops Peregrina co-segregating leaf and stripe rust resistance genes to distal-most end of 5DS. Theor Appl Genet 132:1473–1485. 10.1007/s00122-019-03293-5 PubMed
Nyine M, Wang S, Kiani K, Jordan K, Liu S, Byrne P, Haley S, Baenziger S, Chao S, Bowden R, Akhunov ED (2019) Genotype imputation in winter wheat using first-generation haplotype map SNPs improves genome-wide association mapping and genomic prediction of traits. G3 9:125–133. 10.1534/g3.118.200664 PubMed PMC
Olivera PD, Kilian A, Wenzl P, Steffenson BJ (2013) Development of a genetic linkage map for Sharon goatgrass (Aegilops Sharonensis) and mapping of a leaf rust resistance gene. Genome 56:367–376. 10.1139/gen-2013-0065 PubMed
Olivera PD, Rouse MN, Jin Y (2018) Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front Plant Sci 871:1–7. 10.3389/fpls.2018.01719 PubMed PMC
Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091. 10.1007/s001220050666
Rakszegi M, Molnár I, Lovegrove A, Darkó É, Farkas A, Burton R (2017) Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front Plant Sci 8:1–18. 10.3389/fpls.2017.01529 PubMed PMC
Rakszegi M, Darkó É, Lovegrove A, Molnár I, Láng L, Bedő Z, Molnár-Láng M, Shewry P (2019) Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE 14:0211892. 10.1371/journal.pone.0211892 PubMed PMC
Rekika D, Monneveux P, Havaux M (1997) The in vivo tolerance of photosynthetic membranes to high and low temperatures in cultivated and wild wheats of the Triticum and Aegilops Genera. J Plant Physiol 150:734–738. 10.1016/S0176-1617(97)80291-X
Rey E, Molnár I, Doležel J (2015) Genomics of wild relatives and alien introgressions. In: M. Molnár-Láng, C. Ceoloni, and J. Dolezel (eds) Alien introgression in wheat. Springer International Publishing, pp 347–38
Rosyara U, Kishii M, Payne T, Sansaloni CP, Singh RP, Braun HJ, Dreisigacker S (2019) Genetic contribution of synthetic hexaploid wheat to CIMMYT’s spring bread wheat breeding germplasm. Sci Rep 9:12355. 10.1038/s41598-019-47936-5 PubMed PMC
Said M, Holušová K, Farkas A et al (2021) Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front Plant Sci 12:689031. 10.3389/fpls.2021.689031 PubMed PMC
Said M, Gaál E, Farkas A, Molnár I, Bartoš J, Doležel J, Cabrera A, Endo TR (2024) Gametocidal genes: from a discovery to the application in wheat breeding. Front Plant Sci 15:1396553. 10.3389/fpls.2024.1396553 PubMed PMC
Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome 48:1070–1082. 10.1139/G05-062 PubMed
Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. 10.1093/oxfordjournals.aob.a087847
Singh BD, Singh A (2015) Marker-assisted plant breeding: principles and practices. Springer, New Delhi
Song L, Zhao H, Zhang Z, Zhang S, Liu J, Zhang W, Zhang N, Ji J, Li L, Li J (2020) Molecular cytogenetic identification of wheat-Aegilops biuncialis 5Mb disomic addition line with tenacious and black glumes. Int J Mol Sci 21:1–13. 10.3390/ijms21114053 PubMed PMC
Song J, Xu D, Dong Y et al (2022) Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theor Appl Genet 135:3237–3246. 10.1007/s00122-022-04182-0 PubMed
Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F (2020) The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18. 10.1111/pbi.13361 PubMed PMC
Tan F, Zhou J, Yang Z, Yong Z, Pan L, Ren Z (2009) Characterization of a new synthetic wheat–Aegilops biuncialis partial amphiploid. Afr J Biotechnol 8:3215–3218. 10.5897/AJB09.359
Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov ED, Kalia B, Sabir J, Gill BS (2014) SNP Discovery for mapping alien introgressions in wheat. BMC Genomics 15:273. 10.1186/1471-2164-15-273 PubMed PMC
Tsujimoto H, Tsunewaki K (1984) Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. Can J Genet Cytol 26:78–84. 10.1139/g84-013
Türkösi E, Ivanizs L, Farkas A et al (2022) Transfer of the ph1b deletion chromosome 5B from Chinese spring wheat into a winter wheat line and induction of chromosome rearrangements in wheat-Aegilops biuncialis hybrids. Front Plant Sci 13:875676. 10.3389/fpls.2022.875676 PubMed PMC
van Slageren (1994) Wild wheats: a monograph of Aegilops L. Wageningen Agricultural University/ICARDA
Wendler N, Mascher M, Nöh C, Himmelbach A, Scholz U, Ruge-Wehling B, Stein N (2014) Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol J 12:1122–1131. 10.1111/pbi.12219 PubMed
Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920. 10.1073/pnas.0401076101 PubMed PMC
Winfield MO, Allen AM, Burridge AJ et al (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206. 10.1111/pbi.12485 PubMed PMC
Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth. Crop Sci 41:1321–1329. 10.2135/cropsci2001.4141321x
Zhou JP, Yao CH, Yang EN, Yin MQ, Liu C, Ren ZL (2014) Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genet Mol Res 13:660–669. 10.4238/2014.January.28.11 PubMed