Presence of Mycotoxins in Milk Thistle (Silybum marianum) Food Supplements: A Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
2112/2019
Specific research project, Faculty of Science, University of Hradec Kralove - International
National Institute of Public Health-NIPH, IN 75010330
Ministry of Health, Czech Republic-conceptual development of research organization - International
PubMed
33302488
PubMed Central
PMC7763672
DOI
10.3390/toxins12120782
PII: toxins12120782
Knihovny.cz E-zdroje
- Klíčová slova
- food supplements, liver diseases, milk thistle, mycotoxins, silymarin,
- MeSH
- Evropská unie MeSH
- lidé MeSH
- mykotoxiny škodlivé účinky analýza MeSH
- ostropestřec mariánský škodlivé účinky MeSH
- potravní doplňky škodlivé účinky analýza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mykotoxiny MeSH
The consumption of herbal-based supplements, which are believed to have beneficial effects on human health with no side effects, has become popular around the world and this trend is still increasing. Silybum marianum (L.) Gaertn, commonly known as milk thistle (MT), is the most commonly studied herb associated with the treatment of liver diseases. The hepatoprotective effects of active substances in silymarin, with silybin being the main compound, have been demonstrated in many studies. However, MT can be affected by toxigenic micro-fungi and contaminated by mycotoxins with adverse effects. The beneficial effect of silymarin can thus be reduced or totally antagonized by mycotoxins. MT has proven to be affected by micro-fungi of the Fusarium and Alternaria genera, in particular, and their mycotoxins. Alternariol-methyl-ether (AME), alternariol (AOH), beauvericin (BEA), deoxynivalenol (DON), enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1), HT-2 toxin (HT-2), T-2 toxin (T-2), tentoxin (TEN), and zearalenone (ZEA) seem to be most significant in MT-based dietary supplements. This review focuses on summarizing cases of mycotoxins in MT to emphasize the need for strict monitoring and regulation, as mycotoxins in relation with MT-based dietary supplements are not covered by European Union legislation.
Zobrazit více v PubMed
European Parliament and the Council of the European Union Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the member states relating to food supplements. Off. J. Eur. Communities. 2002;L183:51–57.
Arroyo-Manzanares N., García-Campaña A.M., Gámiz-Gracia L. Multiclass mycotoxin analysis in Silybum marianum by ultra high performance liquid chromatography–tandem mass spectrometry using a procedure based on QuEChERS and dispersive liquid–liquid microextraction. J. Chromatogr. A. 2013;1282:11–19. doi: 10.1016/j.chroma.2013.01.072. PubMed DOI
Fenclova M., Novakova A., Viktorova J., Jonatova P., Dzuman Z., Ruml T., Kren V., Hajslova J., Vitek L., Stranska-Zachariasova M. Poor chemical and microbiological quality of the commercial milk thistle-based dietary supplements may account for their reported unsatisfactory and non-reproducible clinical outcomes. Sci. Rep. 2019;9:11118. doi: 10.1038/s41598-019-47250-0. PubMed DOI PMC
Fibigr J., Šatínský D., Solich P. Current trends in the analysis and quality control of food supplements based on plant extracts. Anal. Chim. Acta. 2018;1036:1–15. doi: 10.1016/j.aca.2018.08.017. PubMed DOI
Seeff L.B., Bonkovsky H.L., Navarro V.J., Wang G. Herbal products and the liver: A review of adverse effects and mechanisms. Gastroenterology. 2015;148:517–532.e3. doi: 10.1053/j.gastro.2014.12.004. PubMed DOI
Ashiq S., Hussain M., Ahmad B. Natural occurrence of mycotoxins in medicinal plants: A review. Fungal Genet. Biol. 2014;66:1–10. doi: 10.1016/j.fgb.2014.02.005. PubMed DOI
Mavungu J.D.D., Monbaliu S., Scippo M.-L., Maghuin-Rogister G., Schneider Y.-J., Larondelle Y., Callebaut A., Robbens J., Peteghem C.V., Saeger S.D. LC-MS/MS multi-analyte method for mycotoxin determination in food supplements. Food Addit. Contam. Part A. 2009;26:885–895. doi: 10.1080/02652030902774649. PubMed DOI
Smith T., Gillespie M., Eckl V., Knepper J., Reynolds C.M. Herbal supplement sales in US increase by 9.4% in 2018. HerbalGram. 2019;123:62–73.
Abenavoli L., Capasso R., Milic N., Capasso F. Milk thistle in liver diseases: Past, present, future. Phytother. Res. 2010;24:1423–1432. doi: 10.1002/ptr.3207. PubMed DOI
Asrani S.K., Devarbhavi H., Eaton J., Kamath P.S. Burden of liver diseases in the world. J. Hepatol. 2019;70:151–171. doi: 10.1016/j.jhep.2018.09.014. PubMed DOI
Cwalina-Ambroziak B., Wierzbowska J., Damszel M., Bowszys T. The effect of mineral fertilization on achenes yield and fungal communities isolated from the stems of milk thistle Silybum marianum (L.) Gaertner. Acta Sci. Pol. Hortorum Cultus. 2012;11:157–168.
Rosińska A., Dorna H., Szopińska D., Seidler-Łożykowska K. Experimental paper. The effect of colour grading of milk thistle (Silybum marianum (L.) Gaertn.) seeds on their quality for sowing. Herba Pol. 2017;63:7–19. doi: 10.1515/hepo-2017-0001. DOI
Rosińska A., Dorna H., Szopińska D., Irzykowska L., Seidler-Łożykowska K. Evaluation of milk thistle (Silybum marianum (L.) Gaertn.) seed germination in relation to seed health and seedling emergence. Herba Pol. 2018;64:1–10. doi: 10.2478/hepo-2018-0013. DOI
Tournas V.H., Calo J.R., Sapp C. Fungal profiles in various milk thistle botanicals from US retail. Int. J. Food Microbiol. 2013;164:87–91. doi: 10.1016/j.ijfoodmicro.2013.03.026. PubMed DOI
Veprikova Z., Zachariasova M., Dzuman Z., Zachariasova A., Fenclova M., Slavikova P., Vaclavikova M., Mastovska K., Hengst D., Hajslova J. Mycotoxins in plant-based dietary supplements: Hidden health risk for consumers. J. Agric. Food Chem. 2015;63:6633–6643. doi: 10.1021/acs.jafc.5b02105. PubMed DOI
Santos L., Marín S., Sanchis V., Ramos A.J. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009;89:1802–1807. doi: 10.1002/jsfa.3647. DOI
Tournas V.H., Sapp C., Trucksess M.W. Occurrence of aflatoxins in milk thistle herbal supplements. Food Addit. Contam. Part A. 2012;29:994–999. doi: 10.1080/19440049.2012.664788. PubMed DOI
Capriotti A.L., Caruso G., Cavaliere C., Foglia P., Samperi R., Laganà A. Multiclass mycotoxin analysis in food, environmental and biological matrices with chromatography/mass spectrometry. Mass Spectrom. Rev. 2012;31:466–503. doi: 10.1002/mas.20351. PubMed DOI
Steyn P.S. Mycotoxins, general view, chemistry and structure. Toxicol. Lett. 1995;82–83:843–851. doi: 10.1016/0378-4274(95)03525-7. PubMed DOI
Wianowska D., Wiśniewski M. Simplified procedure of silymarin extraction from Silybum marianum L. Gaertner. J. Chromatogr. Sci. 2015;53:366–372. doi: 10.1093/chromsci/bmu049. PubMed DOI
Andrzejewska J., Martinelli T., Sadowska K. Silybum marianum: Non-medical exploitation of the species. Ann. Appl. Biol. 2015;167:285–297. doi: 10.1111/aab.12232. DOI
Karkanis A., Bilalis D., Efthimiadou A. Cultivation of milk thistle (Silybum marianum L. Gaertn.), a medicinal weed. Ind. Crops Prod. 2011;34:825–830. doi: 10.1016/j.indcrop.2011.03.027. DOI
Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—Chemistry, bioavailability, and metabolism. Molecules. 2017;22:1942. doi: 10.3390/molecules22111942. PubMed DOI PMC
Gresta F., Avola G., Guarnaccia P. Agronomic characterization of some spontaneous genotypes of milk thistle (Silybum marianum L. Gaertn.) in Mediterranean environment. J. Herbs Spices Med. Plants. 2006;12:51–60. doi: 10.1300/J044v12n04_05. DOI
Abenavoli L., Izzo A.A., Milić N., Cicala C., Santini A., Capasso R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018;32:2202–2213. doi: 10.1002/ptr.6171. PubMed DOI
Fibigr J., Šatínský D., Solich P. A new approach to the rapid separation of isomeric compounds in a Silybum marianum extract using UHPLC core-shell column with F5 stationary phase. J. Pharm. Biomed. Anal. 2017;134:203–213. doi: 10.1016/j.jpba.2016.11.042. PubMed DOI
Javed S., Kohli K., Ali M. Reassessing bioavailability of silymarin. Altern. Med. Rev. J. Clin. Ther. 2011;16:239–249. PubMed
PubChem [(accessed on 23 July 2020)]; Available online: https://pubchem.ncbi.nlm.nih.gov/
Mitchell S.T. Chapter 231. Silymarin or Milk Thistle (Silybum Marianum) In: Olson K.R., editor. Poisoning & Drug Overdose. The McGraw-Hill Companies; New York, NY, USA: 2012. pp. 551–552.
Fanoudi S., Alavi M.S., Karimi G., Hosseinzadeh H. Milk thistle (Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: A review. Drug Chem. Toxicol. 2020;43:240–254. doi: 10.1080/01480545.2018.1485687. PubMed DOI
Aboelwafa H.R., El-kott A.F., Abd-Ella E.M., Yousef H.N. The possible neuroprotective effect of silymarin against aluminum chloride-prompted Alzheimer’s-like disease in Rats. Brain Sci. 2020;10:628. doi: 10.3390/brainsci10090628. PubMed DOI PMC
Guo H., Cao H., Cui X., Zheng W., Wang S., Yu J., Chen Z. Silymarin’s inhibition and treatment effects for Alzheimer’s disease. Molecules. 2019;24:1748. doi: 10.3390/molecules24091748. PubMed DOI PMC
El-Ashmawy N.E., Khedr E.G., El-Bahrawy H.A., Helmy N.N. Modulatory effect of silymarin on apoptosis in testosterone -induced benign prostatic hyperplasia in rats. Pathol. Oncol. Res. 2020;26:1947–1956. doi: 10.1007/s12253-019-00764-4. PubMed DOI
Saberi Z., Gorji N., Memariani Z., Moeini R., Shirafkan H., Amiri M. Evaluation of the effect of Silybum Marianum extract on menopausal symptoms: A randomized, double-blind placebo-controlled trial. Phytother. Res. 2020:1–8. doi: 10.1002/ptr.6789. PubMed DOI
Othman S., Ali S.M., Deeb N.M.E. Protective effect of Silybum marianum extract against doxorubicin induced toxicity in male rats. PSM Biol. Res. 2020;5:14–21.
Rašković A., Stilinović N., Kolarović J., Vasović V., Vukmirović S., Mikov M. The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Molecules. 2011;16:8601–8613. doi: 10.3390/molecules16108601. PubMed DOI PMC
Vostálová J., Tinková E., Biedermann D., Kosina P., Ulrichová J., Rajnochová Svobodová A. Skin protective activity of silymarin and its flavonolignans. Molecules. 2019;24:1022. doi: 10.3390/molecules24061022. PubMed DOI PMC
Fidrus E., Ujhelyi Z., Fehér P., Hegedűs C., Janka E.A., Paragh G., Vasas G., Bácskay I., Remenyik É. Silymarin: Friend or foe of UV exposed keratinocytes? Molecules. 2019;24:1652. doi: 10.3390/molecules24091652. PubMed DOI PMC
Alhidary I.A., Rehman Z., Khan R.U., Tahir M. Anti-aflatoxin activities of milk thistle (Silybum marianum) in broiler. Worlds Poult. Sci. J. 2017;73:559–566. doi: 10.1017/S0043933917000514. DOI
Stoev S.D., Njobeh P., Zarkov I., Mircheva T., Zapryanova D., Denev S., Dimitrova B. Selected herbal feed additives showing protective effects against ochratoxin A toxicosis in broiler chicks. World Mycotoxin J. 2019;12:257–268. doi: 10.3920/WMJ2019.2432. DOI
Ledur P.C., Santurio J.M. Cytoprotective effects of curcumin and silymarin on PK-15 cells exposed to ochratoxin A, fumonisin B1 and deoxynivalenol. Toxicon. 2020;185:97–103. doi: 10.1016/j.toxicon.2020.06.025. PubMed DOI
Gao X., Xiao Z.-H., Liu M., Zhang N.-Y., Khalil M.M., Gu C.-Q., Qi D.-S., Sun L.-H. Dietary silymarin supplementation alleviates zearalenone-induced hepatotoxicity and reproductive toxicity in rats. J. Nutr. 2018;148:1209–1216. doi: 10.1093/jn/nxy114. PubMed DOI
Gillessen A., Schmidt H.H.-J. Silymarin as supportive treatment in liver diseases: A narrative review. Adv. Ther. 2020;37:1279–1301. doi: 10.1007/s12325-020-01251-y. PubMed DOI PMC
Grela E.R., Świątkiewicz M., Florek M., Wojtaszewska I. Impact of milk thistle (Silybum marianum L.) seeds in fattener diets on pig performance and carcass traits and fatty acid profile and cholesterol of meat, backfat and liver. Livest. Sci. 2020;239:104180. doi: 10.1016/j.livsci.2020.104180. DOI
Kosina P., Dokoupilová A., Janda K., Sládková K., Silberová P., Pivodová V., Ulrichová J. Effect of Silybum marianum fruit constituents on the health status of rabbits in repeated 42-day fattening experiment. Anim. Feed Sci. Technol. 2017;223:128–140. doi: 10.1016/j.anifeedsci.2016.11.013. DOI
Tedesco D., Tava A., Galletti S., Tameni M., Varisco G., Costa A., Steidler S. Effects of silymarin, a natural hepatoprotector, in periparturient Dairy Cows. J. Dairy Sci. 2004;87:2239–2247. doi: 10.3168/jds.S0022-0302(04)70044-2. PubMed DOI
Khamisabadi H. Effects of Silymarin on milk production, liver enzymes, oxidative status and HSP70 gene expression in postparturient Sanjabi ewes. Cell. Mol. Biol. 2020;66:76–81. doi: 10.14715/cmb/2019.66.1.13. PubMed DOI
Šťastník O., Mrkvicová E., Pavlata L., Roztočilová A., Umlášková B., Anzenbacherová E. Performance, biochemical profile and antioxidant activity of hens supplemented with addition of milk thistle (Silybum marianum) seed cakes in diet. Acta Univ. Agric. Silvic. Mendel. Brun. 2019;67:993–1003. doi: 10.11118/actaun201967040993. DOI
World Health Organization . WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. World Health Organization; Geneva, Switzerland: 2007.
Ostry V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008;1:175–188. doi: 10.3920/WMJ2008.x013. DOI
Logrieco A., Bottalico A., Mulé G., Moretti A., Perrone G. Epidemiology of toxigenic fungi and their associated mycotoxins for some mediterranean Crops. Eur. J. Plant Pathol. 2003;109:645–667. doi: 10.1023/A:1026033021542. DOI
Romero S.M., Comerio R.M., Larumbe G., Ritieni A., Vaamonde G., Fernández Pinto V. Toxigenic fungi isolated from dried vine fruits in Argentina. Int. J. Food Microbiol. 2005;104:43–49. doi: 10.1016/j.ijfoodmicro.2005.04.001. PubMed DOI
Andersen B., Krøger E., Roberts R.G. Chemical and morphological segregation of Alternaria arborescens, A. infectoria and A. tenuissima species-groups. Mycol. Res. 2002;106:170–182. doi: 10.1017/S0953756201005263. DOI
Andersen B., Hansen M.E., Smedsgaard J. Automated and unbiased image analyses as tools in phenotypic classification of small-spored Alternaria spp. Phytopathology. 2005;95:1021–1029. doi: 10.1094/PHYTO-95-1021. PubMed DOI
European Food Safety Authority Dietary exposure assessment to Alternaria toxins in the European population. EFSA J. 2016;14:e04654. doi: 10.2903/j.efsa.2016.4654. DOI
Aichinger G., Krüger F., Puntscher H., Preindl K., Warth B., Marko D. Naturally occurring mixtures of Alternaria toxins: Anti-estrogenic and genotoxic effects in vitro. Arch. Toxicol. 2019;93:3021–3031. doi: 10.1007/s00204-019-02545-z. PubMed DOI
Hessel-Pras S., Kieshauer J., Roenn G., Luckert C., Braeuning A., Lampen A. In vitro characterization of hepatic toxicity of Alternaria toxins. Mycotoxin Res. 2019;35:157–168. doi: 10.1007/s12550-018-0339-9. PubMed DOI
Pfeiffer E., Eschbach S., Metzler M. Alternaria toxins: DNA strand-breaking activity in mammalian cells in vitro. Mycotoxin Res. 2007;23:152. doi: 10.1007/BF02951512. PubMed DOI
Brugger E.-M., Wagner J., Schumacher D.M., Koch K., Podlech J., Metzler M., Lehmann L. Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicol. Lett. 2006;164:221–230. doi: 10.1016/j.toxlet.2006.01.001. PubMed DOI
Lehmann L., Wagner J., Metzler M. Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells. Food Chem. Toxicol. 2006;44:398–408. doi: 10.1016/j.fct.2005.08.013. PubMed DOI
Schmutz C., Cenk E., Marko D. The Alternaria mycotoxin alternariol triggers the immune response of IL-1β-stimulated, differentiated Caco-2 cells. Mol. Nutr. Food Res. 2019;63:1900341. doi: 10.1002/mnfr.201900341. PubMed DOI PMC
Kollarova J., Cenk E., Schmutz C., Marko D. The mycotoxin alternariol suppresses lipopolysaccharide-induced inflammation in THP-1 derived macrophages targeting the NF-κB signalling pathway. Arch. Toxicol. 2018;92:3347–3358. doi: 10.1007/s00204-018-2299-4. PubMed DOI PMC
Bansal M., Singh N., Alam S., Pal S., Satyanarayana G.N.V., Singh D., Ansari K.M. Alternariol induced proliferation in primary mouse keratinocytes and inflammation in mouse skin is regulated via PGE2/EP2/cAMP/p-CREB signaling pathway. Toxicology. 2019;412:79–88. doi: 10.1016/j.tox.2018.11.013. PubMed DOI
Tiemann U., Tomek W., Schneider F., Müller M., Pöhland R., Vanselow J. The mycotoxins alternariol and alternariol methyl ether negatively affect progesterone synthesis in porcine granulosa cells in vitro. Toxicol. Lett. 2009;186:139–145. doi: 10.1016/j.toxlet.2009.01.014. PubMed DOI
Dellafiora L., Warth B., Schmidt V., Del Favero G., Mikula H., Fröhlich J., Marko D. An integrated in silico/in vitro approach to assess the xenoestrogenic potential of Alternaria mycotoxins and metabolites. Food Chem. 2018;248:253–261. doi: 10.1016/j.foodchem.2017.12.013. PubMed DOI
Liu G.T., Qian Y.Z., Zhang P.E., Dong W.H., Qi Y.M., Guo H. Etiological role of Alternaria alternata in human esophageal cancer. Chin. Med. J. 1992;105:394–400. PubMed
Frisvad J.C., Thrane U., Samson R.A. Mycotoxin producers. In: Dijksterhuis J., Samson R.A., editors. Food Mycology: A Multifaceted Approach to Fungi and Food. CRC Press; Boca Raton, FL, USA: 2007. pp. 135–159.
Sun L.-H., Lei M., Zhang N.-Y., Zhao L., Krumm C.S., Qi D.-S. Hepatotoxic effects of mycotoxin combinations in mice. Food Chem. Toxicol. 2014;74:289–293. doi: 10.1016/j.fct.2014.10.020. PubMed DOI
Yin H., Han S., Chen Y., Wang Y., Li D., Zhu Q. T-2 Toxin induces oxidative stress, apoptosis and cytoprotective autophagy in chicken hepatocytes. Toxins. 2020;12:90. doi: 10.3390/toxins12020090. PubMed DOI PMC
Wang X., Tang J., Geng F., Zhu L., Chu X., Zhang Y., Rahman S.U., Chen X., Jiang Y., Zhu D., et al. Effects of deoxynivalenol exposure on cerebral lipid peroxidation, neurotransmitter and calcium homeostasis of chicks in vivo. Toxicon. 2018;150:60–65. doi: 10.1016/j.toxicon.2018.05.010. PubMed DOI
Guo P., Liu A., Huang D., Wu Q., Fatima Z., Tao Y., Cheng G., Wang X., Yuan Z. Brain damage and neurological symptoms induced by T-2 toxin in rat brain. Toxicol. Lett. 2018;286:96–107. doi: 10.1016/j.toxlet.2018.01.012. PubMed DOI
Modra H., Palikova M., Hyrsl P., Bartonkova J., Papezikova I., Svobodova Z., Blahova J., Mares J. Effects of trichothecene mycotoxin T-2 toxin on haematological and immunological parameters of rainbow trout (Oncorhynchus mykiss) Mycotoxin Res. 2020;36:319–326. doi: 10.1007/s12550-020-00396-7. PubMed DOI
Hymery N., Léon K., Carpentier F.-G., Jung J.-L., Parent-Massin D. T-2 toxin inhibits the differentiation of human monocytes into dendritic cells and macrophages. Toxicol. In Vitro. 2009;23:509–519. doi: 10.1016/j.tiv.2009.01.003. PubMed DOI
Vlata Z., Porichis F., Tzanakakis G., Tsatsakis A., Krambovitis E. In vitro cytopathic effects of mycotoxin T-2 on human peripheral blood T lymphocytes. Toxicol. Lett. 2005;160:60–68. doi: 10.1016/j.toxlet.2005.06.006. PubMed DOI
Minervini F., Fornelli F., Lucivero G., Romano C., Visconti A. T-2 toxin immunotoxicity on human B and T lymphoid cell lines. Toxicology. 2005;210:81–91. doi: 10.1016/j.tox.2005.01.007. PubMed DOI
Hymery N., Sibiril Y., Parent-Massin D. In vitro effects of trichothecenes on human dendritic cells. Toxicol. In Vitro. 2006;20:899–909. doi: 10.1016/j.tiv.2006.01.015. PubMed DOI
Yang X., Zhang X., Yao Q., Song M., Han Y., Shao B., Li Y. T-2 toxin impairs male fertility by disrupting hypothalamic-pituitary-testis axis and declining testicular function in mice. Chemosphere. 2019;234:909–916. doi: 10.1016/j.chemosphere.2019.06.145. PubMed DOI
Tassis P.D., Tsakmakidis I.A., Nagl V., Reisinger N., Tzika E., Gruber-Dorninger C., Michos I., Mittas N., Basioura A., Schatzmayr D. Individual and combined in vitro effects of deoxynivalenol and zearalenone on boar semen. Toxins. 2020;12:495. doi: 10.3390/toxins12080495. PubMed DOI PMC
Agrawal M., Yadav P., Lomash V., Bhaskar A.S.B., Lakshmana Rao P.V. T-2 toxin induced skin inflammation and cutaneous injury in mice. Toxicology. 2012;302:255–265. doi: 10.1016/j.tox.2012.08.007. PubMed DOI
Hemmati A.A., Kalantari H., Jalali A., Rezai S., Zadeh H.H. Healing effect of quince seed mucilage on T-2 toxin-induced dermal toxicity in rabbit. Exp. Toxicol. Pathol. 2012;64:181–186. doi: 10.1016/j.etp.2010.08.004. PubMed DOI
Cho U.M., Choi J.H., Hwang H.S. Deoxynivalenol impair skin barrier function through the down regulation of filaggrin and claudin 1/8 in HaCaT keratinocyte. Biotechnol. Bioprocess Eng. 2017;22:693–699. doi: 10.1007/s12257-017-0367-x. DOI
Zhou H., George S., Hay C., Lee J., Qian H., Sun X. Individual and combined effects of aflatoxin B1, deoxynivalenol and zearalenone on HepG2 and RAW 264.7 cell lines. Food Chem. Toxicol. 2017;103:18–27. doi: 10.1016/j.fct.2017.02.017. PubMed DOI
Fernández-Blanco C., Elmo L., Waldner T., Ruiz M.-J. Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2) Food Chem. Toxicol. 2018;120:12–23. doi: 10.1016/j.fct.2018.06.019. PubMed DOI
Yu F.-F., Lin X.-L., Wang X., Ping Z.-G., Guo X. Comparison of apoptosis and autophagy in human chondrocytes Induced by the T-2 and HT-2 Toxins. Toxins. 2019;11:260. doi: 10.3390/toxins11050260. PubMed DOI PMC
Yang L., Tu D., Zhao Z., Cui J. Cytotoxicity and apoptosis induced by mixed mycotoxins (T-2 and HT-2 toxin) on primary hepatocytes of broilers in vitro. Toxicon. 2017;129:1–10. doi: 10.1016/j.toxicon.2017.01.001. PubMed DOI
International Agency for Research on Cancer . Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Naturally Occuring Substances: Food Items and Costituents, Heterocyclic Aromatic Amines and Mycotoxins. Volume 56. IARC Press; Lyon, France: 1993.
European Food Safety Authority Scientific opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 2011;9:2481. doi: 10.2903/j.efsa.2011.2481. DOI
Poór M., Kunsági-Máté S., Sali N., Kőszegi T., Szente L., Peles-Lemli B. Interactions of zearalenone with native and chemically modified cyclodextrins and their potential utilization. J. Photochem. Photobiol. B. 2015;151:63–68. doi: 10.1016/j.jphotobiol.2015.07.009. PubMed DOI
Kotowicz N.K., Frac M., Lipiec J. The importance of Fusarium fungi in wheat cultivation-pathogenicity and mycotoxins production: A review. J. Anim. Plant Sci. 2014;21:3326–3343.
Rai A., Das M., Tripathi A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit. Rev. Food Sci. Nutr. 2020;60:2710–2729. doi: 10.1080/10408398.2019.1655388. PubMed DOI
Zinedine A., Soriano J.M., Moltó J.C., Mañes J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007;45:1–18. doi: 10.1016/j.fct.2006.07.030. PubMed DOI
Krejcárková A., Šimoník O., Šašková M., Krejčířová R., Drábek O., Rajmon R. Effects of zearalenone, α-zearalenol, and genistein on boar sperm motility in vitro. Czech J. Anim. Sci. 2017;62:435–445. doi: 10.17221/19/2017-CJAS. DOI
Harčárová M., Čonková E., Proškovcová M., Falis M. In vivo assessment of zearalenone toxicity. Folia Vet. 2020;64:60–65. doi: 10.2478/fv-2020-0018. DOI
Aichinger G., Pantazi F., Marko D. Combinatory estrogenic effects of bisphenol A in mixtures with alternariol and zearalenone in human endometrial cells. Toxicol. Lett. 2020;319:242–249. doi: 10.1016/j.toxlet.2019.10.025. PubMed DOI
Althali N.J., Hassan A.M., Abdel-Wahhab M.A. Effect of grape seed extract on maternal toxicity and in utero development in mice treated with zearalenone. Environ. Sci. Pollut. Res. 2019;26:5990–5999. doi: 10.1007/s11356-018-4011-x. PubMed DOI
Yao X., Jiang H., Gao Q., Li Y.-H., Xu Y.N., Kim N.-H. Melatonin alleviates defects induced by zearalenone during porcine embryo development. Theriogenology. 2020;151:66–73. doi: 10.1016/j.theriogenology.2020.04.005. PubMed DOI
Cao H., Zhi Y., Xu H., Fang H., Jia X. Zearalenone causes embryotoxicity and induces oxidative stress and apoptosis in differentiated human embryonic stem cells. Toxicol. In Vitro. 2019;54:243–250. doi: 10.1016/j.tiv.2018.09.020. PubMed DOI
Salem I.B., Boussabbeh M., Neffati F., Najjar M., Abid-Essefi S., Bacha H. Zearalenone-induced changes in biochemical parameters, oxidative stress and apoptosis in cardiac tissue: Protective role of crocin. Hum. Exp. Toxicol. 2016;35:623–634. doi: 10.1177/0960327115597467. PubMed DOI
Jia Z., Liu M., Qu Z., Zhang Y., Yin S., Shan A. Toxic effects of zearalenone on oxidative stress, inflammatory cytokines, biochemical and pathological changes induced by this toxin in the kidney of pregnant rats. Environ. Toxicol. Pharmacol. 2014;37:580–591. doi: 10.1016/j.etap.2014.01.010. PubMed DOI
Szabó A., Szabó-Fodor J., Fébel H., Mézes M., Balogh K., Bázár G., Kocsó D., Ali O., Kovács M. Individual and combined effects of fumonisin B1, deoxynivalenol and zearalenone on the hepatic and renal membrane lipid integrity of rats. Toxins. 2018;10:4. doi: 10.3390/toxins10010004. PubMed DOI PMC
Islam M.R., Kim J.W., Roh Y.-S., Kim J.-H., Han K.M., Kwon H.-J., Lim C.W., Kim B. Evaluation of immunomodulatory effects of zearalenone in mice. J. Immunotoxicol. 2017;14:125–136. doi: 10.1080/1547691X.2017.1340371. PubMed DOI
Hueza I.M., Raspantini P.C.F., Raspantini L.E.R., Latorre A.O., Górniak S.L. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins. 2014;6:1080–1095. doi: 10.3390/toxins6031080. PubMed DOI PMC
Pistol G.C., Braicu C., Motiu M., Gras M.A., Marin D.E., Stancu M., Calin L., Israel-Roming F., Berindan-Neagoe I., Taranu I. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen. PLoS ONE. 2015;10:e0127503. doi: 10.1371/journal.pone.0127503. PubMed DOI PMC
Bouaziz C., Sharaf el dein O., El Golli E., Abid-Essefi S., Brenner C., Lemaire C., Bacha H. Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human hepatoma cells. Toxicology. 2008;254:19–28. doi: 10.1016/j.tox.2008.08.020. PubMed DOI
Marin D.E., Pistol G.C., Bulgaru C.V., Taranu I. Cytotoxic and inflammatory effects of individual and combined exposure of HepG2 cells to zearalenone and its metabolites. Naunyn. Schmiedebergs Arch. Pharmacol. 2019;392:937–947. doi: 10.1007/s00210-019-01644-z. PubMed DOI
Frizzell C., Ndossi D., Verhaegen S., Dahl E., Eriksen G., Sørlie M., Ropstad E., Muller M., Elliott C.T., Connolly L. Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis. Toxicol. Lett. 2011;206:210–217. doi: 10.1016/j.toxlet.2011.07.015. PubMed DOI
Wang X., Yu H., Fang H., Zhao Y., Jin Y., Shen J., Zhou C., Zhou Y., Fu Y., Wang J., et al. Transcriptional profiling of zearalenone-induced inhibition of IPEC-J2 cell proliferation. Toxicon. 2019;172:8–14. doi: 10.1016/j.toxicon.2019.10.004. PubMed DOI
Ren Z.H., Deng H.D., Deng Y.T., Deng J.L., Zuo Z.C., Yu S.M., Shen L.H., Cui H.M., Xu Z.W., Hu Y.C. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain. Environ. Toxicol. Pharmacol. 2016;46:62–70. doi: 10.1016/j.etap.2016.06.028. PubMed DOI
Jia R., Liu W., Zhao L., Cao L., Shen Z. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicol. Lett. 2020;333:159–169. doi: 10.1016/j.toxlet.2020.07.032. PubMed DOI
Zhang W., Zhang S., Wang J., Shan A., Xu L. Changes in intestinal barrier functions and gut microbiota in rats exposed to zearalenone. Ecotoxicol. Environ. Saf. 2020;204:111072. doi: 10.1016/j.ecoenv.2020.111072. PubMed DOI
Lahjouji T., Bertaccini A., Neves M., Puel S., Oswald I.P., Soler L. Acute exposure to zearalenone disturbs intestinal homeostasis by modulating the Wnt/β-Catenin signaling pathway. Toxins. 2020;12:113. doi: 10.3390/toxins12020113. PubMed DOI PMC
Jajić I., Dudaš T., Krstović S., Krska R., Sulyok M., Bagi F., Savić Z., Guljaš D., Stankov A. Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin in Serbian maize. Toxins. 2019;11:357. doi: 10.3390/toxins11060357. PubMed DOI PMC
Tonshin A.A., Teplova V.V., Andersson M.A., Salkinoja-Salonen M.S. The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology. 2010;276:49–57. doi: 10.1016/j.tox.2010.07.001. PubMed DOI
European Food Safety Authority Scientific opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014;12:3802. doi: 10.2903/j.efsa.2014.3802. DOI
Jestoi M. Emerging Fusarium -mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Crit. Rev. Food Sci. Nutr. 2008;48:21–49. doi: 10.1080/10408390601062021. PubMed DOI
Devreese M., Broekaert N., De Mil T., Fraeyman S., De Backer P., Croubels S. Pilot toxicokinetic study and absolute oral bioavailability of the Fusarium mycotoxin enniatin B1 in pigs. Food Chem. Toxicol. 2014;63:161–165. doi: 10.1016/j.fct.2013.11.005. PubMed DOI
Prosperini A., Juan-García A., Font G., Ruiz M.J. Beauvericin-induced cytotoxicity via ROS production and mitochondrial damage in Caco-2 cells. Toxicol. Lett. 2013;222:204–211. doi: 10.1016/j.toxlet.2013.07.005. PubMed DOI
Prosperini A., Font G., Ruiz M.J. Interaction effects of Fusarium enniatins (A, A1, B and B1) combinations on in vitro cytotoxicity of Caco-2 cells. Toxicol. In Vitro. 2014;28:88–94. doi: 10.1016/j.tiv.2013.06.021. PubMed DOI
Olleik H., Nicoletti C., Lafond M., Courvoisier-Dezord E., Xue P., Hijazi A., Baydoun E., Perrier J., Maresca M. Comparative structure–activity analysis of the antimicrobial activity, cytotoxicity, and mechanism of action of the fungal cyclohexadepsipeptides enniatins and eeauvericin. Toxins. 2019;11:514. doi: 10.3390/toxins11090514. PubMed DOI PMC
Agahi F., Font G., Juan C., Juan-García A. Individual and combined effect of zearalenone derivates and beauvericin mycotoxins on SH-SY5Y Cells. Toxins. 2020;12:212. doi: 10.3390/toxins12040212. PubMed DOI PMC
Mamur S., Yuzbasioglu D., Yılmaz S., Erikel E., Unal F. Assessment of cytotoxic and genotoxic effects of enniatin—A in vitro. Food Addit. Contam. Part A. 2018;35:1633–1644. doi: 10.1080/19440049.2018.1486513. PubMed DOI
Huang C.-H., Wang F.-T., Chan W.-H. Enniatin B1 exerts embryotoxic effects on mouse blastocysts and induces oxidative stress and immunotoxicity during embryo development. Environ. Toxicol. 2019;34:48–59. doi: 10.1002/tox.22656. PubMed DOI
Büchter C., Koch K., Freyer M., Baier S., Saier C., Honnen S., Wätjen W. The mycotoxin beauvericin impairs development, fertility and life span in the nematode Caenorhabditis elegans accompanied by increased germ cell apoptosis and lipofuscin accumulation. Toxicol. Lett. 2020;334:102–109. doi: 10.1016/j.toxlet.2020.09.016. PubMed DOI
European Commission Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006;L364:5–24.
European Commission European Union Commission Regulation (EU) No. 105/2010 of 5 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A. Off. J. Eur. Union. 2010;L35:7–8.
JECFA FAO/WHO . Evaluation of Certain Contaminants in Food Seventy-Second Report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; Geneva, Switzerland: 2011. (WHO Technical Report Series 959).
European Food Safety Authority Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017;15:e04718. doi: 10.2903/j.efsa.2017.4718. PubMed DOI PMC
JECFA FAO/WHO . Evaluation of Certain Mycotoxins in Food. Fifty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; Geneva, Switzerland: 2002. (WHO Technical Report Series 906). PubMed
European Food Safety Authority Human and animal dietary exposure to T-2 and HT-2 toxin. EFSA J. 2017;15:e04972. doi: 10.2903/j.efsa.2017.4972. PubMed DOI PMC
JECFA FAO/WHO . Evaluation of Certain food Additives and Contaminants. Fifty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; Geneva, Switzerland: 2000. (WHO Technical Report Series 896). PubMed
European Food Safety Authority Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016;14:1–46. doi: 10.2903/j.efsa.2016.4425. DOI
Krogh P., Axelsen N.H., Elling F., Gyrd-Hansen N., Hald B., Hyldgaard-Jensen J., Larsen A.E., Madsen A., Mortensen H.P., Moller T., et al. Experimental porcine nephropathy. Changes of renal function and structure induced by ochratoxin A- contaminated feed. Acta Pathol. Microbiol. Scand. Suppl. 1974;84:1–21. PubMed
European Food Safety Authority Risk assessment of ochratoxin A in food. EFSA J. 2020;18:1–150. doi: 10.2903/j.efsa.2020.6113. PubMed DOI PMC
European Food Safety Authority Risk assessment of aflatoxins in food. EFSA J. 2020;18:1–112. doi: 10.2903/j.efsa.2020.6040. PubMed DOI PMC
EU . SCF Opinion of the Scientific Committee on Food on Fusarium-Toxins Part 1: Deoxynivalenol (DON) EU; Brussel, Belgium: 1999. (Expressed on 2 December 1999)
European Food Safety Authority Scientific opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011;9:2197. doi: 10.2903/j.efsa.2011.2197. DOI
Ostry V., Skarkova J., Ruprich J. Alternaria Mycotoxins in Foodstuffs–Current Information for Health Risk Assessment. Mycotoxin; Bratislava, Slovakia: 2009. pp. 1–9.
Occurrence of mycotoxins in milk thistle: to be included in legislation or not?