Determination of T-2 and HT-2 Toxins in Seed of Milk Thistle [Silybum marianum (L.) Gaertn.] Using Immunoaffinity Column by UPLC-MS/MS
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35448867
PubMed Central
PMC9028017
DOI
10.3390/toxins14040258
PII: toxins14040258
Knihovny.cz E-zdroje
- Klíčová slova
- HT-2 toxin, T-2 toxin, UPLC-MS/MS, immunoaffinity column, milk thistle, validation method,
- MeSH
- antioxidancia MeSH
- biologické přípravky * MeSH
- chromatografie kapalinová MeSH
- flavonoidy MeSH
- mykotoxiny * MeSH
- ostropestřec mariánský MeSH
- semena rostlinná MeSH
- silymarin * MeSH
- šlechtění rostlin MeSH
- T-2 toxin * analogy a deriváty MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- biologické přípravky * MeSH
- flavonoidy MeSH
- HT-2 toxin MeSH Prohlížeč
- mykotoxiny * MeSH
- silymarin * MeSH
- T-2 toxin * MeSH
Milk thistle [Silybum marianum (L.) Gaertn.] achieved a significant increase in interest over the past few years from local and foreign pharmaceutical corporations. The silymarin complex of constituents extracted from milk thistle achenes provides compelling health benefits primarily thanks to antioxidant activities and hepatoprotective effects. However, consuming mycotoxin-contaminated plant material can cause immunosuppression and hepatotoxic problems. The aim of this study was to develop and validate a method for the determination of mycotoxin content in milk thistle. Fusarium toxins as T-2 and HT-2 toxins in grown milk thistle harvested from a breeding station in the Czech Republic during 2020-2021 were studied. The analysis of T-2 and HT-2 toxins was performed by UPLC-MS/MS after immunoaffinity columns EASI-EXTRACT® T-2 & HT-2 clean up. All analysed samples of milk thistle were contaminated with T-2 toxin and HT-2 toxin. The content of T-2 toxin in the samples from 2020 was in the range of 122.7-290.2 µg/kg and HT-2 toxin 157.0-319.0 µg/kg. In 2021, the content of T-2 toxin was in the range of 28.8-69.9 µg/kg and HT-2 toxin was 24.2-75.4 µg/kg. The results show that the climatic conditions of the year of harvesting have a highly statistically significant effect on the content of T-2 and HT-2 toxins in milk thistle.
Agritec Plant Research Zemědělská 2520 16 CZ 78701 Sumperk Czech Republic
Research Institute of Brewing and Malting Mostecká 7 CZ 61400 Brno Czech Republic
Zobrazit více v PubMed
Habán M., Habánová M., Otepka P., Kobida Ľ. Milk thistle (Silybum marianum L. Gaertn.) cultivated in polyfunctional crop rotation and its evaluation. Res. J. Agric. Sci. 2010;42:111–117.
Habán M., Luščáková D., Macak M., Ražná K. The Impact of Multifunctional Crop Rotation on the Yield of Milk Thistle Fruits in the Years 2012–2015. J. Cent. Eur. Agric. 2016;17:1096–1103. doi: 10.5513/JCEA01/17.4.1816. DOI
European Pharmacopoeia . European Pharmacopoeia. 6th ed. Volume 2. Council of Europe; Strasbourg, France: 2008. pp. 2425–2427.
Morazzoni P., Bombardelli E. Silybum marianum (Carduus marianus) Fitoterapia. 1995;66:6–42.
Saller R., Meier R., Brignoli R. The use of silymarin in the treatment of liver diseases. Drugs. 2001;61:2035–2063. doi: 10.2165/00003495-200161140-00003. PubMed DOI
Habán M., Otepka P., Habánová M. Production and quality of milk thistle (Silybum marianum L. Gaertn.) cultivated in cultural conditions of warm agri-climatic macroregion. Hort. Sci. 2009;36:69–74. doi: 10.17221/38/2008-HORTSCI. DOI
Škottová N., Krečman V. Silymarin as a potential hypocholesterolaemic drug. Physiol. Res. 1998;47:1–7. PubMed
Wellington K., Jarvis B. Silymarin: A review of its clinical properties in the management of liver disorders. BioDrugs. 2001;15:465–489. doi: 10.2165/00063030-200115070-00005. PubMed DOI
Pickova D., Ostry V., Toman J., Malir F. Presence of Mycotoxins in Milk Thistle (Silybum marianum) Food Supplements: A Review. Toxins. 2020;12:782. doi: 10.3390/toxins12120782. PubMed DOI PMC
Singh R.P., Deep G., Chittezhath M., Kaur M., Dwyer-Nield L.D., Malkinson A.M., Agarwal R. Effect of silibinin on the growth and progression of primary lung tumors in mice. J. Natl. Cancer Inst. 2006;98:846–855. doi: 10.1093/jnci/djj231. PubMed DOI
Valková V., Ďúranová H., Bilčíková J., Habán M. Milk thistle (Silybum marianum): A valuable medicinal plant with several therapeutic purposes. J. Microbiol. Biotechnol. Food Sci. 2021;2021:836–843. doi: 10.15414/jmbfs.2020.9.4.836-843. DOI
Tournas V.H., Sapp C., Trucksess M.W. Occurrence of aflatoxins in milk thistle herbal supplements. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012;29:994–999. doi: 10.1080/19440049.2012.664788. PubMed DOI
Kosalec I., Cvek J., Tomic S. Contaminants of medicinal herbs and herbal products. Arh. Hig. Rada Toksikol. 2009;60:485–501. doi: 10.2478/10004-1254-60-2009-2005. PubMed DOI
Veprikova Z., Zachariasova M., Dzuman Z., Zachariasova A., Fenclova M., Slavikova P., Vaclavikova M., Mastovska K., Hengst D., Hajslova J. Mycotoxins in plant-based dietary supplements: Hidden health risk for consumers. J. Agri. Food Chem. 2015;63:6633–6643. doi: 10.1021/acs.jafc.5b02105. PubMed DOI
Tassaneeyakul W., Razzazi-Fazeli E., Porasuphatana S., Bohm J. Contamination of aflatoxins in herbal medicinal products in Thailand. Mycopathologia. 2004;158:239–244. doi: 10.1023/B:MYCO.0000041892.26907.b4. PubMed DOI
Cao H., Huang H., Xu W., Chen D., Yu J., Li J., Li L. Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography-mass spectrometry. Anal. Chim. Acta. 2011;691:68–75. doi: 10.1016/j.aca.2011.02.038. PubMed DOI
Posadzki P., Watson L., Ernst E. Contamination and adulteration of herbal medicinal products (HMPs): An overview of systematic reviews. Eur. J. Clin. Pharm. 2013;69:295–307. doi: 10.1007/s00228-012-1353-z. PubMed DOI
Pitt J.I., Hocking A.D. Fungi and Food Spoilage. 3rd ed. Springer; Boston, MA, USA: 2009. pp. 89–122.
Běláková S., Benešová K., Čáslavský J., Svoboda Z., Mikulíková R. The occurrence of the selected Fusarium mycotoxins in Czech malting barley. Food Contr. 2014;37:93–98. doi: 10.1016/j.foodcont.2013.09.033. DOI
Zhang J., Zhang H., Liu S., Wu W., Zhang H. Comparison of anorectic potencies of type a trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and neosolaniol. Toxins. 2018;10:179. doi: 10.3390/toxins10050179. PubMed DOI PMC
Beccari G., Caproni L., Tini F., Uhlig S., Covarelli L. Presence of Fusarium species and other toxigenic fungi in malting barley and multi-mycotoxin analysis by liquid chromatography–high resolution mass spectrometry. J. Agric. Food Chem. 2016;64:4390–4399. doi: 10.1021/acs.jafc.6b00702. PubMed DOI
Edwards S.G., Imathiu S.M., Ray R.V., Back M., Hare M.C. Molecular studies to identify the Fusarium species responsible for HT-2 and T-2 mycotoxins in UK oats. Int. J. Food Microbiol. 2012;156:168–175. doi: 10.1016/j.ijfoodmicro.2012.03.020. PubMed DOI
Pernica M., Kyralová B., Svoboda Z., Boško R., Brožková I., Česlová L., Benešová K., Červenka L., Běláková S. Levels of T-2 toxin and its metabolites, and the occurrence of Fusarium fungi in spring barley in the Czech Republic. Food Microbiol. 2022;102:103875. doi: 10.1016/j.fm.2021.103875. PubMed DOI
Malachova A., Cerkal R., Ehrenbergerova J., Dzuman Z., Vaculova K., Hajslova J. Fusarium mycotoxins in various barley cultivars and their transfer into malt. J. Sci. Food Agric. 2010;90:2495–2505. doi: 10.1002/jsfa.4112. PubMed DOI
Santos L., Marín S., Sanchis V., Ramos A.J. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009;89:1802–1807. doi: 10.1002/jsfa.3647. DOI
Fenclova M., Novakova A., Viktorova J., Jonatova P., Dzuman Z., Ruml T., Kren V., Hajslova J., Vitek L., Stranska-Zachariasova M. Poor chemical and microbiological quality of the commercial milk thistle-based dietary supplements may account for their reported unsatisfactory and non-reproducible clinical outcomes. Sci. Rep. 2019;9:1–12. PubMed PMC
Arroyo-Manzanares N., García-Campaña A.M., Gámiz-Gracia L. Multiclass mycotoxin analysis in Silybum marianum by ultra-high performance liquid chromatography–tandem mass spectrometry using a procedure based on QuEChERS and dispersive liquid–liquid microextraction. J. Chromatogr. A. 2013;1282:11–19. doi: 10.1016/j.chroma.2013.01.072. PubMed DOI
Pernica M., Piacentini K.C., Benešová K., Čáslavský J., Běláková S. Analytical techniques for determination of mycotoxins in barley, malt and beer: A review. Kvas. Prum. 2019;65:46–57. doi: 10.18832/kp2019.65.46. DOI
Li Y., Wang Z., Beier R.C., Shen J., Smet D.D., De Saeger S., Zhang S. T-2 toxin, a trichothecene mycotoxin: Review of toxicity, metabolism, and analytical methods. J. Agric. Food. Chem. 2011;59:3441–3453. doi: 10.1021/jf200767q. PubMed DOI
Karron E., Runno-Paurson E., Lõiveke H., Islamov B., Kütt M.L., Talve T., Lauringson E., Horak H., Edesi L., Niinemets Ü. Application of widely used fungicides does not necessarily affect grain yield, and incidence of Fusarium spp. and mycotoxins DON, HT-2 and T-2 in spring barley in northern climates. Kvas. Prum. 2020;66:215–223. doi: 10.18832/kp2020.66.215. DOI
Mateo J.J., Mateo R., Jimenez M. Accumulation of type A trichothecenes in maize, wheat and rice by Fusarium sporotrichioides isolates under diverse culture conditions. Int. J. Food. Microbiol. 2002;72:115–123. doi: 10.1016/S0168-1605(01)00625-0. PubMed DOI
Jesenska Z., Sajbidorova I. T-2 toxin degradation by micromycetes. J. Hyg. Epidemiol. Microbiol. Immunol. 1991;35:41–49. PubMed
Yang X., Liu P., Cui Y., Xiao B., Liu M., Song M., Huang W., Li Y. Review of the reproductive toxicity of T-2 toxin. J. Agric. Food Chem. 2020;68:727–734. doi: 10.1021/acs.jafc.9b07880. PubMed DOI
Čonková E., Laciaková A., Kováč G., Seidel H. Fusarial toxins and their role in animal diseases. Vet. J. 2003;165:214–220. doi: 10.1016/S1090-0233(02)00127-2. PubMed DOI
Doi K., Ishigami N., Sehata S. T-2 toxin-induced toxicity in pregnant mice and rats. Int. J. Mol. Sci. 2008;9:2146–2158. doi: 10.3390/ijms9112146. PubMed DOI PMC
Rafai P., Bata A., Vanyi A., Papp Z., Brydl E., Jakab L., Tuboly S., Tury E. Effect of various levels of T-2 toxin on the clinical status, performance and metabolism of growing pigs. Vet. Rec. 1995;136:485–489. doi: 10.1136/vr.136.19.485. PubMed DOI
Dai C., Xiao X., Sun F., Zhang Y., Hoyer D., Shen J., Tang S., Velkov T. T-2 toxin neurotoxicity: Role of oxidative stress and mitochondrial dysfunction. Arch. Toxicol. 2019;93:3041–3056. doi: 10.1007/s00204-019-02577-5. PubMed DOI
Shinozuka J., Suzuki M., Noguchi N., Sugimoto T., Uetsuka K., Nakayama H., Doi K. T-2 toxin-induced apoptosis in hematopoietic tissues of mice. Toxicol. Pathol. 1998;26:674–681. doi: 10.1177/019262339802600512. PubMed DOI
Li D., Han J., Guo X., Qu C., Yu F., Wu X. The effects of T-2 toxin on the prevalence and development of Kashin–Beck disease in China: A meta-analysis and systematic review. Toxicol. Res. 2016;5:731–751. doi: 10.1039/C5TX00377F. PubMed DOI PMC
Visconti A. Problems associated with Fusarium mycotoxins in cereals. Bull. Inst. Compr. Agric. Sci. Kinki. Univ. 2001;9:39–55.
Van der Fels-Klerx H.J., Stratakou I. T-2 toxin and HT-2 toxin in grain and grain-based commodities in Europe: Occurrence, factors affecting occurrence, co-occurrence and toxicological effects. World Mycotoxin J. 2010;3:349–367. doi: 10.3920/WMJ2010.1237. DOI
Canady R.A., Coker R.D., Egan S., Krska R., Olsen M., Resnik S., Schlatter J. T-2 and HT-2 toxins. Saf. Eval. Certain Mycotoxins Food. WHO Food Addit. Ser. 2001;47:557–597.
Wu Q., Dohnal V., Huang L., Kuča K., Yuan Z. Metabolic pathways of trichothecenes. Drug Metab Rev. 2010;42:250–267. doi: 10.3109/03602530903125807. PubMed DOI
Daud N., Currie V., Duncan G., Busman M., Gratz S.W. Intestinal hydrolysis and microbial biotransformation of diacetoxyscirpenol-α-glucoside, HT-2-β-glucoside and N-(1-deoxy-D-fructos-1-yl) fumonisin B1 by human gut microbiota in vitro. Int. J. Food Sci. Nutr. 2020;71:540–548. doi: 10.1080/09637486.2019.1698015. PubMed DOI
EFSA Panel on Contaminants in the Food Chain (CONTAM) Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 2011;9:2481. doi: 10.2903/j.efsa.2011.2481. DOI
Wu W., Zhou H.R., Pan X., Pestka J.J. Comparison of anorectic potencies of the trichothecenes T-2 toxin, HT-2 toxin and satratoxin G to the ipecac alkaloid emetine. Toxicol. Rep. 2015;2:238–251. doi: 10.1016/j.toxrep.2014.12.010. PubMed DOI PMC
EFSA Panel on Contaminants in the Food Chain (CONTAM) Appropriateness to set a group health based guidance value for T-2 and HT-2 toxin and its modified forms. EFSA J. 2017;15:e04655. PubMed PMC
Ałtyn I., Twarużek M. Mycotoxin Contamination Concerns of Herbs and Medicinal Plants. Toxins. 2020;12:182. doi: 10.3390/toxins12030182. PubMed DOI PMC
Steiner D., Malachová A., Sulyok M., Krska R. Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Anal. Bioanal. Chem. 2021;413:25–34. doi: 10.1007/s00216-020-03015-7. PubMed DOI PMC
Carrier D.J., Crowe T., Sokhansanj S., Wahab J., Barl B. Milk thistle, Silybum marianum (L.) Gaertn., flower head development and associated marker compound profile. J. Herbs. Spices Med. Plants. 2003;10:65–74. doi: 10.1300/J044v10n01_08. DOI
Andrzejewska J., Sadowska K., Mielcarek S. Effect of sowing date and rate on the yield and flavonolignan content of the fruits of milk thistle (Silybum marianum L. Gaertn.) grown on light soil in a moderate climate. Ind. Crops Prod. 2011;33:462–468. doi: 10.1016/j.indcrop.2010.10.027. DOI
Champeil A., Doré T., Fourbet J.F. Fusarium head blight: Epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci. 2004;166:1389–1415. doi: 10.1016/j.plantsci.2004.02.004. DOI
Kiš M., Vulić A., Kudumija N., Šarkanj B., Jaki Tkalec V., Aladić K., Škrivanko M., Furmeg S., Pleadin J. A Two-Year Occurrence of Fusarium T-2 and HT-2 Toxin in Croatian Cereals Relative of the Regional Weather. Toxins. 2021;13:39. doi: 10.3390/toxins13010039. PubMed DOI PMC
European Union 2013/165/EU Commission Recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal product. Off. J. Eur. Union. 2013;L91:12–15.
Bhattacharya S. Nuts and Seeds in Health and Disease Prevention. Academic Press; London, UK: 2020. Milk thistle seeds in health; pp. 429–438.
Imathiu S.M., Edwards S.G., Ray R.V., Back M.A. Fusarium langsethiae—A HT-2 and T-2 toxins producer that needs more attention. J. Phytopathol. 2013;161:1–10. doi: 10.1111/jph.12036. DOI
Pleadin J., Vahčić N., Perši N., Ševelj D., Markov K., Frece J. Fusarium mycotoxins’ occurrence in cereals harvested from Croatian fields. Food Control. 2013;32:49–54. doi: 10.1016/j.foodcont.2012.12.002. DOI
Kochiieru Y., Mankevičienė A., Cesevičienė J., Semaškienė R., Dabkevičius Z., Janavičienė S. The influence of harvesting time and meteorological conditions on the occurrence of Fusarium species and mycotoxin contamination of spring cereals. J. Sci. Food Agric. 2020;100:2999–3006. doi: 10.1002/jsfa.10330. PubMed DOI
Kochiieru Y., Mankevičienė A., Cesevičienė J., Semaškienė R., Ramanauskienė J., Gorash A., Janavičienė S., Venslovas E. The Impact of Harvesting Time on Fusarium Mycotoxins in Spring Wheat Grain and Their Interaction with Grain Quality. Agronomy. 2021;11:642. doi: 10.3390/agronomy11040642. DOI
Occurrence of mycotoxins in milk thistle: to be included in legislation or not?