Transfer of the ph1b Deletion Chromosome 5B From Chinese Spring Wheat Into a Winter Wheat Line and Induction of Chromosome Rearrangements in Wheat-Aegilops biuncialis Hybrids
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35769292
PubMed Central
PMC9234525
DOI
10.3389/fpls.2022.875676
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops biuncialis, bread wheat, chromosome flow sorting, homoeologous recombination, in situ hybridization, meiotic chromosome pairing, ph1b mutant,
- Publikační typ
- časopisecké články MeSH
Effective utilization of genetic diversity in wild relatives to improve wheat requires recombination between wheat and alien chromosomes. However, this is suppressed by the Pairing homoeologous gene, Ph1, on the long arm of wheat chromosome 5B. A deletion mutant of the Ph1 locus (ph1b) has been used widely to induce homoeologous recombination in wheat × alien hybrids. However, the original ph1b mutation, developed in Chinese Spring (CS) background has poor agronomic performance. Hence, alien introgression lines are first backcrossed with adapted wheat genotypes and after this step, alien chromosome segments are introduced into breeding lines. In this work, the ph1b mutation was transferred from two CSph1b mutants into winter wheat line Mv9kr1. Homozygous genotypes Mv9kr1 ph1b/ph1b exhibited improved plant and spike morphology compared to Chinese Spring. Flow cytometric chromosome analysis confirmed reduced DNA content of the mutant 5B chromosome in both wheat genotype relative to the wild type chromosome. The ph1b mutation in the Mv9kr1 genotype allowed wheat-alien chromosome pairing in meiosis of Mv9kr1ph1b_K × Aegilops biuncialis F1 hybrids, predominantly with the Mb-genome chromosomes of Aegilops relative to those of the Ub genome. High frequency of wheat-Aegilops chromosome interactions resulted in rearranged chromosomes identified in the new Mv9kr1ph1b × Ae. Biuncialis amphiploids, making these lines valuable sources for alien introgressions. The new Mv9kr1ph1b mutant genotype is a unique resource to support alien introgression breeding of hexaploid wheat.
Field Crops Research Institute Agricultural Research Centre Giza Egypt
Institute of Genetics and Biotechnology Szent István Campus MATE Gödöllő Hungary
Zobrazit více v PubMed
Al-Kaff N., Knight E., Bertin I., Foote T., Hart N., Griffiths S., et al. (2008). Detailed dissection of the chromosomal region containing the PubMed DOI PMC
Bansal M., Adamski N. M., Toor P. I., Kaur S., Molnár I., Holušová K., et al. (2020). PubMed DOI
Ceoloni C., Strauss I., Feldman M. (1986). Effect of different doses of group-2 chromosomes on homoeologous pairing in intergeneric wheat hybrids. Can. J. Genet. Cytol. 28, 240–246. doi: 10.1139/g86-033 DOI
Cheng H., Liu J., Wen J., Nie X., Xu L., Chen N., et al. (2019). Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 20:136. doi: 10.1186/s13059-019-1744-x, PMID: PubMed DOI PMC
Cifuentes M., Blein M., Benavente E. (2006). A cytomolecular approach to assess the potential of gene transfer from a crop ( PubMed DOI
Copete-Parada A., Palomino C., Cabrera A. (2021). Development and characterization of wheat- DOI
Cox T. S. (1997). Deepening the wheat gene pool. J. Crop. Prod. 1, 1–25. doi: 10.1300/J144v01n01_01 DOI
Darkó É., Khalil R., Dobi Z., Kovács V., Szalai G., Janda T., et al. (2020). Addition of PubMed DOI PMC
Devi U., Grewal S., Yang C., Hubbart-Edwards S., Scholefield D., Ashling S., et al. (2019). Development and characterisation of interspecific hybrid lines with genome-wide introgressions from PubMed DOI PMC
Doležel J., Lucretti S., Molnár I., Cápal P., Giorgi D. (2021). Chromosome analysis and sorting. Cytometry A 99, 328–342. doi: 10.1002/cyto.a.24324, PMID: PubMed DOI PMC
Driscoll C. J. (1972). Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Can. J. Genet. Cytol. 14, 39–42. doi: 10.1139/g72-004 DOI
Driscoll C. J. (1973). Minor genes affecting homoeologous pairing in hybrids between wheat and related genera. Genetics 74:S66.
Dunford R. P., Kurata N., Laurie D. A., Money T. A., Minobe Y., Moore G. (1995). Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res. 23, 2724–2728. doi: 10.1093/nar/23.14.2724, PMID: PubMed DOI PMC
Dvořák J., Luo M. C., Yang Z. L. (1998). Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species. Genetics 148, 423–434. doi: 10.1093/genetics/148.1.423, PMID: PubMed DOI PMC
Dvořák J., Terlizzi P., Zhang H. B., Resta P. (1993). The evolution of polyploid wheats: identification of the A genome donor species. Genome 36, 21–31. doi: 10.1139/g93-004, PMID: PubMed DOI
Edae E. A., Olivera P. D., Jin Y., Poland J. A., Rouse M. N. (2016). Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in PubMed DOI PMC
Edae E. A., Olivera P. D., Jin Y., Rouse M. N. (2017). Genotyping-by-sequencing facilitates a high-density consensus linkage map for PubMed DOI PMC
Edet O. U., Kim J.-S., Okamoto M., Hanada K., Takeda T., Kishii M., et al. (2018). Efficient anchoring of alien chromosome segments introgressed into bread wheat by new PubMed DOI PMC
FAOSTAT (2018). Available at: http://www.fao.org/faostat/ (Accessed April 06, 2021).
FAOSTAT (2019). Available at: http://www.fao.org/faostat/ (Accessed April 06, 2021).
Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., et al. (2014). Increased micronutrient content (Zn, Mn) in the 3M(b)(4B) wheat- PubMed DOI
Feldman M., Levy A. A. (2012). Genome evolution due to allopolyploidization in wheat. Genetics 192, 763–774. doi: 10.1534/genetics.112.146316, PMID: PubMed DOI PMC
Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87. doi: 10.1007/BF00035277 DOI
Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. (2013). FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8:e57994. doi: 10.1371/journal.pone.0057994, PMID: PubMed DOI PMC
Grewal S., Othmeni M., Walker J., Hubbart-Edwards S., Yang C., Scholefield D., et al. (2020). Development of wheat- PubMed DOI PMC
Grewal S., Yang C., Edwards S. H., Scholefield D., Ashling S., Burridge A. J., et al. (2018). Characterisation of PubMed DOI PMC
Hayta S., Smedley M. A., Clarke M., Forner M., Harwood W. A. (2021). An efficient Agrobacterium-mediated transformation protocol for hexaploid and tetraploid wheat. Curr. Protoc. 1:e58. doi: 10.1002/cpz1.58, PMID: PubMed DOI
Huang X., Zhu M., Zhuang L., Zhang S., Wang J., Chen X., et al. (2018). Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor. Appl. Genet. 131, 1967–1986. doi: 10.1007/s00122-018-3126-2, PMID: PubMed DOI
Ivanizs L., Monostori I., Farkas A., Megyeri M., Mikó P., Türkösi E., et al. (2019). Unlocking the genetic diversity and population structure of a wild gene source of wheat, PubMed DOI PMC
IWGSC International Wheat Genome Sequencing Consortium (2014). A chromosome-based draft sequence of the hexaploid bread wheat ( PubMed DOI
Jiang J., Friebe B., Gill B. S. (1993). Recent advances in alien gene transfer in wheat. Euphytica 73, 199–212. doi: 10.1007/BF00036700 DOI
King J., Grewal S., Yang C. Y., Hubbart S., Scholefield D., Ashling S., et al. (2017). A step change in the transfer of interspecific variation into wheat from PubMed DOI PMC
Kishii M. (2019). An update of recent use of PubMed DOI PMC
Kruppa K., Molnár-Láng M. (2016). Simultaneous visualization of different genomes (J, JSt and St) in a PubMed DOI PMC
Kubaláková M., Macas J., Doležel J. (1997). Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 94, 758–763. doi: 10.1007/s001220050475 DOI
Kuraparthy V., Chhuneja P., Dhaliwal H. S., Kaur S., Bowden R. L., Gill B. S. (2007). Characterization and mapping of cryptic alien introgression from PubMed DOI
Li Y., Li Q., Lan J., Tang H., Qi P., Ma J., et al. (2020). Transfer of the DOI
Liu W., Jin Y., Rouse M., Friebe B., Gill B., Pumphrey M. O. (2011). Development and characterization of wheat- PubMed DOI
Logojan A. A., Molnár-Láng M. (2000). Production of DOI
Lubbers E. L., Gill K. S., Cox T. S., Gill B. S. (1991). Variation of molecular markers among geographically diverse accessions of DOI
Lukaszewski A. J. (2000). Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop. Sci. 40, 216–225. doi: 10.2135/cropsci2000.401216x DOI
Lukaszewski A. J., Rybka K., Korzun V., Malyshev S. V., Lapinski B., Whitkus R. (2004). Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47, 36–45. doi: 10.1139/g03-089, PMID: PubMed DOI
Maestra B., Naranjo T. (2000). “Genome evolution in triticeae,” in Chromosomes Today. eds. Olmo E., Redi C. A. (Basel: Birkhäuser Basel; ), 155–167.
Martín A. C., Alabdullah A. K., Moore G. (2021). A separation-of-function PubMed DOI PMC
Martín A. C., Borrill P., Higgins J., Alabdullah A., Ramírez-González R. H., Swarbreck D., et al. (2018). Genome-wide transcription during early wheat meiosis is independent of synapsis, ploidy level, and the PubMed DOI PMC
Martín A. C., Rey M. D., Shaw P., Moore G. (2017). Dual effect of the wheat PubMed DOI PMC
Mello-Sampayo T. (1971). Genetic regulation of meiotic chromosome pairing by chromosome 3D of PubMed DOI
Mello-Sampayo T., Canas A. P. (1973). “Suppressors of meiotic chromosome pairing in common wheat.” in Proceedings of 4
Mello-Sampayo T., Lorente R. (1968). The role of chromosome 3D in the regulation of meiotic pairing in hexaploid wheat. EWAC Newsl. 2, 16–24.
Molnár I., Benavente E., Molnár-Láng M. (2009). Detection of intergenomic chromosome rearrangements in irradiated PubMed DOI
Molnár I., Molnár-Láng M. (2010). GISH reveals different levels of meiotic pairing with wheat for individual DOI
Molnár I., Šimková H., Leverington-Waite M., Goram R., Cseh A., Vrána J., et al. (2013). Syntenic relationships between the U and M genomes of PubMed DOI PMC
Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É., et al. (2016). Dissecting the U, M, S and C genomes of wild relatives of bread wheat ( PubMed DOI
Molnár-Láng M., Ceoloni C., Doležel J., eds (2015). Alien Introgression in wheat: Cytogenetics, Molecular Biology, and Genomics/Márta Molnár-Láng, Carla Ceoloni, Jaroslav Doležel, Editors. Cham: Springer Science + Business Media.
Molnár-Láng M., Linc G., Sutka J. (1996). Transfer of the recessive crossability allele DOI
Molnár-Láng M., Molnár I., Szakács É., Linc G., Bedö Z. (2014). “Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines,” in Genomics of Plant Genetic Resources. eds. Tuberosa R., Graner A., Frison E. A. (New York: Springer; ), 255–283.
Moore G. (2014). The control of recombination in wheat by PubMed DOI
Moore G. (2015). Strategic pre-breeding for wheat improvement. Nat. Plants 1:15018. doi: 10.1038/nplants.2015.18, PMID: PubMed DOI
Naranjo T., Benavente E. (2015). “The mode and regulation of chromosome pairing in wheat–alien hybrids (
Niu Z., Klindworth D. L., Friesen T. L., Chao S., Jin Y., Cai X., et al. (2011). Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187, 1011–1021. doi: 10.1534/genetics.110.123588, PMID: PubMed DOI PMC
Okamoto M. (1957). Asynaptic effect of chromosome V. Wheat Inf. Serv. 5:6.
Okamoto M. (1962). Identification of the chromosomes of common wheat belonging to the A and B genomes. Can. J. Genet. Cytol. 4, 31–37. doi: 10.1139/g62-005 DOI
Qi L., Friebe B., Zhang P., Gill B. S. (2007). Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15, 3–19. doi: 10.1007/s10577-006-1108-8, PMID: PubMed DOI
Rey M.-D., Calderón M. C., Prieto P. (2015). The use of the PubMed DOI PMC
Rey M.-D., Martín A. C., Higgins J., Swarbreck D., Uauy C., Shaw P., et al. (2017). Exploiting the PubMed DOI PMC
Rey M.-D., Martín A. C., Smedley M., Hayta S., Harwood W., Shaw P., et al. (2018). Magnesium increases homoeologous crossover frequency during meiosis in PubMed DOI PMC
Riley R. (1968). “The basic and applied genetics of chromosome pairing.” in Proceedings of 3
Riley R., Chapman V. (1958). Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182, 713–715. doi: 10.1038/182713a0 DOI
Riley R., Chapman V., Johnson R. (1968). Introduction of yellow rust resistance of DOI
Riley R., Kempanna C. (1963). The homoeologous nature of the non-homologous meiotic pairing in DOI
Roberts M. A., Reader S. M., Dalgliesh C., Miller T. E., Foote T. N., Fish L. J., et al. (1999). Induction and characterization of PubMed DOI PMC
Said M., Holušová K., Farkas A., Ivanizs L., Gaál E., Cápal P., et al. (2021). Development of DNA markers from physically mapped loci in PubMed DOI PMC
Said M., Kubaláková M., Karafiátová M., Molnár I., Doležel J., Vrána J. (2019). Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome 12:180096. doi: 10.3835/plantgenome2018.12.0096, PMID: PubMed DOI
Sánchez-Morán E., Benavente E., Orellana J. (2001). Analysis of karyotypic stability of homoeologous-pairing ( PubMed DOI
Schneider A., Linc G., Molnár I., Molnár-Láng M. (2005). Molecular cytogenetic characterization of PubMed DOI
Schneider A., Molnár I., Molnár-Láng M. (2008). Utilisation of DOI
Sears E. R. (1952). Homoeologous chromosomes in
Sears E. R. (1954). The aneuploids of common wheat. Res. Bull. Mo. Agric. Exp. Stn. 572, 1–59.
Sears E. R. (1976). Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10, 31–51. doi: 10.1146/annurev.ge.10.120176.000335 PubMed DOI
Sears E. R. (1977). An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19, 585–593. doi: 10.1139/g77-063 DOI
Sears E. R. (1982). A wheat mutation conditioning an intermediate level of homoeologous chromosome pairing. Can. J. Genet. Cytol. 24, 715–719. doi: 10.1139/g82-076 DOI
Svačina R., Karafiátová M., Malurová M., Serra H., Vítek D., Endo T. R., et al. (2019). Development of deletion lines for chromosome 3D of bread wheat. Front. Plant Sci. 10:1756. doi: 10.3389/fpls.2019.01756, PMID: PubMed DOI PMC
Szakács E., Molnár-Láng M. (2007). Development and molecular cytogenetic identification of new winter wheat-winter barley (“Martonvásári 9 kr1”-“Igri”) disomic addition lines. Genome 50, 43–50. doi: 10.1139/g06-134, PMID: PubMed DOI
Szakács E., Molnár-Láng M. (2010). Identification of new winter wheat-winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole “Martonvásári 9 kr1” – “Igri” addition set. Genome 53, 35–44. doi: 10.1139/g09-085, PMID: PubMed DOI
Szakács É., Szőke-Pázsi K., Kalapos B., Schneider A., Ivanizs L., Rakszegi M., et al. (2020). 1RS arm of PubMed DOI PMC
Taira T., Shao Z. Z., Hamawaki H., Larter E. N. (1991). The effect of colchicine as a chromosome doubling agent for wheat-rye hybrids as influenced by ph, method of application, and post-treatment environment. Plant Breed. 106, 329–333. doi: 10.1111/j.1439-0523.1991.tb00518.x DOI
Thind A. K., Wicker T., Šimková H., Fossati D., Moullet O., Brabant C., et al. (2017). Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796. doi: 10.1038/nbt.3877, PMID: PubMed DOI
Tischner T., Koszegi B., Veisz O. (1997). Climatic programmes used in the Martonvásár phytotron most frequently in recent years. Acta Agron. Hung. 45, 85–104.
Türkösi E., Darko É., Rakszegi M., Molnár I., Molnár-Láng M., Cseh A. (2018). Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS One 13:e0206248. doi: 10.1371/journal.pone.0206248, PMID: PubMed DOI PMC
Vrána J., Cápal P., Šimková H., Karafiátová M., Čížková J., Doležel J. (2016). Flow analysis and sorting of plant chromosomes. Curr. Protoc. Cytom. 78, 5.3.1–5.3.43. doi: 10.1002/cpcy.9, PMID: PubMed DOI
Wulff B. B. H., Moscou M. J. (2014). Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 5:692. doi: 10.3389/fpls.2014.00692, PMID: PubMed DOI PMC
Xie Q., Li N., Yang Y., Lv Y., Yao H., Wei R., et al. (2018). Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta 247, 1089–1098. doi: 10.1007/s00425-018-2847-4, PMID: PubMed DOI
Zhang H., Jia J., Gale M. D., Devos K. M. (1998). Relationships between the chromosomes of DOI
Zhao R., Wang H., Xiao J., Bie T., Cheng S., Jia Q., et al. (2013). Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from PubMed DOI
Gametocidal genes: from a discovery to the application in wheat breeding