Skin Protective Activity of Silymarin and its Flavonolignans
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-10897S
Grantová Agentura České Republiky
IGA_LF_2017_011
Univerzita Palackého v Olomouci
IGA_LF_2018_012
Univerzita Palackého v Olomouci
RVO 61989592
Univerzita Palackého v Olomouci
PubMed
30875758
PubMed Central
PMC6470681
DOI
10.3390/molecules24061022
PII: molecules24061022
Knihovny.cz E-zdroje
- Klíčová slova
- Silybum marianum, collagenase, elastase, sun protection factor,
- MeSH
- antioxidancia chemie izolace a purifikace MeSH
- flavonolignany chemie izolace a purifikace MeSH
- kůže účinky léků patologie účinky záření MeSH
- lidé MeSH
- ostropestřec mariánský chemie MeSH
- rostlinné extrakty chemie MeSH
- semena rostlinná chemie MeSH
- silymarin chemie izolace a purifikace MeSH
- ultrafialové záření škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- dehydrosilybin MeSH Prohlížeč
- flavonolignany MeSH
- rostlinné extrakty MeSH
- silymarin MeSH
Silybum marianum (L.) is a medicinal plant traditionally used in treatment of liver disorders. In last decades, silymarin (SM), a standardized extract from S. marianum seeds has been studied for its dermatological application, namely for UVB-protective properties. However, information on SM and its polyphenols effect on activity of enzymes participating in the (photo)aging process is limited. Therefore, evaluation of SM and its flavonolignans potential to inhibit collagenase, elastase, and hyaluronidase in tube tests was the goal of this study. The antioxidant and UV screening properties of SM and its flavonolignans silybin, isosilybin, silydianin, silychristin and 2,3-dehydrosilybin (DHSB) were also evaluated by a DPPH assay and spectrophotometrical measurement. DHSB showed the highest ability to scavenge DPPH radical and also revealed the highest UVA protection factor (PF-UVA) that corresponds with its absorption spectrum. SM and studied flavonolignans were found to exhibit anti-collagenase and anti-elastase activity. The most potent flavonolignan was DHSB. None of studied flavonolignans or SM showed anti-hyaluronidase activity. Our results suggest that SM and its flavonolignans may be useful agents for skin protection against the harmful effects of full-spectrum solar radiation including slowing down skin (photo)aging.
Zobrazit více v PubMed
Rinnerthaler M., Bischof J., Streubel M.K., Trost A., Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5:545–589. doi: 10.3390/biom5020545. PubMed DOI PMC
Rijken F., Bruijnzeel P.L. The pathogenesis of photoaging: The role of neutrophils and neutrophil-derived enzymes. J. Investig. Dermatol. Symp. Proc. 2009;14:67–72. doi: 10.1038/jidsymp.2009.15. PubMed DOI
Buhren B.A., Schrumpf H., Hoff N.P., Bölke E., Hilton S., Gerber P.A. Hyaluronidase: From clinical applications to molecular and cellular mechanisms. Eur. J. Med. Res. 2016;21:5. doi: 10.1186/s40001-016-0201-5. PubMed DOI PMC
Tundis R., Loizzo M.R., Bonesi M., Menichini F. Potential role of natural compounds against skin aging. Curr Med Chem. 2015;22:1515–1538. doi: 10.2174/0929867322666150227151809. PubMed DOI
Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition...and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Vaid M., Katiyar S.K. Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.) (Review) Int. J. Oncol. 2010;36:1053–1060. doi: 10.3892/ijo_00000586. PubMed DOI PMC
Surai P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants. 2015;4:204–247. doi: 10.3390/antiox4010204. PubMed DOI PMC
Gažák R., Svobodová A., Psotová J., Sedmera P., Přikrylová V., Walterová D., Kren V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg. Med. Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. PubMed DOI
Rajnochová Svobodová A., Gabrielová E., Michaelides L., Kosina P., Ryšavá A., Ulrichová J., Zálešák B., Vostálová J. UVA-photoprotective potential of silymarin and silybin. Arch. Dermatol. Res. 2018;310:413–424. doi: 10.1007/s00403-018-1828-6. PubMed DOI
Katiar S.K. Silymarin and skin cancer prevention: Anti-inflammatory, antioxidant and immunomodulatory effects (Review) Int. J. Oncol. 2005;26:169–176. doi: 10.3892/ijo.26.1.169. PubMed DOI
Pittayapruek P., Meephansan J., Prapapan O., Komine M., Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 2016;17:868. doi: 10.3390/ijms17060868. PubMed DOI PMC
Anthony K.P., Saleh M.A. Free radical scavenging and antioxidant activities of silymarin components. Antioxidants. 2013;2:398–407. doi: 10.3390/antiox2040398. PubMed DOI PMC
Köksal E., Gülçin I., Beyza S., Sarikaya O., Bursal E. In vitro antioxidant activity of silymarin. J. Enzyme Inhib. Med. Chem. 2009;24:395–405. doi: 10.1080/14756360802188081. PubMed DOI
Abenavoli L., Capasso R., Milic N., Capasso F. Milk thistle in liver diseases: Past, present, future. Phytother. Res. 2010;24:1423–1432. doi: 10.1002/ptr.3207. PubMed DOI
Svobodová A., Zdařilová A., Malisková J., Mikulková H., Walterová D., Vostalová J. Attenuation of UVA-induced damage to human keratinocytes by silymarin. J. Dermatol. Sci. 2007;46:21–30. doi: 10.1016/j.jdermsci.2006.12.009. PubMed DOI
Svobodová A., Zdařilová A., Walterová D., Vostálová J. Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. J. Dermatol. Sci. 2007;48:213–224. doi: 10.1016/j.jdermsci.2007.06.008. PubMed DOI
Pientaweeratch S., Panapisal V., Tansirikongkol A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: An in vitro comparative study for anti-aging applications. Pharm. Biol. 2016;54:1865–1872. doi: 10.3109/13880209.2015.1133658. PubMed DOI
Vimalraj S., Rajalakshmi S., Saravanan S., Raj Preeth D., LA Vasanthi R., Shairam M., Chatterjee S. Synthesis and characterization of zinc-silibinin complexes: A potential bioactive compound with angiogenic, and antibacterial activity for bone tissue engineering. Colloids Surf. B Biointerfaces. 2018;167:134–143. doi: 10.1016/j.colsurfb.2018.04.007. PubMed DOI
Lee D.H., Oh J.H., Chung J.H. Glycosaminoglycan and proteoglycan in skin aging. J. Dermatol. Sci. 2016;83:174–181. doi: 10.1016/j.jdermsci.2016.05.016. PubMed DOI
Svobodová A., Vostálová J. Solar radiation induced skin damage: Review of protective and preventive options. Int. J. Radiat. Biol. 2010;86:999–1030. doi: 10.3109/09553002.2010.501842. PubMed DOI
Couteau C., Cheignon C., Paparis E., Coiffard L.J. Silymarin, a molecule of interest for topical photoprotection. Nat. Prod. Res. 2012;26:2211–2214. doi: 10.1080/14786419.2011.637219. PubMed DOI
Rajnochová Svobodová A., Zálešák B., Biedermann D., Ulrichová J., Vostálová J. Phototoxic potential of silymarin and its bioactive components. J. Photochem. Photobiol. B. 2016;156:61–68. doi: 10.1016/j.jphotobiol.2016.01.011. PubMed DOI
Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Kren V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI
Kosina P., Paloncýová M., Rajnochová Svobodová A., Zálešák B., Biedermann D., Ulrichová J., Vostálová J. Dermal Delivery of Selected Polyphenols from Silybum marianum. Theoretical and Experimental Study. Molecule. 2019;24:61. doi: 10.3390/molecules24010061. PubMed DOI PMC
Sayre R.M., Agin P.P., Levee G.I., Marlowe E. Comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 1979;29:559–566. doi: 10.1111/j.1751-1097.1979.tb07090.x. PubMed DOI
Diffey B.L., Robson J. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J. Soc. Cosmet. Chem. 1989;40:127–133.
Couteau C., Couteau O., Alami-El Boury S., Coiffard L.J. Sunscreen products: What do they protect us from? Int. J. Pharm. 2011;415:181–184. doi: 10.1016/j.ijpharm.2011.05.071. PubMed DOI
Karsili T.N., Marchetti B., Ashfold M.N., Domcke W. Ab initio study of potential ultrafast internal conversion routes in oxybenzone, caffeic acid, and ferulic acid: Implications for sunscreens. J. Phys. Chem. A. 2014;118:11999–12010. doi: 10.1021/jp507282d. PubMed DOI
Ndlovu G., Fouche G., Tselanyane M., Cordier W., Steenkamp V. In vitro determination of the anti-aging potential of four southern African medicinal plants. BMC Complement Altern. Med. 2013;13:304. doi: 10.1186/1472-6882-13-304. PubMed DOI PMC
Maity N., Nema N.K., Sarkar B.K., Mukherjee P.K. Standardized Clitoria ternatea leaf extract as hyaluronidase, elastase and matrix-metalloproteinase-1 inhibitor. Indian J. Pharmacol. 2012;44:584–587. doi: 10.4103/0253-7613.100381. PubMed DOI PMC
Hesperidin, Hesperetin, Rutinose, and Rhamnose Act as Skin Anti-Aging Agents
Presence of Mycotoxins in Milk Thistle (Silybum marianum) Food Supplements: A Review