On the Use of Mechanistic Soil-Plant Uptake Models: A Comprehensive Experimental and Numerical Analysis on the Translocation of Carbamazepine in Green Pea Plants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33587851
PubMed Central
PMC8023655
DOI
10.1021/acs.est.0c07420
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- hrách setý MeSH
- karbamazepin analýza MeSH
- látky znečišťující půdu * analýza MeSH
- lidé MeSH
- půda * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- karbamazepin MeSH
- látky znečišťující půdu * MeSH
- půda * MeSH
Food contamination is a major worldwide risk for human health. Dynamic plant uptake of pollutants from contaminated environments is the preferred pathway into the human and animal food chain. Mechanistic models represent a fundamental tool for risk assessment and the development of mitigation strategies. However, difficulty in obtaining comprehensive observations in the soil-plant continuum hinders their calibration, undermining their generalizability and raising doubts about their widespread applicability. To address these issues, a Bayesian probabilistic framework is used, for the first time, to calibrate and assess the predictive uncertainty of a mechanistic soil-plant model against comprehensive observations from an experiment on the translocation of carbamazepine in green pea plants. Results demonstrate that the model can reproduce the dynamics of water flow and solute reactive transport in the soil-plant domain accurately and with limited uncertainty. The role of different physicochemical processes in bioaccumulation of carbamazepine in fruits is investigated through Global Sensitivity Analysis, which shows how soil hydraulic properties and soil solute sorption regulate transpiration streams and bioavailability of carbamazepine. Overall, the analysis demonstrates the usefulness of mechanistic models and proposes a comprehensive numerical framework for their assessment and use.
Zobrazit více v PubMed
Chuang Y.-H.; Liu C.-H.; Sallach J. B.; Hammerschmidt R.; Zhang W.; Boyd S. A.; Li H. Mechanistic Study on Uptake and Transport of Pharmaceuticals in Lettuce from Water. Environ. Int. 2019, 131, 104976.10.1016/j.envint.2019.104976. PubMed DOI
Goldstein M.; Malchi T.; Shenker M.; Chefetz B. Pharmacokinetics in Plants: Carbamazepine and Its Interactions with Lamotrigine. Environ. Sci. Technol. 2018, 52, 6957.10.1021/acs.est.8b01682. PubMed DOI
Hurtado C.; Trapp S.; Bayona J. M. Inverse Modeling of the Biodegradation of Emerging Organic Contaminants in the Soil-Plant System. Chemosphere 2016, 156, 236.10.1016/j.chemosphere.2016.04.134. PubMed DOI
Li Y.; Chuang Y. H.; Sallach J. B.; Zhang W.; Boyd S. A.; Li H. Potential Metabolism of Pharmaceuticals in Radish: Comparison of in Vivo and in Vitro Exposure. Environ. Pollut. 2018, 242, 962.10.1016/j.envpol.2018.07.060. PubMed DOI
Malchi T.; Maor Y.; Tadmor G.; Shenker M.; Chefetz B. Irrigation of Root Vegetables with Treated Wastewater: Evaluating Uptake of Pharmaceuticals and the Associated Human Health Risks. Environ. Sci. Technol. 2014, 42, 9325.10.1021/es5017894. PubMed DOI
Zhang H.; Chen J.; Ni Y.; Zhang Q.; Zhao L. Uptake by Roots and Translocation to Shoots of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Typical Crop Plants. Chemosphere 2009, 76, 740.10.1016/j.chemosphere.2009.05.030. PubMed DOI
Bhalsod G. D.; Chuang Y.-H.; Jeon S.; Gui W.; Li H.; Ryser E. T.; Guber A. K.; Zhang W. Uptake and Accumulation of Pharmaceuticals in Overhead- and Surface-Irrigated Greenhouse Lettuce. J. Agric. Food Chem. 2018, 66, 822.10.1021/acs.jafc.7b04355. PubMed DOI
Riemenschneider C.; Seiwert B.; Moeder M.; Schwarz D.; Reemtsma T. Extensive Transformation of the Pharmaceutical Carbamazepine Following Uptake into Intact Tomato Plants. Environ. Sci. Technol. 2017, 51, 6100.10.1021/acs.est.6b06485. PubMed DOI
So E. L.; Ruggles K. H.; Cascino G. D.; Ahmann P. A.; Weatherford K. W. Seizure Exacerbation and Status Epileptics Related to Carbamazepine-10,11-epoxide. Ann. Neurol. 1994, 35, 743.10.1002/ana.410350616. PubMed DOI
Warner T.; Patsalos P. N.; Prevett M.; Elyas A. A.; Duncan J. S. Lamotrigine-Induced Carbamazepine Toxicity: An Interaction with Carbamazepine-10,11 -Epoxide. Epilepsy Res. 1992, 11, 147.10.1016/0920-1211(92)90049-Y. PubMed DOI
Eugenio N. R.; McLaughlin M.; Pennock D.. Soil Pollution: A Hidden Reality.; FAO: 2018.
Charuaud L.; Jarde E.; Jaffrezic A.; Thomas M. F.; Le Bot B. Veterinary Pharmaceutical Residues from Natural Water to Tap Water: Sales, occurrence and fate. J. Hazard. Mater. 2019, 361, 169.10.1016/j.jhazmat.2018.08.075. PubMed DOI
Picó Y.; Alvarez-Ruiz R.; Alfarhan A. H.; El-Sheikh M. A.; Alshahrani H. O.; Barceló D. Pharmaceuticals, Pesticides, Personal Care Products and Microplastics Contamination Assessment of Al-Hassa Irrigation Network (Saudi Arabia) and Its Shallow Lakes. Sci. Total Environ. 2020, 701, 135021.10.1016/j.scitotenv.2019.135021. PubMed DOI
Verlicchi P.; Zambello E. Pharmaceuticals and Personal Care Products in Untreated and Treated Sewage Sludge: Occurrence and Environmental Risk in the Case of Application on Soil - A Critical Review. Sci. Total Environ. 2015, 538, 750.10.1016/j.scitotenv.2015.08.108. PubMed DOI
Kumar K.; Gupta S. C. A Framework to Predict Uptake of Trace Organic Compounds by Plants. J. Environ. Qual. 2016, 45, 555.10.2134/jeq2015.06.0261. PubMed DOI
Kodešová R.; Klement A.; Golovko O.; Fér M.; Nikodem A.; Kočárek M.; Grabic R. Root Uptake of Atenolol, Sulfamethoxazole and Carbamazepine, and Their Transformation in Three Soils and Four Plants. Environ. Sci. Pollut. Res. 2019, 26, 9876.10.1007/s11356-019-04333-9. PubMed DOI
Kodešová R.; Klement A.; Golovko O.; Fér M.; Kočárek M.; Nikodem A.; Grabic R. Soil Influences on Uptake and Transfer of Pharmaceuticals from Sewage Sludge Amended Soils to Spinach. J. Environ. Manage. 2019, 250, 109407.10.1016/J.JENVMAN.2019.109407. PubMed DOI
Zhang Y.; Geißen S. U.; Gal C. Carbamazepine and Diclofenac: Removal in Wastewater Treatment Plants and Occurrence in Water Bodies. Chemosphere 2008, 73, 1151.10.1016/j.chemosphere.2008.07.086. PubMed DOI
Shenker M.; Harush D.; Ben-Ari J.; Chefetz B. Uptake of Carbamazepine by Cucumber Plants - A Case Study Related to Irrigation with Reclaimed Wastewater. Chemosphere 2011, 82, 905.10.1016/j.chemosphere.2010.10.052. PubMed DOI
Dordio A. V.; Belo M.; Martins Teixeira D.; Palace Carvalho A. J.; Dias C. M. B.; Picó Y.; Pinto A. P. Evaluation of Carbamazepine Uptake and Metabolization by Typha Spp., a Plant with Potential Use in Phytotreatment. Bioresour. Technol. 2011, 102, 7827.10.1016/j.biortech.2011.06.050. PubMed DOI
Koba O.; Golovko O.; Kodešová R.; Klement A.; Grabic R. Transformation of Atenolol, Metoprolol, and Carbamazepine in Soils: The Identification, Quantification, and Stability of the Transformation Products and Further Implications for the Environment. Environ. Pollut. 2016, 218, 574.10.1016/j.envpol.2016.07.041. PubMed DOI
Kodešová R.; Kočárek M.; Klement A.; Golovko O.; Koba O.; Fér M.; Nikodem A.; Vondráčková L.; Jakšík O.; Grabic R. An Analysis of the Dissipation of Pharmaceuticals under Thirteen Different Soil Conditions. Sci. Total Environ. 2016, 544, 369.10.1016/j.scitotenv.2015.11.085. PubMed DOI
Klement A.; Kodešová R.; Golovko O.; Fér M.; Nikodem A.; Kočárek M.; Grabic R. Uptake, Translocation and Transformation of Three Pharmaceuticals in Green Pea Plants. J. Hydrol. Hydromech. 2020, 68, 1.10.2478/johh-2020-0001. DOI
Montemurro N.; Postigo C.; Lonigro A.; Perez S.; Barceló D. Development and Validation of an Analytical Method Based on Liquid Chromatography–Tandem Mass Spectrometry Detection for the Simultaneous Determination of 13 Relevant Wastewater-Derived Contaminants in Lettuce. Anal. Bioanal. Chem. 2017, 409, 5375.10.1007/s00216-017-0363-1. PubMed DOI
Goldstein M.; Shenker M.; Chefetz B. Insights into the Uptake Processes of Wastewater-Borne Pharmaceuticals by Vegetables. Environ. Sci. Technol. 2014, 48, 5593.10.1021/es5008615. PubMed DOI
Brunetti G.; Šimůnek J.; Glöckler D.; Stumpp C. Handling model complexity with parsimony: Numerical analysis of the nitrogen turnover in a controlled aquifer model setup. J. Hydrol. 2020, 584, 124681.10.1016/j.jhydrol.2020.124681. DOI
Brunetti G.; Kodešová R.; Šimůnek J. Modeling the Translocation and Transformation of Chemicals in the Soil-Plant Continuum: A Dynamic Plant Uptake Module for the HYDRUS Model. Water Resour. Res. 2019, 55, 8967.10.1029/2019WR025432. DOI
Šimůnek J.; van Genuchten M. T.; Šejna M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zone J. 2016, 15, 1–25. 10.2136/vzj2016.04.0033. DOI
Trapp S. Fruit Tree Model for Uptake of Organic Compounds from Soil and Air. SAR QSAR Environ. Res. 2007, 18, 367–387. 10.1080/10629360701303693. PubMed DOI
Schneider C. A.; Rasband W. S.; Eliceiri K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. 10.1038/nmeth.2089. PubMed DOI PMC
van Dam J. C.; Stricker J. N. M.; Droogers P. Inverse Method to Determine Soil Hydraulic Functions from Multistep Outflow Experiments. Soil Sci. Soc. Am. J. 1994, 58, 647–652. 10.2136/sssaj1994.03615995005800030002x. DOI
METER Group Inc. USA . EC-5 Moisture Sensor, User Manual; Decagon Devices, Inc.: 2018.
METER Group Inc. USA . T5/T5X Pressure Transducer Tensiometer, User Manual Version 8/2018; METER Group: 2018.
Schmidtová Z.; Kodešová R.; Grabicová K.; Kočárek M.; Fér M.; Švecová H.; Klement A.; Nikodem A.; Grabic R. Competitive and Synergic Sorption of Carbamazepine, Citalopram, Clindamycin, Fexofenadine, Irbesartan and Sulfamethoxazole in Seven Soils. J. Contam. Hydrol. 2020, 234, 103680.10.1016/j.jconhyd.2020.103680. PubMed DOI
Kodešová R.; Chroňáková A.; Grabicová K.; Kočárek M.; Schmidtová Z.; Frková Z.; Vojs Staňová A.; Nikodem A.; Klement A.; Fér M.; Grabic R. How Microbial Community Composition, Sorption and Simultaneous Application of Six Pharmaceuticals Affect Their Dissipation in Soils. Sci. Total Environ. 2020, 764, 141134.10.1016/j.scitotenv.2020.141134. PubMed DOI
Golovko O.; Koba O.; Kodesova R.; Fedorova G.; Kumar V.; Grabic R. Development of Fast and Robust Multiresidual LC-MS/MS Method for Determination of Pharmaceuticals in Soils. Environ. Sci. Pollut. Res. 2016, 23, 14068–14077. 10.1007/s11356-016-6487-6. PubMed DOI
Grabicova K.; Vojs Staňová A.; Koba Ucun O.; Borik A.; Randak T.; Grabic R. Development of a Robust Extraction Procedure for the HPLC-ESI-HRPS Determination of Multi-Residual Pharmaceuticals in Biota Samples. Anal. Chim. Acta 2018, 1022, 53.10.1016/j.aca.2018.04.011. PubMed DOI
Trapp S. Fruit Tree Model for Uptake of Organic Compounds from Soil and Air. SAR QSAR Environ. Res. 2007, 18, 367.10.1080/10629360701303693. PubMed DOI
van Genuchten M. T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. 10.2136/sssaj1980.03615995004400050002x. DOI
Feddes R. A.; Kowalik P. J.; Zaradny H.. Simulation of Field Water Use and Crop Yield .; PUDOC: Wageningen, 1978.
Šimůnek J.; Hopmans J. W. Modeling Compensated Root Water and Nutrient Uptake. Ecol. Modell. 2009, 220, 505.10.1016/j.ecolmodel.2008.11.004. DOI
Durner W.; Jansen U.; Iden S. C. Effective Hydraulic Properties of Layered Soils at the Lysimeter Scale Determined by Inverse Modelling. Eur. J. Soil Sci. 2008, 59, 114–124. 10.1111/j.1365-2389.2007.00972.x. DOI
Feroz F.; Hobson M. P.; Bridges M. MultiNest: An Efficient and Robust Bayesian Inference Tool for Cosmology and Particle Physics. Mon. Not. R. Astron. Soc. 2009, 398, 1601–1614. 10.1111/j.1365-2966.2009.14548.x. DOI
Brunetti G.; Šimůnek J.; Glöckler D.; Stumpp C. Handling Model Complexity with Parsimony: Numerical Analysis of the Nitrogen Turnover in a Controlled Aquifer Model Setup. J. Hydrol. 2020, 584, 124681.10.1016/j.jhydrol.2020.124681. DOI
Brunetti G.; Papagrigoriou I.-A.; Stumpp C. Disentangling Model Complexity in Green Roof Hydrological Analysis: A Bayesian Perspective. Water Res. 2020, 182, 115973.10.1016/j.watres.2020.115973. PubMed DOI
Liu P.; Elshall A. S.; Ye M.; Beerli P.; Zeng X.; Lu D.; Tao Y. Evaluating Marginal Likelihood with Thermodynamic Integration Method and Comparison with Several Other Numerical Methods. Water Resour. Res. 2016, 52, 734–758. 10.1002/2014WR016718. DOI
Elsheikh A. H.; Wheeler M. F.; Hoteit I. Nested Sampling Algorithm for Subsurface Flow Model Selection, Uncertainty Quantification, and Nonlinear Calibration. Water Resour. Res. 2013, 49, 8383–8399. 10.1002/2012WR013406. DOI
Skilling J. Nested Sampling for General Bayesian Computation. Bayesian Anal. 2006, 1, 833.10.1214/06-BA127. DOI
Wesseling J.; Elbers J.; Kabat P.; Van den Broek B.. SWAP 1993: Instructions for Input; Landbouwuniversiteit: Internal Note, Winand Staring Centre. Wageningen: 1991.
Tarantola S.; Gatelli D.; Mara T. A. Random Balance Designs for the Estimation of First Order Global Sensitivity Indices. Reliab. Eng. Syst. Saf. 2006, 91, 717–727. 10.1016/j.ress.2005.06.003. DOI
Tissot J. Y.; Prieur C.. Bias Correction for the Estimation of Sensitivity Indices Based on Random Balance Designs. In Reliability Engineering and System Safety; Elsevier, 2012; Vol. 107, pp. 205–213. 10.1016/j.ress.2012.06.010. DOI
Saltelli A.; Tarantola S.; Chan K. P.-S. A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics 1999, 41, 39–56. 10.2307/1270993. DOI
Satterthwaite F. E. Random Balance Experimentation. Technometrics 1959, 1, 111.10.1080/00401706.1959.10489853. DOI
Saltelli A.; Tarantola S.. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models; Wiley: 2004, 232.
Gelman A.; Carlin J. B.; Stern H. S.; Rubin D. B.. Bayesian Data Analysis; Third Edition. CRC Press: 2004. 10.1186/1754-1611-9-2. DOI
Lu J.; Zhang Q.; Werner A. D.; Li Y.; Jiang S.; Tan Z.. Root-Induced Changes of Soil Hydraulic Properties – A Review. J. Hydrol. 2020, 589, 125203. 10.1016/j.jhydrol.2020.125203. DOI
Gredelj A.; Polesel F.; Trapp S. Model-Based Analysis of the Uptake of Perfluoroalkyl Acids (PFAAs) from Soil into Plants. Chemosphere 2020, 244, 125534.10.1016/j.chemosphere.2019.125534. PubMed DOI
Li H.; Sheng G.; Chiou C. T.; Xu O. Relation of Organic Contaminant Equilibrium Sorption and Kinetic Uptake in Plants. Environ. Sci. Technol. 2005, 39, 4864.10.1021/es050424z. PubMed DOI
Dettenmaier E. M.; Doucette W. J.; Bugbee B. Chemical Hydrophobicity and Uptake by Plant Roots. Environ. Sci. Technol. 2009, 43, 324.10.1021/es801751x. PubMed DOI
Collins C.; Fryer M.; Grosso A. Plant Uptake of Non-Ionic Organic Chemicals. Environ. Sci. Technol. 2006, 40, 45.10.1021/es0508166. PubMed DOI
Zhang J.; Zhao W.; Pan J.; Qiu L.; Zhu Y. Tissue-Dependent Distribution and Accumulation of Chlorobenzenes by Vegetables in Urban Area. Environ. Int. 2005, 31, 855.10.1016/j.envint.2005.05.034. PubMed DOI
Legind C. N.; Rein A.; Serre J.; Brochier V.; Haudin C. S.; Cambier P.; Houot S.; Trapp S. Simultaneous Simulations of Uptake in Plants and Leaching to Groundwater of Cadmium and Lead for Arable Land Amended with Compost or Farmyard Manure. PLoS One 2012, 7, e4700210.1371/journal.pone.0047002. PubMed DOI PMC
Honti M.; Hahn S.; Hennecke D.; Junker T.; Shrestha P.; Fenner K. Bridging across OECD 308 and 309 Data in Search of a Robust Biotransformation Indicator. Environ. Sci. Technol. 2016, 50, 6865.10.1021/acs.est.6b01097. PubMed DOI
Honti M.; Fenner K. Deriving Persistence Indicators from Regulatory Water-Sediment Studies - Opportunities and Limitations in OECD 308 Data. Environ. Sci. Technol. 2015, 49, 5879.10.1021/acs.est.5b00788. PubMed DOI
Brock A. L.; Rein A.; Polesel F.; Nowak K. M.; Kästner M.; Trapp S. Microbial Turnover of Glyphosate to Biomass: Utilization as Nutrient Source and Formation of AMPA and Biogenic NER in an OECD 308 Test. Environ. Sci. Technol. 2019, 53, 5838.10.1021/acs.est.9b01259. PubMed DOI
Ajami N. K.; Gu C. Complexity in Microbial Metabolic Processes in Soil Nitrogen Modeling: A Case for Model Averaging. Stoch. Environ. Res. Risk Assess. 2010, 24, 831.10.1007/s00477-010-0381-4. DOI
Mai T. H.; Schnepf A.; Vereecken H.; Vanderborght J. Continuum Multiscale Model of Root Water and Nutrient Uptake from Soil with Explicit Consideration of the 3D Root Architecture and the Rhizosphere Gradients. Plant Soil 2019, 439, 273.10.1007/s11104-018-3890-4. DOI
Delli Compagni R.; Gabrielli M.; Polesel F.; Turolla A.; Trapp S.; Vezzaro L.; Antonelli M. Risk Assessment of Contaminants of Emerging Concern in the Context of Wastewater Reuse for Irrigation: An Integrated Modelling Approach. Chemosphere 2020, 242, 125185.10.1016/j.chemosphere.2019.125185. PubMed DOI
LC-HRMS method for study of pharmaceutical uptake in plants: effect of pH under aeroponic condition