• This record comes from PubMed

Dermal Delivery of Selected Polyphenols from Silybum marianum. Theoretical and Experimental Study

. 2018 Dec 24 ; 24 (1) : . [epub] 20181224

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
15-10897S Grantová Agentura České Republiky
P208/12/G016 Grantová Agentura České Republiky
RVO 61989592 Univerzita Palackého v Olomouci

Links

PubMed 30586949
PubMed Central PMC6337146
DOI 10.3390/molecules24010061
PII: molecules24010061
Knihovny.cz E-resources

Silymarin is a well-known standardized extract from the seeds of milk thistle (Silybum marianum L., Asteraceae) with a pleiotropic effect on human health, including skin anticancer potential. Detailed characterization of flavonolignans properties affecting interactions with human skin was of interest. The partition coefficients log Pow of main constitutive flavonolignans, taxifolin and their respective dehydro derivatives were determined by a High Performance Liquid Chromatography (HPLC) method and by mathematical (in silico) approaches in n-octanol/water and model lipid membranes. These parameters were compared with human skin intake ex vivo. The experimental log Pow values for individual diastereomers were estimated for the first time. The replacement of n-octanol with model lipid membranes in the theoretical lipophilicity estimation improved the prediction strength. During transdermal transport, all the studied compounds permeated the human skin ex vivo; none of them reached the acceptor liquid. Both experimental/theoretical tools allowed the studied polyphenols to be divided into two groups: low (taxifolin, silychristin, silydianin) vs. high (silybin, dehydrosilybin, isosilybin) lipophilicity and skin intake. In silico predictions can be usefully applied for estimating general lipophilicity trends, such as skin penetration or accumulation predictions. However, the theoretical models cannot yet provide the dermal delivery differences of compounds with very similar physico-chemical properties; e.g., between diastereomers.

See more in PubMed

Abd E., Yousef S.A., Pastore M.N., Telaprolu K., Mohammed Y.H., Namjoshi S., Grice J.E., Roberts M.S. Skin models for the testing of transdermal drugs. Clin. Pharmacol. 2016;8:163–176. doi: 10.2147/CPAA.S64788. PubMed DOI PMC

N’Da D.D. Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules. 2014;19:20780–20807. doi: 10.3390/molecules191220780. PubMed DOI PMC

Bijak M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism. Molecules. 2017;22:1942. doi: 10.3390/molecules22111942. PubMed DOI PMC

Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition and why does it matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal Alterations and Biological Activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI

Chambers C.S., Valentova K., Kren V. “Non-Taxifolin” Derived Flavonolignans: Phytochemistry and Biology. Curr. Pharm. Des. 2015;21:5489–5500. doi: 10.2174/1381612821666151002112720. PubMed DOI

Csupor D., Csorba A., Hohmann J. Recent advances in the analysis of flavonolignans of Silybum marianum. J. Pharm. Biomed. Anal. 2016;130:301–317. doi: 10.1016/j.jpba.2016.05.034. PubMed DOI

Singh R.P., Agarwal R. Mechanisms and preclinical efficacy of silibinin in preventing skin cancer. Eur. J. Cancer. 2005;41:1969–1979. doi: 10.1016/j.ejca.2005.03.033. PubMed DOI

Vaid M., Katiyar S.K. Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.) (Review) Int. J. Oncol. 2010;36:1053–1060. doi: 10.3892/ijo_00000586. PubMed DOI PMC

Han M.H., Yoon W.K., Lee H., Han S.B., Lee K., Park S.K., Yang K.H., Kim H.M., Kang J.S. Topical application of silymarin reduces chemical-induced irritant contact dermatitis in BALB/c mice. Int. Immunopharmacol. 2007;7:1651–1658. doi: 10.1016/j.intimp.2007.08.019. PubMed DOI

Altaei T. The treatment of melasma by silymarin cream. BMC Dermatol. 2012;12:1–6. doi: 10.1186/1471-5945-12-18. PubMed DOI PMC

Sharifi R., Rastegar H., Kamalinejad M., Dehpour A.R., Tavangar S.M., Paknejad M., Mehrabani Natanzi M., Ghannadian N., Akbari M., Pasalar P. Effect of topical application of silymarin (Silybum marianum) on excision wound healing in albino rats. Acta Med. Iran. 2012;50:583–588. PubMed

OECD Guideline for the Testing of Chemicals. [(accessed on 20 May 2018)];1995 Jul 27; Test No. 107: Partition Coefficient (n octanol/water), Shake Flask Method. Available online: https://www.oecd-ilibrary.org/environment/test-no-107-partition-coefficient-n-octanol-water-shake-flask-method_9789264069626-en.

OECD Guidelines for the Testing of Chemicals, Section 1, Physical-Chemical properties. [(accessed on 20 May 2018)];2004 Nov 23; Test No. 117: Partition Coefficient (n-octanol/water), HPLC Method. Available online: https://www.oecd-ilibrary.org/environment/test-no-117-partition-coefficient-n-octanol-water-hplc-method_9789264069824-en.

Tetko I.V., Gasteiger J., Todeschini R., Mauri A., Livingstone D., Ertl P., Palyulin V.A., Radchenko E.V., Zefirov N.S., Makarenko A.S., et al. Virtual computational chemistry laboratory-design and description. J. Comput. Aided Mol. Des. 2005;19:453–463. doi: 10.1007/s10822-005-8694-y. PubMed DOI

Molinspiration Cheminformatics. [(accessed on 20 May 2018)]; Available online: http://www.molinspiration.com/

Tetko I.V., Poda G.I. Molecular Drug Properties: Measurement and Prediction. Wiley-VCH; Weinheim, Germany: 2007. Prediction of Log P with Property-Based Methods; pp. 381–406.

Eckert F., Klamt A. Cosmologic GmbH & Co. KG; Leverkusen, Germany: 2013.

Valkó K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J. Chromatogr. A. 2004;1037:299–310. doi: 10.1016/j.chroma.2003.10.084. PubMed DOI

Maroziene A., Kliukiene R., Sarlauskas J., Cenas N. Inhibition of phthalocyanine-sensitized photohemolysis of human erythrocytes by polyphenolic antioxidants: Description of quantitative structure-activity relationships. Cancer Lett. 2000;157:39–44. doi: 10.1016/S0304-3835(00)00469-9. PubMed DOI

Rothwell J.A., Day A.J., Morgan M.R. Experimental determination of octanol-water partition coefficients of quercetin and related flavonoids. J. Agric. Food Chem. 2005;53:4355–4360. doi: 10.1021/jf0483669. PubMed DOI

Gazák R., Svobodová A., Psotová J., Sedmera P., Prikrylová V., Walterová D., Kren V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg. Med. Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. PubMed DOI

Zeng Q.P., Liu Z.H., Huang A.W., Zhang J., Song H.T. Preparation and characterization of silymarin synchronized-release microporous osmotic pump tablets. Drug Des. Devel. Ther. 2016;10:519–531. doi: 10.2147/DDDT.S91571. PubMed DOI PMC

Meloun M., Burkoňová D., Syrový T., Vrána A. Thermodynamic dissociation constants of silychristin, silybin, silydianin and mycophenolate by the regression analysis of spectrophotometric data. Anal. Chim Acta. 2003;486:125–141. doi: 10.1016/S0003-2670(03)00470-7. DOI

Shubina V.S., Shatalina Y.V. Absorption Spectroscopy Study of Acid-Base and Metal-Binding Properties of Flavanones. J. Appl. Spectrosc. 2013;80:761–766. doi: 10.1007/s10812-013-9838-9. DOI

Herrero-Martínez J.M., Sanmartin M., Rosés M., Bosch E., Ràfols C. Determination of dissociation constants of flavonoids by capillary electrophoresis. Electrophoresis. 2005;26:1886–1895. doi: 10.1002/elps.200410258. PubMed DOI

Garrido N.M., Queimada A.J., Jorge M., Macedo E.A., Economou I.G. 1-Octanol/Water Partition Coefficients of N-Alkanes from Molecular Simulations of Absolute Solvation Free Energies. J. Chem. Theory Comput. 2009;5:2436–2446. doi: 10.1021/ct900214y. PubMed DOI

Sun H., editor. A Practical Guide to Rational Drug Design. Elsevier; Cambridge, UK: 2016. Quantitative Structure-Property Relationships Models for Lipophilicity and Aqueous Solubility; pp. 193–223.

Ekins S., Mestres J., Testa B. In Silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling. Br. J. Pharmacol. 2007;152:9–20. doi: 10.1038/sj.bjp.0707305. PubMed DOI PMC

Mannhold R., Poda G.I., Ostermann C., Tetko I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci. 2009;98:861–893. doi: 10.1002/jps.21494. PubMed DOI

Benson H.A.E. Skin Structure, Function, and Permeation. In: Benson H.A.E., Watkinson A.C., editors. Topical and Transdermal Drug Delivery: Principles and Practice. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012.

Wang W., Sun C., Mao L., Ma P., Liu F., Yang L., Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016;56:21–38. doi: 10.1016/j.tifs.2016.07.004. DOI

Hung C.F., Lin Y.K., Zhang L.W., Chang C.H., Fang J.Y. Topical delivery of silymarin constituents via the skin route. Acta Pharmacol. Sin. 2010;31:118–126. doi: 10.1038/aps.2009.186. PubMed DOI PMC

Jung E.C., Maibach H.I. Animal models for percutaneous absorption. J. Appl. Toxicol. 2015;35:1–10. doi: 10.1002/jat.3004. PubMed DOI

Monti D., Gažák R., Marhol P., Biedermann D., Purchartová K., Fedrigo M., Riva S., Křen V. Enzymatic Kinetic Resolution of Silybin Diastereoisomers. J. Nat. Prod. 2010;73:613–619. doi: 10.1021/np900758d. PubMed DOI

Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Rad. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Klamt A., Huniar U., Spycher S., Keldenich J. COSMOmic: A mechanistic approach to the calculation of membrane-water partition coefficients and internal distributions within membranes and micelles. J. Phys. Chem. B. 2008;112:12148–12157. doi: 10.1021/jp801736k. PubMed DOI

Ingram T., Storm S., Kloss L., Mehling T., Jakobtorweihen S., Smirnova I.V. Prediction of micelle/water and liposome/water partition coefficients based on molecular dynamics simulations, COSMO-RS, and COSMOmic. Langmuir. 2013;29:3527–3537. doi: 10.1021/la305035b. PubMed DOI

Pubchem. [(accessed on 20 May 2018)]; Available online: https://pubchem.ncbi.nlm.nih.gov/

Navrátilová V., Paloncýová M., Berka K., Mise S., Haga Y., Matsumura C., Sakaki T., Inui H., Otyepka M. Molecular Insights into the Role of a Distal F240A Mutation That Alters CYP1A1 Activity towards Persistent Organic Pollutants. BBA Gen. Subj. 2017;1861:2852–2860. doi: 10.1016/j.bbagen.2017.08.002. PubMed DOI

Schrödinger Release 2015-1, Maestro. Schrödinger. LLC; New York, NY, USA: 2015.

Small-Molecule Drug Discovery Suite 2015-4, Schrödinger. LLC; New York, NY, USA: 2016.

TURBOMOLE: Program Package for ab initio Electronic Structure Calculations. [(accessed on 20 May 2018)]; Available online: http://www.turbomole.com.

Klamt A. The COSMO and COSMO-RS Solvation Models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011;1:699–709. doi: 10.1002/wcms.56. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...