1RS arm of Secale cereanum 'Kriszta' confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32019962
PubMed Central
PMC7000720
DOI
10.1038/s41598-020-58419-3
PII: 10.1038/s41598-020-58419-3
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin * MeSH
- geneticky modifikované rostliny MeSH
- nemoci rostlin genetika MeSH
- odolnost vůči nemocem genetika MeSH
- pšenice genetika MeSH
- translokace genetická MeSH
- žito genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Wheat-rye T1BL.1RS translocation is widespread worldwide as the genes on 1RS arm have positive effect on stress resistance, grain yield and adaptation ability of wheat. Nowadays, the T1BL.1RS wheat cultivars have become susceptible to rust diseases because of the monophyletic ('Petkus') origin of 1RS. Here we report and discuss the production and detailed investigation of a new T1BL.1RS translocation line carrying 1RS with widened genetic base originating from Secale cereanum. Line '179' exhibited improved spike morphology traits, resistance against stripe rust and leaf rust, as well as higher tillering capacity, fertility and dietary fiber (arabynoxylan) content than the parental wheat genotype. Comparative analyses based on molecular cytogenetic methods and molecular (SSR and DArTseq) makers indicate that the 1RS arm of line '179' is a recombinant of S. cereale and S. strictum homologues, and approximately 16% of its loci were different from that of 'Petkus' origin. 162 (69.5%) 1RS-specific markers were associated with genes, including 10 markers with putative disease resistance functions and LRR domains found on the subtelomeric or pericentromeric regions of 1RS. Line '179' will facilitate the map-based cloning of the resistance genes, and it can contribute to healthy eating and a more cost-efficient wheat production.
Zobrazit více v PubMed
Molnár-Láng, M., Ceoloni, C. & Doležel, J. (eds.). Alien introgression in wheat. Cytogenetics, molecular biology, and genomics / Márta Molnár-Láng, Carla Ceoloni, Jaroslav Doležel, editors (Springer Science + Business Media, Cham, 2015).
Lein, A. Introgression of a rye chromosome to wheat strains by Georg Riebesel-Salzmunde after 1926. In: Proceedings of the International Symposium on Triticale (EUCARPIA), 158–168 (1975).
Carver BF, Rayburn AL. Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: Agronomic performance. Crop. Sci. 1994;34:1505–1510. doi: 10.2135/cropsci1994.0011183X003400060017x. DOI
Villareal RL, Bañuelos O, Mujeeb-Kazi A, Rajaram S. Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica. 1998;103:195–202. doi: 10.1023/A:1018392002909. DOI
Friebe B, Zeller FJ, Kunzmann R. Transfer of the 1BL/1RS wheat-rye-translocation from hexaploid bread wheat to tetraploid durum wheat. Theor. Appl. Genet. 1987;74:423–425. doi: 10.1007/BF00289815. PubMed DOI
Villareal RL, Bañuelos O, Mujeeb-Kazi A. Agronomic performance of related durum wheat (Triticum turgidum L.) stocks possessing the chromosome substitution T1BL.1RS. Crop. Sci. 1997;37:1735–1742. doi: 10.2135/cropsci1997.0011183X003700060010x. DOI
Bullrich L, Tranquilli G, Pfluger LA, Suárez EY, Barneix AJ. Bread-making quality and yield performance of 1BL/1RS wheat isogenic lines. Plant. Breed. 1998;117:119–122. doi: 10.1111/j.1439-0523.1998.tb01463.x. DOI
Singh RP, Huerta-Espino J, Rajaram S, Crossa J. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop. Sci. 1998;38:27–33. doi: 10.2135/cropsci1998.0011183X003800010005x. DOI
Ehdaie B, Whitkus RW, Waines JG. Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop. Sci. 2003;43:710–717. doi: 10.2135/cropsci2003.0710. DOI
Hoffmann B. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Res. Commun. 2008;36:269–278. doi: 10.1556/CRC.36.2008.2.7. DOI
Heun M, Friebe B. Introgression of powdery mildew resistance from rye into wheat. Phytopathology. 1990;80:242–245. doi: 10.1094/Phyto-80-242. DOI
Singh NK, Shepherd KW, McIntosh RA. Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theor. Appl. Genet. 1990;80:609–616. doi: 10.1007/BF00224219. PubMed DOI
Lutz J, Limpert E, Bartos P, Zeller FJ. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). I. Czechoslovakian cultivars. Plant. Breed. 1992;108:33–39. doi: 10.1111/j.1439-0523.1992.tb00097.x. DOI
Pretorius ZA, Singh RP, Wagoire WW, Payne TS. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant. Dis. 2000;84:203. doi: 10.1094/PDIS.2000.84.2.203B. PubMed DOI
Pretorius ZA, Bender CM, Visser B, Terefe T. First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust Resistance Genes in South Africa. Plant. Dis. 2010;94:784. doi: 10.1094/PDIS-94-6-0784C. PubMed DOI
Molnár-Láng M, Cseh A, Szakács É, Molnár I. Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. Theor. Appl. Genet. 2010;120:1535–1545. doi: 10.1007/s00122-010-1274-0. PubMed DOI
Tang, Z. X. et al. in Wild Crop Relatives: Genomic and Breeding Resources, edited by C. Kole (Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 367–396. (2011)
Chikmawati T, Skovmand B, Gustafson JP. Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. Genome. 2005;48:792–801. doi: 10.1139/g05-043. PubMed DOI
Akgün Đ, Tosun M. Agricultural and cytological characteristics of M1 perennial rye (Secale montanum Guss.) as effected by the application of different doses of gamma rays. Pak. J. Biol. Sci. 2004;7:827–833. doi: 10.3923/pjbs.2004.827.833. DOI
Bálint AF, Kovács G, Sutka J. Copper tolerance of Aegilops, Triticum, Secale and triticale seedlings and copper and iron content in their shoots. Acta Biol. Szeged. 2002;46:77–78.
Moameri M, Abbasi Khalaki M. Capability of Secale montanum trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost. Environ. Sci. Pollut. Res. 2019;26:24315–24322. doi: 10.1007/s11356-017-0544-7. PubMed DOI
Culvenor RA, Oram RN, Fazekas deSGC. Variation in tolerance in Phalaris aquatica L. and a related species to aluminium in nutrient solution and soil. Aust. J. Agric. Res. 1986;37:383–395. doi: 10.1071/AR9860383. DOI
Lukaszewski AJ, Porter DR, Baker CA, Rybka K, Lapinski B. Attempts to transfer russian wheat aphid resistance from a rye chromosome in russian triticales to wheat. Crop. Sci. 2001;41:1743. doi: 10.2135/cropsci2001.1743. DOI
Kotvics, G. in Protein growth by plant breeding, edited by A. Bálint (Akadémiai Kiadó, Budapest, Hungary, pp. 89–90. (1970)
Kruppa, J. PhD. Universitiy of Debrecen, 2001.
Mendis M, Simsek S. Arabinoxylans and human health. Food Hydrocoll. 2014;42:239–243. doi: 10.1016/j.foodhyd.2013.07.022. DOI
Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ. The classification and nomenclature of wheat gluten proteins: A reassessment. J. Cereal Sci. 1986;4:97–106. doi: 10.1016/S0733-5210(86)80012-1. DOI
Larroque OR, Békés F. Rapid Size-Exclusion Chromatography Analysis of Molecular Size Distribution for Wheat Endosperm Protein. Cereal Chemistry. J. 2000;77:451–453.
Islam-Faridi MN, Mujeeb-Kazi A. Visualization of Secale cereale DNA in wheat germ plasm by fluorescent in situ hybridization. Theor. Appl. Genet. 1995;90:595–600. doi: 10.1007/BF00222120. PubMed DOI
Leitch IJ, Leitch AR, Heslop-Harrison JS. Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently labelled fluorescent probes. Genome. 1991;34:329–333. doi: 10.1139/g91-054. DOI
Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19:545–560. doi: 10.1016/0092-8674(80)90529-2. PubMed DOI
Cuadrado A, Jouve N. Evolutionary Trends of Different Repetitive DNA Sequences During Speciation in the Genus Secale. J. Hered. 2002;93:339–345. doi: 10.1093/jhered/93.5.339. PubMed DOI
Hackauf B, Wehling P. Development of microsatellite markers in rye: map construction. Plant Breeding and Seed. Sci. 2003;48:143–151.
Saal B, Wricke G. Development of simple sequence repeat markers in rye (Secale cereale L.) Genome. 1999;42:964–972. doi: 10.1139/g99-052. PubMed DOI
Bolibok-Bragoszewska H, et al. DArT markers for the rye genome - genetic diversity and mapping. BMC Genomics. 2009;10:578. doi: 10.1186/1471-2164-10-578. PubMed DOI PMC
Xia L, et al. DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor. Appl. Genet. 2005;110:1092–1098. doi: 10.1007/s00122-005-1937-4. PubMed DOI
Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001;29:E25. doi: 10.1093/nar/29.4.e25. PubMed DOI PMC
Wenzl P, et al. Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA. 2004;101:9915–9920. doi: 10.1073/pnas.0401076101. PubMed DOI PMC
Elshire RJ, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6:e19379. doi: 10.1371/journal.pone.0019379. PubMed DOI PMC
Kilian, A. et al. in Data production and analysis in population genomics, edited by F. Pompanon & A. Bonin (Humana Press, New York, pp. 67–89. (2012)
Milczarski P, Hanek M, Tyrka M, Stojałowski S. The application of GBS markers for extending the dense genetic map of rye (Secale cereale L.) and the localization of the Rfc1 gene restoring male fertility in plants with the C source of sterility-inducing cytoplasm. J. Appl. Genet. 2016;57:439–451. doi: 10.1007/s13353-016-0347-4. PubMed DOI PMC
Al-Beyroutiová M, et al. Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism. Plant. Syst. Evol. 2016;302:1083–1091. doi: 10.1007/s00606-016-1318-2. DOI
Targońska-Karasek M, Bolibok-Brągoszewska H, Rakoczy-Trojanowska M. DArTseq genotyping reveals high genetic diversity of polish rye inbred lines. Crop. Sci. 2017;57:1906–1915. doi: 10.2135/cropsci2016.09.0771. DOI
Rakoczy-Trojanowska M, et al. Identification of single nucleotide polymorphisms associated with brown rust resistance, α-amylase activity and pre-harvest sprouting in rye (Secale cereale L.) Plant. Mol. Biol. Rep. 2017;35:366–378. doi: 10.1007/s11105-017-1030-6. PubMed DOI PMC
Schneider A, Rakszegi M, Molnár-Láng M, Szakács É. Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R) Theor. Appl. Genet. 2016;129:1045–1059. doi: 10.1007/s00122-016-2682-6. PubMed DOI
Schlegel, R. H.J. Rye. Genetics, breeding, and cultivation (CRC Press, Boca Raton, FL) (2014).
Nagy ED, Eder C, Molnár-Láng M, Lelley T. Genetic mapping of sequence-specific PCR-based markers on the short arm of the 1BL.1RS wheat-rye translocation. Euphytica. 2003;132:243–249. doi: 10.1023/A:1025002919746. DOI
Kofler R, et al. Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1. Theor. Appl. Genet. 2008;117:915–926. doi: 10.1007/s00122-008-0831-2. PubMed DOI
Gyawali YP, Nasuda S, Endo TR. A cytological map of the short arm of rye chromosome 1R constructed with 1R dissection Stocks of Common Wheat and PCR-Based Markers. Cytogenet. Genome Res. 2010;129:224–233. doi: 10.1159/000314556. PubMed DOI
Bauer E, et al. Towards a whole-genome sequence for rye (Secale cereale L.) Plant. J. 2017;89:853–869. doi: 10.1111/tpj.13436. PubMed DOI
Martin DJ, Stewart BG. Dough stickiness in rye-derived wheat cultivars. Euphytica. 1990;51:77–86. doi: 10.1007/BF00022895. DOI
Kumlay AM, et al. Understanding the effect of rye chromatin in bread wheat. Crop. Sci. 2003;43:1643. doi: 10.2135/cropsci2003.1643. DOI
Lukaszewski AJ. Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop. Sci. 2006;46:2183. doi: 10.2135/cropsci2006.03.0135. DOI
Gobaa S, Bancel E, Kleijer G, Stamp P, Branlard G. Effect of the 1BL.1RS translocation on the wheat endosperm, as revealed by proteomic analysis. Proteom. 2007;7:4349–4357. doi: 10.1002/pmic.200700488. PubMed DOI
Jiang Q-T, et al. Characterization of ω-secalin genes from rye, triticale, and a wheat 1BL/1RS translocation line. J. Appl. Genet. 2010;51:403–411. doi: 10.1007/BF03208870. PubMed DOI
Boros D, Lukaszewski AJ, Aniol A, Ochodzki P. Chromosome location of genes controlling the content of dietary fibre and arabinoxylans in rye. Euphytica. 2002;128:1–8. doi: 10.1023/A:1020639601959. DOI
Cyran M, Rakowska M, Miazga D. Chromosomal location of factors affecting content and composition of non-starch polysaccharides in wheat-rye addition lines. Euphytica. 1996;89:153–157. doi: 10.1007/BF00015732. DOI
Milus EA, Kristensen K, Hovmøller MS. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology. 2009;99:89–94. doi: 10.1094/PHYTO-99-1-0089. PubMed DOI
Wang C, et al. Molecular cytogenetic characterization of a new T2BL·1RS wheat-rye chromosome translocation line resistant to stripe rust and powdery mildew. Plant. Dis. 2009;93:124–129. doi: 10.1094/PDIS-93-2-0124. PubMed DOI
Yang MY, Ren TH, Yan BJ, Li Z, Ren ZL. Diversity resistance to Puccinia striiformis f. sp tritici in rye chromosome arm 1RS expressed in wheat. Genet. Mol. Res. 2014;13:8783–8793. doi: 10.4238/2014.October.27.20. PubMed DOI
Ren T, et al. Novel source of 1RS from Baili rye conferred high resistance to diseases and enhanced yield traits to common wheat. Mol. Breed. 2018;38:101. doi: 10.1007/s11032-018-0856-4. DOI
Ren T, et al. Molecular cytogenetic characterization of novel wheat-rye T1RS.1BL translocation lines with high resistance to diseases and great agronomic traits. Front. Plant. Sci. 2017;8:799. doi: 10.3389/fpls.2017.00799. PubMed DOI PMC
Fu S, Tang Z, Ren Z, Zhang H. Transfer to wheat (Triticum aestivum) of small chromosome segments from rye (Secale cereale) carrying disease resistance genes. J. Appl. Genet. 2010;51:115–121. doi: 10.1007/BF03195719. PubMed DOI
Yang Z-J, et al. Molecular cytogenetic characterization of wheat–Secale africanum amphiploids and derived introgression lines with stripe rust resistance. Euphytica. 2009;167:197–202. doi: 10.1007/s10681-008-9861-8. DOI
Lei M-P, et al. Identification of wheat-Secale africanum chromosome 2Rafr introgression lines with novel disease resistance and agronomic characteristics. Euphytica. 2013;194:197–205. doi: 10.1007/s10681-013-0913-3. DOI
Mago R, et al. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 2005;112:41–50. doi: 10.1007/s00122-005-0098-9. PubMed DOI
Jones JDG, Dangl JL. The plant immune system. Nat. 2006;444:323–329. doi: 10.1038/nature05286. PubMed DOI
Sánchez-Martín J, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:221. doi: 10.1186/s13059-016-1082-1. PubMed DOI PMC
Friebe B, Heun M, Bushuk W. Cytological characterization, powdery mildew resistance and storage protein composition of tetraploid and hexaploid 1BL/1RS wheat-rye translocation lines. Theor. Appl. Genet. 1989;78:425–432. doi: 10.1007/BF00265307. PubMed DOI
Hurni S, et al. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant. J. 2013;76:957–969. doi: 10.1111/tpj.12345. PubMed DOI
Kerber ER, Dyck PL. Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 1969;11:639–647. doi: 10.1139/g69-076. DOI
Bai D, Knott DR. Suppression of rust resistance in bread wheat (Triticum aestivum L.) by D-genome chromosomes. Genome. 1992;35:276–282. doi: 10.1139/g92-043. DOI
Kema J. G. H. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology. 1995;85:425–429. doi: 10.1094/Phyto-85-425. DOI
Nelson JC, Singh RP, Autrique JE, Sorrells ME. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop. Sci. 1997;37:1928–1935. doi: 10.2135/cropsci1997.0011183X003700060043x. DOI
Boyd LA. Can Robigus defeat an old enemy? – Yellow rust of wheat. J. Agric. Sci. 2005;143:233–243. doi: 10.1017/S0021859605005095. DOI
McIntosh RA, et al. Rye-derived powdery mildew resistance gene Pm8 in wheat is suppressed by the Pm3 locus. Theor. Appl. Genet. 2011;123:359–367. doi: 10.1007/s00122-011-1589-5. PubMed DOI
Lutz J, et al. Identification of powdery-mildew-resistance genes in common wheat (Triticum aestivum L. em. Thell.). V. Old German cultivars and cultivars released in the former GDR. Plant. Breed. 1995;114:29–33. doi: 10.1111/j.1439-0523.1995.tb00754.x. DOI
Molnár-Láng, M., Linc, G. & Sutka, J. Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica90, 301–305 (1996).
Endo TR, Gill BS. Somatic karyotype, heterochromatin distribution, and nature of chromosome differentiation in common wheat, Triticum aestivum L. em Thell. Chromosoma. 1984;89:361–369. doi: 10.1007/BF00331253. DOI
Nagaki K, Tsujimoto H, Isono K, Sasakuma T. Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome. 1995;38:479–486. doi: 10.1139/g95-063. PubMed DOI
Gerlach WL, Bedbrook JR. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979;7:1869–1885. doi: 10.1093/nar/7.7.1869. PubMed DOI PMC
Contento A, Heslop-Harrison JS, Schwarzacher T. Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet. Genome Res. 2005;109:34–42. doi: 10.1159/000082379. PubMed DOI
Peterson RF, Campbell AB, Hannah AE. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 1948;26c:496–500. doi: 10.1139/cjr48c-033. DOI
ICC Standard Method No. 105/2. Determination of crude protein in cereals and cereal products for food and for feed, Vienna (International Association for Cereal Science and Technology, Vienna) (1995).
Batey IL, Gupta RB, MacRitchie F. Use of size-exclusion high-performance liquid chromatography in the study of wheat flour proteins: an improved chromatographic procedure. Cereal Chem. 1991;68:207–209.
Marchylo BA, Kruger JE, Hatcher DW. Quantitative reversed-phase high-performance liquid chromatographic analysis of wheat storage proteins as a potential quality prediction tool. J. Cereal Sci. 1989;9:113–130. doi: 10.1016/S0733-5210(89)80012-8. DOI
Rakszegi, M. et al. Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front. Plant Sci. 8 (2017). PubMed PMC
Jackson EA, et al. Proposal for combining the classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.) J. Genet. Breed. 1996;50:321–336.
Stakman, E., Steward, D. M. & Loegering, W. Q. Identification of physiologic races of Puccinia graminis var. tritici. USDA ARS E-617. US Gov. Print. Off., Washington, DC (1962).
Nover I. Sechsjährige Beobachtungen uber die physiologische Spezialisierung des echten Mehltaues (Erysiphe graminis DC) von Weizen und Gerste in Deutschland. J. Phytopathol. 1958;31:85–107. doi: 10.1111/j.1439-0434.1958.tb01766.x. DOI
Cruz VMV, Kilian A, Dierig DA. Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS ONE. 2013;8:e64062. doi: 10.1371/journal.pone.0064062. PubMed DOI PMC
Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome informatics. Int. Conf. Genome Inform. 2009;23:205–211. PubMed
El-Gebali S, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC