Antioxidant, Anti-Inflammatory, and Multidrug Resistance Modulation Activity of Silychristin Derivatives
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
INTER-COST LTC19007 and LTC19020
Ministerstvo Školství, Mládeže a Tělovýchovy
18-00150S
Grantová agentura České Republiky
CZ.2.16/3.1.00/21537 and CZ.2.16/3.1.00/24503
Operational Program Prague-Competitiveness
NPU I (LO) (MSMT-43760/2015)
Czech National Program of Sustainability
PubMed
31416138
PubMed Central
PMC6720199
DOI
10.3390/antiox8080303
PII: antiox8080303
Knihovny.cz E-resources
- Keywords
- ABC superfamily, Adriamycin, BCRP, P-glycoprotein, expression profile, immunomodulation, silychristin, silymarin,
- Publication type
- Journal Article MeSH
Silychristin A is the second most abundant compound of silymarin. Silymarin complex was previously described as an antioxidant with multidrug resistance modulation activity. Here, the results of a classical biochemical antioxidant assay (ORAC) were compared with a cellular assay evaluating the antioxidant capacity of pure silychristin A and its derivatives (anhydrosilychristin, isosilychristin and 2,3-dehydrosilychristin A). All the tested compounds acted as antioxidants within the cells, but 2,3-dehydro- and anhydro derivatives were almost twice as potent as the other tested compounds. Similar results were obtained in LPS-stimulated macrophages, where 2,3-dehydro- and anhydrosilychristin inhibited NO production nearly twice as efficiently as silychristin A. The inhibition of P-glycoprotein (P-gp) was determined in vitro, and the respective sensitization of doxorubicin-resistant ovarian carcinoma overproducing P-gp was detected. Despite the fact that the inhibition of P-gp was demonstrated in a concentration-dependent manner for each tested compound, the sensitization of the resistant cell line was observed predominantly for silychristin A and 2,3-dehydrosilychristin A. However, anhydrosilychristin and isosilychristin affected the expression of both the P-gp (ABCB1) and ABCG2 genes. This is the first report showing that silychristin A and its 2,3-dehydro-derivative modulate multidrug resistance by the direct inhibition of P-gp, in contrast to anhydrosilychristin and isosilychristin modulating multidrug resistance by downregulating the expression of the dominant transmembrane efflux pumps.
Toxicogenomics Unit National Institute of Public Health Šrobárova 49 CZ 100 00 Prague Czech Republic
See more in PubMed
Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednářova L., Křenková A., Kuzma M., Skuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI
Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Zanarotti A. Stereochemistry of silychristin mild dehydrogenation of flavanonols. Heterocycles. 1982;19:1585–1586. doi: 10.3987/R-1982-09-1585. DOI
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Vostalová J., Tinková E., Biedermann D., Kosina P., Ulrichová J., Svobodová A.R. Skin protective activity of silymarin and its flavonolignans. Molecules. 2019;24:1022. doi: 10.3390/molecules24061022. PubMed DOI PMC
Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Gorlach A., Kietzmann T., Kubaichuk K., Knaus U.G., Lopez M.G., Olaso-Gonzalez G., et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) Redox Biol. 2017;13:94–162. doi: 10.1016/j.redox.2017.05.007. PubMed DOI PMC
Huyut Z., Beydemir S., Gulcin I. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochem. Res. Int. 2017;2017:1–10. doi: 10.1155/2017/7616791. PubMed DOI PMC
Vrba J., Papoušková B., Roubalová L., Zatloukalová M., Biedermann D., Křen V., Valentová K., Ulrichová J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI
Valentová K., Purchartová K., Rýdlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečkova-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC
Qin N.B., Hu X., Li S.G., Wang J., Li Z.L., Li D.H., Xu F.X., Gao M., Hua H.M. Hypoglycemic effect of silychristin a from Silybum marianum fruit via protecting pancreatic islet cells from oxidative damage and inhibiting α-glucosidase activity in vitro and in rats with type 1 diabetes. J. Funct. Food. 2017;38:168–179. doi: 10.1016/j.jff.2017.09.013. DOI
Hrčková G., Kubásková T.M., Benada O., Kofroňová O., Tumová L., Biedermann D. Differential effects of the flavonolignans silybin, silychristin and 2,3-dehydrosilybin on Mesocestoides vogae larvae (cestoda) under hypoxic and aerobic in vitro conditions. Molecules. 2018;23:2999. doi: 10.3390/molecules23112999. PubMed DOI PMC
Bijak M., Dziedzic A., Synowiec E., Sliwinski T., Saluk-Bijak J. Flavonolignans inhibit IL1-β-induced cross-talk between blood platelets and leukocytes. Nutrients. 2017;9:1022. doi: 10.3390/nu9091022. PubMed DOI PMC
Kosina P., Paloncyová M., Svobodová A.R., Zálešák B., Biedermann D., Ulrichová J., Vostalová J. Dermal delivery of selected polyphenols from Silybum marianum. Theoretical and experimental study. Molecules. 2019;24:61. doi: 10.3390/molecules24010061. PubMed DOI PMC
Bijak M., Synowiec E., Sitarek P., Sliwinski T., Saluk-Bijak J. Evaluation of the cytotoxicity and genotoxicity of flavonolignans in different cellular models. Nutrients. 2017;9:1356. doi: 10.3390/nu9121356. PubMed DOI PMC
Tvrdý V., Catapano M.C., Rawlik T., Karlíčková J., Biedermann D., Křen V., Mladěnka P., Valentová K. Interaction of isolated silymarin flavonolignans with iron and copper. J. Inorg. Biochem. 2018;189:115–123. doi: 10.1016/j.jinorgbio.2018.09.006. PubMed DOI
Bijak M., Szelenberger R., Dziedzic A., Saluk-Bijak J. Inhibitory effect of flavonolignans on the P2Y12 pathway in blood platelets. Molecules. 2018;23:374. doi: 10.3390/molecules23020374. PubMed DOI PMC
Bijak M., Dziedzic A., Saluk-Bijak J. Flavonolignans reduce the response of blood platelet to collagen. Int. J. Biol. Macromol. 2018;106:878–884. doi: 10.1016/j.ijbiomac.2017.08.091. PubMed DOI
Huyut Z., Beydemir S., Gulcin I. Inhibition properties of some flavonoids on carbonic anhydrase I and II isoenzymes purified from human erythrocytes. J. Biochem. Mol. Toxicol. 2017;31:e21930. doi: 10.1002/jbt.21930. PubMed DOI
Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI
Huang D., Ou B., Hampsch-Woodill M., Flanagan J.A., Prior R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002;50:4437–4444. doi: 10.1021/jf0201529. PubMed DOI
Wolfe K.L., Liu R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007;55:8896–8907. doi: 10.1021/jf0715166. PubMed DOI
Nanayakkara A.K., Follit C.A., Chen G., Williams N.S., Vogel P.D., Wise J.G. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep. 2018;8:967–984. doi: 10.1038/s41598-018-19325-x. PubMed DOI PMC
Souček P., Anzenbacher P., Skoumalová I., Dvořák M. Expression of cytochrome P450 genes in CD34+ hematopoietic stem and progenitor cells. Stem Cells. 2005;23:1417–1422. doi: 10.1634/stemcells.2005-0066. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The miqe guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Taleb A., Ahmad K.A., Ihsan A.U., Qu J., Lin N., Hezam K., Koju N., Hui L., Ding Q.L. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018;102:689–698. doi: 10.1016/j.biopha.2018.03.140. PubMed DOI
Amorati R., Valgimigli L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015;49:633–649. doi: 10.3109/10715762.2014.996146. PubMed DOI
Becker K., Schroecksnadel S., Gostner J., Zaknun C., Schennach H., Überall F., Fuchs D. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds. Phytomedicine. 2014;21:164–171. doi: 10.1016/j.phymed.2013.08.008. PubMed DOI
Sersen F., Vencel T., Annus J. Silymarin and its components scavenge phenylglyoxylic ketyl radicals. Fitoterapia. 2006;77:525–529. doi: 10.1016/j.fitote.2006.06.005. PubMed DOI
Banaee M., Sureda A., Mirvaghefi A.R., Rafei G.R. Effects of long-term silymarin oral supplementation on the blood biochemical profile of rainbow trout (Oncorhynchus mykiss) Fish Physiol. Biochem. 2011;37:885–896. doi: 10.1007/s10695-011-9486-z. PubMed DOI
Naso L.G., Ferrer E.G., Butenko N., Cavaco I., Lezama L., Rojo T., Etcheverry S.B., Williams P.A.M. Antioxidant, DNA cleavage, and cellular effects of silibinin and a new oxovanadium(iv)/silibinin complex. J. Biol. Inorg. Chem. 2011;16:653–668. doi: 10.1007/s00775-011-0769-8. PubMed DOI
Gabrielová E., Křen V., Jabůrek M., Modrianský M. Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol. Res. 2015;64:79–91. PubMed
Rong Y.Z., Wang Z.W., Wu J.H., Zhao B. A theoretical study on cellular antioxidant activity of selected flavonoids. Spectrochim. Acta A. 2012;93:235–239. doi: 10.1016/j.saa.2012.03.008. PubMed DOI
Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC
Borges F.F.V., Silva C.R.E., Goes W.M., Godoy F.R., Franco F.C., Veras J.H., Bailao E., Silva D.D.E., Cardoso C.G., da Cruz A.D., et al. Protective effects of silymarin and silibinin against DNA damage in human blood cells. BioMed Res. Int. 2018 doi: 10.1155/2018/6056948. PubMed DOI PMC
Weidmann A.E. Dihydroquercetin: More than just an impurity? Eur. J. Pharmacol. 2012;684:19–26. doi: 10.1016/j.ejphar.2012.03.035. PubMed DOI
Trouillas P., Marsal P., Svobodová A., Vostálová J., Gažák R., Hrbáč J., Sedmera P., Křen V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI
Valentová K., Biedermann D., Křen V. 2,3-Dehydroderivatives of silymarin flavonolignans: Prospective natural compounds for the prevention of chronic diseases. Proceedings. 2019;11:21. doi: 10.3390/proceedings2019011021. DOI
Biedermann D., Moravcová V., Valentová K., Kuzma M., Petrásková L., Císařová I., Křen V. Oxidation of flavonolignan silydianin to unexpected lactone-acid derivative. Phytochem. Lett. 2019;30:14–20. doi: 10.1016/j.phytol.2019.01.006. DOI
Esmaeil N., Anaraki S.B., Gharagozloo M., Moayedi B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int. Immunopharmacol. 2017;50:194–201. doi: 10.1016/j.intimp.2017.06.030. PubMed DOI
Gupta O.P., Sing S., Bani S., Sharma N., Malhotra S., Gupta B.D., Banerjee S.K., Handa S.S. Anti-inflammatory and anti-arthritic activities of silymarin acting through inhibition of 5-lipoxygenase. Phytomedicine. 2000;7:21–24. doi: 10.1016/S0944-7113(00)80017-3. PubMed DOI
Agarwal R., Agarwal C., Ichikawa H., Singh R.P., Aggarwal B.B. Anticancer potential of silymarin: From bench to bed side. Anticancer Res. 2006;26:4457–4498. PubMed
Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Juráňová J., Aury-Landas J., Boumediene K., Bauge C., Biedermann D., Ulrichová J., Franková J. Modulation of skin inflammatory response by active components of silymarin. Molecules. 2019;24:123. doi: 10.3390/molecules24010123. PubMed DOI PMC
Krashin E., Piekiełko-Witkowska A., Ellis M., Ashur-Fabian O. Thyroid hormones and cancer: A comprehensive review of preclinical and clinical studies. Front. Endocrinol. 2019;10:59. doi: 10.3389/fendo.2019.00059. PubMed DOI PMC
Johannes J., Jayarama-Naidu R., Meyer F., Wirth E.K., Schweizer U., Schomburg L., Kohrle J., Renko K. Silychristin, a flavonolignan derived from the milk thistle, is a potent inhibitor of the thyroid hormone transporter MCT8. Endocrinology. 2016;157:1694–1701. doi: 10.1210/en.2015-1933. PubMed DOI
Groeneweg S., van den Berge A., Meima M.E., Peeters R.P., Visser T.J., Visser W.E. Effects of chemical chaperones on thyroid hormone transport by MCT8 mutants in patient-derived fibroblasts. Endocrinology. 2018;159:1290–1302. doi: 10.1210/en.2017-00846. PubMed DOI
Alevizopoulos K., Calogeropoulou T., Lang F., Stournaras C. Na+/K+ ATPase inhibitors in cancer. Curr. Drug Targets. 2014;15:988–1000. doi: 10.2174/1389450115666140908125025. PubMed DOI
Kubala M., Čechová P., Geletičová J., Biler M., Štenclová T., Trouillas P., Biedermann D. Flavonolignans as a novel class of sodium pump inhibitors. Front. Physiol. 2016;7:115. doi: 10.3389/fphys.2016.00115. PubMed DOI PMC
Chambers C.S., Viktorová J., Řehořová K., Biedermann D., Turková L., Macek T., Křen V., Valentová K. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem. 2019 doi: 10.1021/acs.jafc.9b00694. PubMed DOI
Zhang S., Morris M.E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 2003;304:1258–1267. doi: 10.1124/jpet.102.044412. PubMed DOI
Wu J.W., Lin L.C., Tsai T.H. Drug-drug interactions of silymarin on the perspective of pharmacokinetics. J. Ethnopharmacol. 2009;121:185–193. doi: 10.1016/j.jep.2008.10.036. PubMed DOI
Chung S.Y., Sung M.K., Kim N.H., Jang J.O., Go E.J., Lee H.J. Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch. Pharm. Res. 2005;28:823–828. doi: 10.1007/BF02977349. PubMed DOI
Džubák P., Hajdúch M., Gažák R., Svobodová A., Psotová J., Walterová D., Sedmera P., Křen V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 2006;14:3793–3810. doi: 10.1016/j.bmc.2006.01.035. PubMed DOI
Sadava D., Kane S.E. Silibinin reverses drug resistance in human small-cell lung carcinoma cells. Cancer Lett. 2013;339:102–106. doi: 10.1016/j.canlet.2013.07.017. PubMed DOI PMC
Večeřa R., Zacharová A., Orolin J., Škottová N., Anzenbacher P. The effect of silymarin on expression of selected ABC transporters in the rat. Vet. Med. 2011;56:59–62. doi: 10.17221/1579-VETMED. DOI
Carbon Monoxide-Releasing Activity of Plant Flavonoids
Nitrogen-Containing Flavonoids-Preparation and Biological Activity
Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners
Cytoprotective Activity of Natural and Synthetic Antioxidants