• This record comes from PubMed

Antioxidant, Anti-Inflammatory, and Multidrug Resistance Modulation Activity of Silychristin Derivatives

. 2019 Aug 14 ; 8 (8) : . [epub] 20190814

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
INTER-COST LTC19007 and LTC19020 Ministerstvo Školství, Mládeže a Tělovýchovy
18-00150S Grantová agentura České Republiky
CZ.2.16/3.1.00/21537 and CZ.2.16/3.1.00/24503 Operational Program Prague-Competitiveness
NPU I (LO) (MSMT-43760/2015) Czech National Program of Sustainability

Silychristin A is the second most abundant compound of silymarin. Silymarin complex was previously described as an antioxidant with multidrug resistance modulation activity. Here, the results of a classical biochemical antioxidant assay (ORAC) were compared with a cellular assay evaluating the antioxidant capacity of pure silychristin A and its derivatives (anhydrosilychristin, isosilychristin and 2,3-dehydrosilychristin A). All the tested compounds acted as antioxidants within the cells, but 2,3-dehydro- and anhydro derivatives were almost twice as potent as the other tested compounds. Similar results were obtained in LPS-stimulated macrophages, where 2,3-dehydro- and anhydrosilychristin inhibited NO production nearly twice as efficiently as silychristin A. The inhibition of P-glycoprotein (P-gp) was determined in vitro, and the respective sensitization of doxorubicin-resistant ovarian carcinoma overproducing P-gp was detected. Despite the fact that the inhibition of P-gp was demonstrated in a concentration-dependent manner for each tested compound, the sensitization of the resistant cell line was observed predominantly for silychristin A and 2,3-dehydrosilychristin A. However, anhydrosilychristin and isosilychristin affected the expression of both the P-gp (ABCB1) and ABCG2 genes. This is the first report showing that silychristin A and its 2,3-dehydro-derivative modulate multidrug resistance by the direct inhibition of P-gp, in contrast to anhydrosilychristin and isosilychristin modulating multidrug resistance by downregulating the expression of the dominant transmembrane efflux pumps.

See more in PubMed

Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednářova L., Křenková A., Kuzma M., Skuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI

Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Zanarotti A. Stereochemistry of silychristin mild dehydrogenation of flavanonols. Heterocycles. 1982;19:1585–1586. doi: 10.3987/R-1982-09-1585. DOI

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Vostalová J., Tinková E., Biedermann D., Kosina P., Ulrichová J., Svobodová A.R. Skin protective activity of silymarin and its flavonolignans. Molecules. 2019;24:1022. doi: 10.3390/molecules24061022. PubMed DOI PMC

Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Gorlach A., Kietzmann T., Kubaichuk K., Knaus U.G., Lopez M.G., Olaso-Gonzalez G., et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) Redox Biol. 2017;13:94–162. doi: 10.1016/j.redox.2017.05.007. PubMed DOI PMC

Huyut Z., Beydemir S., Gulcin I. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochem. Res. Int. 2017;2017:1–10. doi: 10.1155/2017/7616791. PubMed DOI PMC

Vrba J., Papoušková B., Roubalová L., Zatloukalová M., Biedermann D., Křen V., Valentová K., Ulrichová J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI

Valentová K., Purchartová K., Rýdlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečkova-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC

Qin N.B., Hu X., Li S.G., Wang J., Li Z.L., Li D.H., Xu F.X., Gao M., Hua H.M. Hypoglycemic effect of silychristin a from Silybum marianum fruit via protecting pancreatic islet cells from oxidative damage and inhibiting α-glucosidase activity in vitro and in rats with type 1 diabetes. J. Funct. Food. 2017;38:168–179. doi: 10.1016/j.jff.2017.09.013. DOI

Hrčková G., Kubásková T.M., Benada O., Kofroňová O., Tumová L., Biedermann D. Differential effects of the flavonolignans silybin, silychristin and 2,3-dehydrosilybin on Mesocestoides vogae larvae (cestoda) under hypoxic and aerobic in vitro conditions. Molecules. 2018;23:2999. doi: 10.3390/molecules23112999. PubMed DOI PMC

Bijak M., Dziedzic A., Synowiec E., Sliwinski T., Saluk-Bijak J. Flavonolignans inhibit IL1-β-induced cross-talk between blood platelets and leukocytes. Nutrients. 2017;9:1022. doi: 10.3390/nu9091022. PubMed DOI PMC

Kosina P., Paloncyová M., Svobodová A.R., Zálešák B., Biedermann D., Ulrichová J., Vostalová J. Dermal delivery of selected polyphenols from Silybum marianum. Theoretical and experimental study. Molecules. 2019;24:61. doi: 10.3390/molecules24010061. PubMed DOI PMC

Bijak M., Synowiec E., Sitarek P., Sliwinski T., Saluk-Bijak J. Evaluation of the cytotoxicity and genotoxicity of flavonolignans in different cellular models. Nutrients. 2017;9:1356. doi: 10.3390/nu9121356. PubMed DOI PMC

Tvrdý V., Catapano M.C., Rawlik T., Karlíčková J., Biedermann D., Křen V., Mladěnka P., Valentová K. Interaction of isolated silymarin flavonolignans with iron and copper. J. Inorg. Biochem. 2018;189:115–123. doi: 10.1016/j.jinorgbio.2018.09.006. PubMed DOI

Bijak M., Szelenberger R., Dziedzic A., Saluk-Bijak J. Inhibitory effect of flavonolignans on the P2Y12 pathway in blood platelets. Molecules. 2018;23:374. doi: 10.3390/molecules23020374. PubMed DOI PMC

Bijak M., Dziedzic A., Saluk-Bijak J. Flavonolignans reduce the response of blood platelet to collagen. Int. J. Biol. Macromol. 2018;106:878–884. doi: 10.1016/j.ijbiomac.2017.08.091. PubMed DOI

Huyut Z., Beydemir S., Gulcin I. Inhibition properties of some flavonoids on carbonic anhydrase I and II isoenzymes purified from human erythrocytes. J. Biochem. Mol. Toxicol. 2017;31:e21930. doi: 10.1002/jbt.21930. PubMed DOI

Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI

Huang D., Ou B., Hampsch-Woodill M., Flanagan J.A., Prior R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002;50:4437–4444. doi: 10.1021/jf0201529. PubMed DOI

Wolfe K.L., Liu R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007;55:8896–8907. doi: 10.1021/jf0715166. PubMed DOI

Nanayakkara A.K., Follit C.A., Chen G., Williams N.S., Vogel P.D., Wise J.G. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep. 2018;8:967–984. doi: 10.1038/s41598-018-19325-x. PubMed DOI PMC

Souček P., Anzenbacher P., Skoumalová I., Dvořák M. Expression of cytochrome P450 genes in CD34+ hematopoietic stem and progenitor cells. Stem Cells. 2005;23:1417–1422. doi: 10.1634/stemcells.2005-0066. PubMed DOI

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The miqe guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Taleb A., Ahmad K.A., Ihsan A.U., Qu J., Lin N., Hezam K., Koju N., Hui L., Ding Q.L. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018;102:689–698. doi: 10.1016/j.biopha.2018.03.140. PubMed DOI

Amorati R., Valgimigli L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015;49:633–649. doi: 10.3109/10715762.2014.996146. PubMed DOI

Becker K., Schroecksnadel S., Gostner J., Zaknun C., Schennach H., Überall F., Fuchs D. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds. Phytomedicine. 2014;21:164–171. doi: 10.1016/j.phymed.2013.08.008. PubMed DOI

Sersen F., Vencel T., Annus J. Silymarin and its components scavenge phenylglyoxylic ketyl radicals. Fitoterapia. 2006;77:525–529. doi: 10.1016/j.fitote.2006.06.005. PubMed DOI

Banaee M., Sureda A., Mirvaghefi A.R., Rafei G.R. Effects of long-term silymarin oral supplementation on the blood biochemical profile of rainbow trout (Oncorhynchus mykiss) Fish Physiol. Biochem. 2011;37:885–896. doi: 10.1007/s10695-011-9486-z. PubMed DOI

Naso L.G., Ferrer E.G., Butenko N., Cavaco I., Lezama L., Rojo T., Etcheverry S.B., Williams P.A.M. Antioxidant, DNA cleavage, and cellular effects of silibinin and a new oxovanadium(iv)/silibinin complex. J. Biol. Inorg. Chem. 2011;16:653–668. doi: 10.1007/s00775-011-0769-8. PubMed DOI

Gabrielová E., Křen V., Jabůrek M., Modrianský M. Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol. Res. 2015;64:79–91. PubMed

Rong Y.Z., Wang Z.W., Wu J.H., Zhao B. A theoretical study on cellular antioxidant activity of selected flavonoids. Spectrochim. Acta A. 2012;93:235–239. doi: 10.1016/j.saa.2012.03.008. PubMed DOI

Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC

Borges F.F.V., Silva C.R.E., Goes W.M., Godoy F.R., Franco F.C., Veras J.H., Bailao E., Silva D.D.E., Cardoso C.G., da Cruz A.D., et al. Protective effects of silymarin and silibinin against DNA damage in human blood cells. BioMed Res. Int. 2018 doi: 10.1155/2018/6056948. PubMed DOI PMC

Weidmann A.E. Dihydroquercetin: More than just an impurity? Eur. J. Pharmacol. 2012;684:19–26. doi: 10.1016/j.ejphar.2012.03.035. PubMed DOI

Trouillas P., Marsal P., Svobodová A., Vostálová J., Gažák R., Hrbáč J., Sedmera P., Křen V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI

Valentová K., Biedermann D., Křen V. 2,3-Dehydroderivatives of silymarin flavonolignans: Prospective natural compounds for the prevention of chronic diseases. Proceedings. 2019;11:21. doi: 10.3390/proceedings2019011021. DOI

Biedermann D., Moravcová V., Valentová K., Kuzma M., Petrásková L., Císařová I., Křen V. Oxidation of flavonolignan silydianin to unexpected lactone-acid derivative. Phytochem. Lett. 2019;30:14–20. doi: 10.1016/j.phytol.2019.01.006. DOI

Esmaeil N., Anaraki S.B., Gharagozloo M., Moayedi B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int. Immunopharmacol. 2017;50:194–201. doi: 10.1016/j.intimp.2017.06.030. PubMed DOI

Gupta O.P., Sing S., Bani S., Sharma N., Malhotra S., Gupta B.D., Banerjee S.K., Handa S.S. Anti-inflammatory and anti-arthritic activities of silymarin acting through inhibition of 5-lipoxygenase. Phytomedicine. 2000;7:21–24. doi: 10.1016/S0944-7113(00)80017-3. PubMed DOI

Agarwal R., Agarwal C., Ichikawa H., Singh R.P., Aggarwal B.B. Anticancer potential of silymarin: From bench to bed side. Anticancer Res. 2006;26:4457–4498. PubMed

Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Juráňová J., Aury-Landas J., Boumediene K., Bauge C., Biedermann D., Ulrichová J., Franková J. Modulation of skin inflammatory response by active components of silymarin. Molecules. 2019;24:123. doi: 10.3390/molecules24010123. PubMed DOI PMC

Krashin E., Piekiełko-Witkowska A., Ellis M., Ashur-Fabian O. Thyroid hormones and cancer: A comprehensive review of preclinical and clinical studies. Front. Endocrinol. 2019;10:59. doi: 10.3389/fendo.2019.00059. PubMed DOI PMC

Johannes J., Jayarama-Naidu R., Meyer F., Wirth E.K., Schweizer U., Schomburg L., Kohrle J., Renko K. Silychristin, a flavonolignan derived from the milk thistle, is a potent inhibitor of the thyroid hormone transporter MCT8. Endocrinology. 2016;157:1694–1701. doi: 10.1210/en.2015-1933. PubMed DOI

Groeneweg S., van den Berge A., Meima M.E., Peeters R.P., Visser T.J., Visser W.E. Effects of chemical chaperones on thyroid hormone transport by MCT8 mutants in patient-derived fibroblasts. Endocrinology. 2018;159:1290–1302. doi: 10.1210/en.2017-00846. PubMed DOI

Alevizopoulos K., Calogeropoulou T., Lang F., Stournaras C. Na+/K+ ATPase inhibitors in cancer. Curr. Drug Targets. 2014;15:988–1000. doi: 10.2174/1389450115666140908125025. PubMed DOI

Kubala M., Čechová P., Geletičová J., Biler M., Štenclová T., Trouillas P., Biedermann D. Flavonolignans as a novel class of sodium pump inhibitors. Front. Physiol. 2016;7:115. doi: 10.3389/fphys.2016.00115. PubMed DOI PMC

Chambers C.S., Viktorová J., Řehořová K., Biedermann D., Turková L., Macek T., Křen V., Valentová K. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem. 2019 doi: 10.1021/acs.jafc.9b00694. PubMed DOI

Zhang S., Morris M.E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 2003;304:1258–1267. doi: 10.1124/jpet.102.044412. PubMed DOI

Wu J.W., Lin L.C., Tsai T.H. Drug-drug interactions of silymarin on the perspective of pharmacokinetics. J. Ethnopharmacol. 2009;121:185–193. doi: 10.1016/j.jep.2008.10.036. PubMed DOI

Chung S.Y., Sung M.K., Kim N.H., Jang J.O., Go E.J., Lee H.J. Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch. Pharm. Res. 2005;28:823–828. doi: 10.1007/BF02977349. PubMed DOI

Džubák P., Hajdúch M., Gažák R., Svobodová A., Psotová J., Walterová D., Sedmera P., Křen V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 2006;14:3793–3810. doi: 10.1016/j.bmc.2006.01.035. PubMed DOI

Sadava D., Kane S.E. Silibinin reverses drug resistance in human small-cell lung carcinoma cells. Cancer Lett. 2013;339:102–106. doi: 10.1016/j.canlet.2013.07.017. PubMed DOI PMC

Večeřa R., Zacharová A., Orolin J., Škottová N., Anzenbacher P. The effect of silymarin on expression of selected ABC transporters in the rat. Vet. Med. 2011;56:59–62. doi: 10.17221/1579-VETMED. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Carbon Monoxide-Releasing Activity of Plant Flavonoids

. 2025 Jan 15 ; 73 (2) : 1308-1318. [epub] 20241231

Nitrogen-Containing Flavonoids-Preparation and Biological Activity

. 2024 Aug 13 ; 9 (32) : 34938-34950. [epub] 20240729

Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Ketone-selenoesters as potential anticancer and multidrug resistance modulation agents in 2D and 3D ovarian and breast cancer in vitro models

. 2022 Apr 21 ; 12 (1) : 6548. [epub] 20220421

Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners

. 2021 Jul 23 ; 22 (15) : . [epub] 20210723

Dehydroflavonolignans from Silymarin Potentiate Transition Metal Toxicity In Vitro but Are Protective for Isolated Erythrocytes Ex Vivo

. 2021 Apr 27 ; 10 (5) : . [epub] 20210427

Cytoprotective Activity of Natural and Synthetic Antioxidants

. 2020 Aug 06 ; 9 (8) : . [epub] 20200806

Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan (Luma apiculata) and Peumo (Cryptocarya alba)

. 2020 Jul 25 ; 9 (8) : . [epub] 20200725

Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-inflammatory Potential

. 2020 May 25 ; 9 (5) : . [epub] 20200525

Lemon Grass Essential Oil Does not Modulate Cancer Cells Multidrug Resistance by Citral-Its Dominant and Strongly Antimicrobial Compound

. 2020 May 05 ; 9 (5) : . [epub] 20200505

In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment

. 2020 Feb 28 ; 12 (3) : . [epub] 20200228

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...