Transfer of the ph1b Deletion Chromosome 5B From Chinese Spring Wheat Into a Winter Wheat Line and Induction of Chromosome Rearrangements in Wheat-Aegilops biuncialis Hybrids
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
35769292
PubMed Central
PMC9234525
DOI
10.3389/fpls.2022.875676
Knihovny.cz E-resources
- Keywords
- Aegilops biuncialis, bread wheat, chromosome flow sorting, homoeologous recombination, in situ hybridization, meiotic chromosome pairing, ph1b mutant,
- Publication type
- Journal Article MeSH
Effective utilization of genetic diversity in wild relatives to improve wheat requires recombination between wheat and alien chromosomes. However, this is suppressed by the Pairing homoeologous gene, Ph1, on the long arm of wheat chromosome 5B. A deletion mutant of the Ph1 locus (ph1b) has been used widely to induce homoeologous recombination in wheat × alien hybrids. However, the original ph1b mutation, developed in Chinese Spring (CS) background has poor agronomic performance. Hence, alien introgression lines are first backcrossed with adapted wheat genotypes and after this step, alien chromosome segments are introduced into breeding lines. In this work, the ph1b mutation was transferred from two CSph1b mutants into winter wheat line Mv9kr1. Homozygous genotypes Mv9kr1 ph1b/ph1b exhibited improved plant and spike morphology compared to Chinese Spring. Flow cytometric chromosome analysis confirmed reduced DNA content of the mutant 5B chromosome in both wheat genotype relative to the wild type chromosome. The ph1b mutation in the Mv9kr1 genotype allowed wheat-alien chromosome pairing in meiosis of Mv9kr1ph1b_K × Aegilops biuncialis F1 hybrids, predominantly with the Mb-genome chromosomes of Aegilops relative to those of the Ub genome. High frequency of wheat-Aegilops chromosome interactions resulted in rearranged chromosomes identified in the new Mv9kr1ph1b × Ae. Biuncialis amphiploids, making these lines valuable sources for alien introgressions. The new Mv9kr1ph1b mutant genotype is a unique resource to support alien introgression breeding of hexaploid wheat.
Field Crops Research Institute Agricultural Research Centre Giza Egypt
Institute of Genetics and Biotechnology Szent István Campus MATE Gödöllő Hungary
See more in PubMed
Al-Kaff N., Knight E., Bertin I., Foote T., Hart N., Griffiths S., et al. . (2008). Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann. Bot. 101, 863–872. doi: 10.1093/aob/mcm252, PMID: PubMed DOI PMC
Bansal M., Adamski N. M., Toor P. I., Kaur S., Molnár I., Holušová K., et al. . (2020). Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theor. Appl. Genet. 133, 903–915. doi: 10.1007/s00122-019-03514-x, PMID: PubMed DOI
Ceoloni C., Strauss I., Feldman M. (1986). Effect of different doses of group-2 chromosomes on homoeologous pairing in intergeneric wheat hybrids. Can. J. Genet. Cytol. 28, 240–246. doi: 10.1139/g86-033 DOI
Cheng H., Liu J., Wen J., Nie X., Xu L., Chen N., et al. . (2019). Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 20:136. doi: 10.1186/s13059-019-1744-x, PMID: PubMed DOI PMC
Cifuentes M., Blein M., Benavente E. (2006). A cytomolecular approach to assess the potential of gene transfer from a crop (Triticum turgidum L.) to a wild relative (Aegilops geniculata Roth.). Theor. Appl. Genet. 112, 657–664. doi: 10.1007/s00122-005-0168-z, PMID: PubMed DOI
Copete-Parada A., Palomino C., Cabrera A. (2021). Development and characterization of wheat-Agropyron cristatum introgression lines induced by gametocidal genes and wheat ph1b mutant. Agronomy 11:277. doi: 10.3390/agronomy11020277 DOI
Cox T. S. (1997). Deepening the wheat gene pool. J. Crop. Prod. 1, 1–25. doi: 10.1300/J144v01n01_01 DOI
Darkó É., Khalil R., Dobi Z., Kovács V., Szalai G., Janda T., et al. . (2020). Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci. Rep. 10:22327. doi: 10.1038/s41598-020-79372-1, PMID: PubMed DOI PMC
Devi U., Grewal S., Yang C., Hubbart-Edwards S., Scholefield D., Ashling S., et al. . (2019). Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background. BMC Plant Biol. 19:183. doi: 10.1186/s12870-019-1785-z, PMID: PubMed DOI PMC
Doležel J., Lucretti S., Molnár I., Cápal P., Giorgi D. (2021). Chromosome analysis and sorting. Cytometry A 99, 328–342. doi: 10.1002/cyto.a.24324, PMID: PubMed DOI PMC
Driscoll C. J. (1972). Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Can. J. Genet. Cytol. 14, 39–42. doi: 10.1139/g72-004 DOI
Driscoll C. J. (1973). Minor genes affecting homoeologous pairing in hybrids between wheat and related genera. Genetics 74:S66.
Dunford R. P., Kurata N., Laurie D. A., Money T. A., Minobe Y., Moore G. (1995). Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res. 23, 2724–2728. doi: 10.1093/nar/23.14.2724, PMID: PubMed DOI PMC
Dvořák J., Luo M. C., Yang Z. L. (1998). Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species. Genetics 148, 423–434. doi: 10.1093/genetics/148.1.423, PMID: PubMed DOI PMC
Dvořák J., Terlizzi P., Zhang H. B., Resta P. (1993). The evolution of polyploid wheats: identification of the A genome donor species. Genome 36, 21–31. doi: 10.1139/g93-004, PMID: PubMed DOI
Edae E. A., Olivera P. D., Jin Y., Poland J. A., Rouse M. N. (2016). Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat. BMC Genomics 17:1039. doi: 10.1186/s12864-016-3370-2, PMID: PubMed DOI PMC
Edae E. A., Olivera P. D., Jin Y., Rouse M. N. (2017). Genotyping-by-sequencing facilitates a high-density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat. G3. 7, 1551–1561. doi: 10.1534/g3.117.039966, PMID: PubMed DOI PMC
Edet O. U., Kim J.-S., Okamoto M., Hanada K., Takeda T., Kishii M., et al. . (2018). Efficient anchoring of alien chromosome segments introgressed into bread wheat by new Leymus racemosus genome-based markers. BMC Genet. 19:18. doi: 10.1186/s12863-018-0603-1, PMID: PubMed DOI PMC
FAOSTAT (2018). Available at: http://www.fao.org/faostat/ (Accessed April 06, 2021).
FAOSTAT (2019). Available at: http://www.fao.org/faostat/ (Accessed April 06, 2021).
Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., et al. . (2014). Increased micronutrient content (Zn, Mn) in the 3M(b)(4B) wheat-Aegilops biuncialis substitution and 3M(b).4BS translocation identified by GISH and FISH. Genome 57, 61–67. doi: 10.1139/gen-2013-0204, PMID: PubMed DOI
Feldman M., Levy A. A. (2012). Genome evolution due to allopolyploidization in wheat. Genetics 192, 763–774. doi: 10.1534/genetics.112.146316, PMID: PubMed DOI PMC
Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87. doi: 10.1007/BF00035277 DOI
Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. (2013). FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8:e57994. doi: 10.1371/journal.pone.0057994, PMID: PubMed DOI PMC
Grewal S., Othmeni M., Walker J., Hubbart-Edwards S., Yang C., Scholefield D., et al. . (2020). Development of wheat-Aegilops caudata introgression lines and their characterization using genome-specific KASP markers. Front. Plant Sci. 11:606. doi: 10.3389/fpls.2020.00606, PMID: PubMed DOI PMC
Grewal S., Yang C., Edwards S. H., Scholefield D., Ashling S., Burridge A. J., et al. . (2018). Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theor. Appl. Genet. 131, 389–406. doi: 10.1007/s00122-017-3009-y, PMID: PubMed DOI PMC
Hayta S., Smedley M. A., Clarke M., Forner M., Harwood W. A. (2021). An efficient Agrobacterium-mediated transformation protocol for hexaploid and tetraploid wheat. Curr. Protoc. 1:e58. doi: 10.1002/cpz1.58, PMID: PubMed DOI
Huang X., Zhu M., Zhuang L., Zhang S., Wang J., Chen X., et al. . (2018). Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor. Appl. Genet. 131, 1967–1986. doi: 10.1007/s00122-018-3126-2, PMID: PubMed DOI
Ivanizs L., Monostori I., Farkas A., Megyeri M., Mikó P., Türkösi E., et al. . (2019). Unlocking the genetic diversity and population structure of a wild gene source of wheat, Aegilops biuncialis Vis., and its relationship with the heading time. Front. Plant Sci. 10:1531. doi: 10.3389/fpls.2019.01531, PMID: PubMed DOI PMC
IWGSC International Wheat Genome Sequencing Consortium (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. doi: 10.1126/science.1251788, PMID: PubMed DOI
Jiang J., Friebe B., Gill B. S. (1993). Recent advances in alien gene transfer in wheat. Euphytica 73, 199–212. doi: 10.1007/BF00036700 DOI
King J., Grewal S., Yang C. Y., Hubbart S., Scholefield D., Ashling S., et al. . (2017). A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol. J. 15, 217–226. doi: 10.1111/pbi.12606, PMID: PubMed DOI PMC
Kishii M. (2019). An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 10:585. doi: 10.3389/fpls.2019.00585, PMID: PubMed DOI PMC
Kruppa K., Molnár-Láng M. (2016). Simultaneous visualization of different genomes (J, JSt and St) in a Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid (Poaceae) and in its parental species by multicolour genomic in situ hybridization (mcGISH). Comp. Cytogenet. 10, 283–293. doi: 10.3897/CompCytogen.v10i2.7305, PMID: PubMed DOI PMC
Kubaláková M., Macas J., Doležel J. (1997). Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 94, 758–763. doi: 10.1007/s001220050475 DOI
Kuraparthy V., Chhuneja P., Dhaliwal H. S., Kaur S., Bowden R. L., Gill B. S. (2007). Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor. Appl. Genet. 114, 1379–1389. doi: 10.1007/s00122-007-0524-2, PMID: PubMed DOI
Li Y., Li Q., Lan J., Tang H., Qi P., Ma J., et al. . (2020). Transfer of the ph1b gene of ‘Chinese spring’ into a common wheat cultivar with excellent traits. Cereal Res. Commun. 48, 283–291. doi: 10.1007/s42976-020-00048-7 DOI
Liu W., Jin Y., Rouse M., Friebe B., Gill B., Pumphrey M. O. (2011). Development and characterization of wheat-Ae. Searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor. Appl. Genet. 122, 1537–1545. doi: 10.1007/s00122-011-1553-4, PMID: PubMed DOI
Logojan A. A., Molnár-Láng M. (2000). Production of Triticum aestivum-Aegilops biuncialis chromosome additions. Cereal Res. Commun. 28, 221–228. doi: 10.1007/BF03543597 DOI
Lubbers E. L., Gill K. S., Cox T. S., Gill B. S. (1991). Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34, 354–361. doi: 10.1139/g91-057 DOI
Lukaszewski A. J. (2000). Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop. Sci. 40, 216–225. doi: 10.2135/cropsci2000.401216x DOI
Lukaszewski A. J., Rybka K., Korzun V., Malyshev S. V., Lapinski B., Whitkus R. (2004). Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47, 36–45. doi: 10.1139/g03-089, PMID: PubMed DOI
Maestra B., Naranjo T. (2000). “Genome evolution in triticeae,” in Chromosomes Today. eds. Olmo E., Redi C. A. (Basel: Birkhäuser Basel; ), 155–167.
Martín A. C., Alabdullah A. K., Moore G. (2021). A separation-of-function ZIP4 wheat mutant allows crossover between related chromosomes and is meiotically stable. Sci. Rep. 11:21811. doi: 10.1038/s41598-021-01379-z, PMID: PubMed DOI PMC
Martín A. C., Borrill P., Higgins J., Alabdullah A., Ramírez-González R. H., Swarbreck D., et al. . (2018). Genome-wide transcription during early wheat meiosis is independent of synapsis, ploidy level, and the Ph1 locus. Front. Plant Sci. 9:1791. doi: 10.3389/fpls.2018.01791, PMID: PubMed DOI PMC
Martín A. C., Rey M. D., Shaw P., Moore G. (2017). Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma 126, 669–680. doi: 10.1007/s00412-017-0630-0, PMID: PubMed DOI PMC
Mello-Sampayo T. (1971). Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nat. New Biol. 230, 22–23. doi: 10.1038/newbio230022a0, PMID: PubMed DOI
Mello-Sampayo T., Canas A. P. (1973). “Suppressors of meiotic chromosome pairing in common wheat.” in Proceedings of 4th International Wheat Genetics Symposium. eds. Sears E. R., Sears L. M. S. (Columbia, Missouri: University of Missouri; ), 709–713.
Mello-Sampayo T., Lorente R. (1968). The role of chromosome 3D in the regulation of meiotic pairing in hexaploid wheat. EWAC Newsl. 2, 16–24.
Molnár I., Benavente E., Molnár-Láng M. (2009). Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52, 156–165. doi: 10.1139/g08-114, PMID: PubMed DOI
Molnár I., Molnár-Láng M. (2010). GISH reveals different levels of meiotic pairing with wheat for individual Aegilops biuncialis chromosomes. Biol. Plant. 54, 259–264. doi: 10.1007/s10535-010-0045-8 DOI
Molnár I., Šimková H., Leverington-Waite M., Goram R., Cseh A., Vrána J., et al. . (2013). Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One 8:e70844. doi: 10.1371/journal.pone.0070844, PMID: PubMed DOI PMC
Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É., et al. . (2016). Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 88, 452–467. doi: 10.1111/tpj.13266, PMID: PubMed DOI
Molnár-Láng M., Ceoloni C., Doležel J., eds (2015). Alien Introgression in wheat: Cytogenetics, Molecular Biology, and Genomics/Márta Molnár-Láng, Carla Ceoloni, Jaroslav Doležel, Editors. Cham: Springer Science + Business Media.
Molnár-Láng M., Linc G., Sutka J. (1996). Transfer of the recessive crossability allele kr1 from Chinese spring into the winter wheat variety Martonvásári 9. Euphytica 90, 301–305. doi: 10.1007/BF00027480 DOI
Molnár-Láng M., Molnár I., Szakács É., Linc G., Bedö Z. (2014). “Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines,” in Genomics of Plant Genetic Resources. eds. Tuberosa R., Graner A., Frison E. A. (New York: Springer; ), 255–283.
Moore G. (2014). The control of recombination in wheat by Ph1 and its use in breeding. Methods Mol. Biol. 1145, 143–153. doi: 10.1007/978-1-4939-0446-4_12, PMID: PubMed DOI
Moore G. (2015). Strategic pre-breeding for wheat improvement. Nat. Plants 1:15018. doi: 10.1038/nplants.2015.18, PMID: PubMed DOI
Naranjo T., Benavente E. (2015). “The mode and regulation of chromosome pairing in wheat–alien hybrids (Ph genes, an updated view),” in Alien introgression in wheat: Cytogenetics, molecular biology, and genomics/Márta Molnár-Láng, Carla Ceoloni, Jaroslav Doležel. eds. Molnár-Láng M., Ceoloni C., Doležel J. (Cham: Springer Science + Business Media; ), 133–162.
Niu Z., Klindworth D. L., Friesen T. L., Chao S., Jin Y., Cai X., et al. . (2011). Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187, 1011–1021. doi: 10.1534/genetics.110.123588, PMID: PubMed DOI PMC
Okamoto M. (1957). Asynaptic effect of chromosome V. Wheat Inf. Serv. 5:6.
Okamoto M. (1962). Identification of the chromosomes of common wheat belonging to the A and B genomes. Can. J. Genet. Cytol. 4, 31–37. doi: 10.1139/g62-005 DOI
Qi L., Friebe B., Zhang P., Gill B. S. (2007). Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15, 3–19. doi: 10.1007/s10577-006-1108-8, PMID: PubMed DOI
Rey M.-D., Calderón M. C., Prieto P. (2015). The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front. Plant Sci. 6:160. doi: 10.3389/fpls.2015.00160, PMID: PubMed DOI PMC
Rey M.-D., Martín A. C., Higgins J., Swarbreck D., Uauy C., Shaw P., et al. . (2017). Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol Breeding 37:95. doi: 10.1007/s11032-017-0700-2, PMID: PubMed DOI PMC
Rey M.-D., Martín A. C., Smedley M., Hayta S., Harwood W., Shaw P., et al. . (2018). Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 gene) mutant wheat-wild relative hybrids. Front. Plant Sci. 9:509. doi: 10.3389/fpls.2018.00509, PMID: PubMed DOI PMC
Riley R. (1968). “The basic and applied genetics of chromosome pairing.” in Proceedings of 3rd IInternational Wheat Genetics Symposium. eds. Finlay K. W., Shepherd K. W. (Canberra: Australia Academy of Science; ), 185–195.
Riley R., Chapman V. (1958). Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182, 713–715. doi: 10.1038/182713a0 DOI
Riley R., Chapman V., Johnson R. (1968). Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217, 383–384. doi: 10.1038/217383a0 DOI
Riley R., Kempanna C. (1963). The homoeologous nature of the non-homologous meiotic pairing in Triticum aestivum deficient for chromosome V (5B). Heredity 18, 287–306. doi: 10.1038/hdy.1963.31 DOI
Roberts M. A., Reader S. M., Dalgliesh C., Miller T. E., Foote T. N., Fish L. J., et al. . (1999). Induction and characterization of Ph1 wheat mutants. Genetics 153, 1909–1918. doi: 10.1093/genetics/153.4.1909, PMID: PubMed DOI PMC
Said M., Holušová K., Farkas A., Ivanizs L., Gaál E., Cápal P., et al. . (2021). Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front. Plant Sci. 12:689031. doi: 10.3389/fpls.2021.689031, PMID: PubMed DOI PMC
Said M., Kubaláková M., Karafiátová M., Molnár I., Doležel J., Vrána J. (2019). Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome 12:180096. doi: 10.3835/plantgenome2018.12.0096, PMID: PubMed DOI
Sánchez-Morán E., Benavente E., Orellana J. (2001). Analysis of karyotypic stability of homoeologous-pairing (ph) mutants in allopolyploid wheats. Chromosoma 110, 371–377. doi: 10.1007/s004120100156, PMID: PubMed DOI
Schneider A., Linc G., Molnár I., Molnár-Láng M. (2005). Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome 48, 1070–1082. doi: 10.1139/g05-062, PMID: PubMed DOI
Schneider A., Molnár I., Molnár-Láng M. (2008). Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163, 1–19. doi: 10.1007/s10681-007-9624-y DOI
Sears E. R. (1952). Homoeologous chromosomes in Triticum aestivum. Genetics 37:624.
Sears E. R. (1954). The aneuploids of common wheat. Res. Bull. Mo. Agric. Exp. Stn. 572, 1–59.
Sears E. R. (1976). Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10, 31–51. doi: 10.1146/annurev.ge.10.120176.000335 PubMed DOI
Sears E. R. (1977). An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19, 585–593. doi: 10.1139/g77-063 DOI
Sears E. R. (1982). A wheat mutation conditioning an intermediate level of homoeologous chromosome pairing. Can. J. Genet. Cytol. 24, 715–719. doi: 10.1139/g82-076 DOI
Svačina R., Karafiátová M., Malurová M., Serra H., Vítek D., Endo T. R., et al. . (2019). Development of deletion lines for chromosome 3D of bread wheat. Front. Plant Sci. 10:1756. doi: 10.3389/fpls.2019.01756, PMID: PubMed DOI PMC
Szakács E., Molnár-Láng M. (2007). Development and molecular cytogenetic identification of new winter wheat-winter barley (“Martonvásári 9 kr1”-“Igri”) disomic addition lines. Genome 50, 43–50. doi: 10.1139/g06-134, PMID: PubMed DOI
Szakács E., Molnár-Láng M. (2010). Identification of new winter wheat-winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole “Martonvásári 9 kr1” – “Igri” addition set. Genome 53, 35–44. doi: 10.1139/g09-085, PMID: PubMed DOI
Szakács É., Szőke-Pázsi K., Kalapos B., Schneider A., Ivanizs L., Rakszegi M., et al. . (2020). 1RS arm of Secale cereanum “Kriszta” confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat. Sci. Rep. 10:1792. doi: 10.1038/s41598-020-58419-3, PMID: PubMed DOI PMC
Taira T., Shao Z. Z., Hamawaki H., Larter E. N. (1991). The effect of colchicine as a chromosome doubling agent for wheat-rye hybrids as influenced by ph, method of application, and post-treatment environment. Plant Breed. 106, 329–333. doi: 10.1111/j.1439-0523.1991.tb00518.x DOI
Thind A. K., Wicker T., Šimková H., Fossati D., Moullet O., Brabant C., et al. . (2017). Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796. doi: 10.1038/nbt.3877, PMID: PubMed DOI
Tischner T., Koszegi B., Veisz O. (1997). Climatic programmes used in the Martonvásár phytotron most frequently in recent years. Acta Agron. Hung. 45, 85–104.
Türkösi E., Darko É., Rakszegi M., Molnár I., Molnár-Láng M., Cseh A. (2018). Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS One 13:e0206248. doi: 10.1371/journal.pone.0206248, PMID: PubMed DOI PMC
Vrána J., Cápal P., Šimková H., Karafiátová M., Čížková J., Doležel J. (2016). Flow analysis and sorting of plant chromosomes. Curr. Protoc. Cytom. 78, 5.3.1–5.3.43. doi: 10.1002/cpcy.9, PMID: PubMed DOI
Wulff B. B. H., Moscou M. J. (2014). Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci. 5:692. doi: 10.3389/fpls.2014.00692, PMID: PubMed DOI PMC
Xie Q., Li N., Yang Y., Lv Y., Yao H., Wei R., et al. . (2018). Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta 247, 1089–1098. doi: 10.1007/s00425-018-2847-4, PMID: PubMed DOI
Zhang H., Jia J., Gale M. D., Devos K. M. (1998). Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor. Appl. Genet. 96, 69–75. doi: 10.1007/s001220050710 DOI
Zhao R., Wang H., Xiao J., Bie T., Cheng S., Jia Q., et al. . (2013). Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 126, 2921–2930. doi: 10.1007/s00122-013-2181-y, PMID: PubMed DOI
Gametocidal genes: from a discovery to the application in wheat breeding