Selective accumulation of pharmaceutical residues from 6 different soils by plants: a comparative study on onion, radish, and spinach
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
17-08937S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000845
European Structural and Investment Funds
QK21020080
Ministerstvo Zemědělství České Republiky
PubMed
36869956
PubMed Central
PMC10119051
DOI
10.1007/s11356-023-26102-5
PII: 10.1007/s11356-023-26102-5
Knihovny.cz E-zdroje
- Klíčová slova
- Metabolism, Pharmaceutical accumulation, Pharmaceuticals, Plant-dependent transformation of pharmaceuticals, Plants, Root uptake, Soils, Translocation of pharmaceuticals in plant,
- MeSH
- česneky MeSH
- klindamycin metabolismus MeSH
- látky znečišťující půdu * analýza MeSH
- léčivé přípravky metabolismus MeSH
- půda chemie MeSH
- Raphanus * metabolismus MeSH
- rostliny metabolismus MeSH
- Spinacia oleracea metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- klindamycin MeSH
- látky znečišťující půdu * MeSH
- léčivé přípravky MeSH
- půda MeSH
The accumulation of six pharmaceuticals of different therapeutic uses has been thoroughly investigated and compared between onion, spinach, and radish plants grown in six soil types. While neutral molecules (e.g., carbamazepine (CAR) and some of its metabolites) were efficiently accumulated and easily translocated to the plant leaves (onion > radish > spinach), the same for ionic (both anionic and cationic) molecules seems to be minor to moderate. The maximum accumulation of CAR crosses 38,000 (onion), 42,000 (radish), and 7000 (spinach) ng g-1 (dry weight) respectively, in which the most majority of them happened within the plant leaves. Among the metabolites, the accumulation of carbamazepine 10,11-epoxide (EPC - a primary CAR metabolite) was approximately 19,000 (onion), 7000 (radish), and 6000 (spinach) ng g-1 (dry weight) respectively. This trend was considerably similar even when all these pharmaceuticals applied together. The accumulation of most other molecules (e.g., citalopram, clindamycin, clindamycin sulfoxide, fexofenadine, irbesartan, and sulfamethoxazole) was restricted to plant roots, except for certain cases (e.g., clindamycin and clindamycin sulfoxide in onion leaves). Our results clearly demonstrated the potential role of this accumulation process on the entrance of pharmaceuticals/metabolites into the food chain, which eventually becomes a threat to associated living biota.
Zobrazit více v PubMed
Akenga P, Gachanja A, Fitzsimons MF, Tappin A, Comber S. Uptake, accumulation and impact of antiretroviral and antiviral pharmaceutical compounds in lettuce. Sci Total Environ. 2021;766:144499. PubMed
Barreales-Suárez S, Azoulay S, Bello-López MÁ, Fernández-Torres R. Uptake study in Juncus sp. and Salicornia europaea of six pharmaceuticals by liquid chromatography quadrupole time-of-flight mass spectrometry. Chemosphere. 2021;266:128995. PubMed
Beltrán EM, Fernández-Torija C, Pablos MV, Porcel MÁ, García-Hortigüela P, González-Doncel M. The effect of PFOs on the uptake and translocation of emerging contaminants by crops cultivated under soil and soilless conditions. Ecotoxicol Environ Saf. 2021;215:112103. PubMed
Ben Mordechay E, Mordehay V, Tarchitzky J, Chefetz B. Fate of contaminants of emerging concern in the reclaimed wastewater-soil-plant continuum. Sci Total Environ. 2022;822:153574. PubMed
Biel-Maeso M, Corada-Fernández C, Lara-Martín PA. Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environ Pollut. 2018;235:312–321. PubMed
Biel-Maeso M, González-González C, Lara-Martín PA, Corada-Fernández C. Sorption and degradation of contaminants of emerging concern in soils under aerobic and anaerobic conditions. Sci Total Environ. 2019;666:662–671. PubMed
Brunetti G, Kodešová R, Švecová H, Fér M, Nikodem A, Klement A, Grabic R, Šimůnek J. On the use of mechanistic soil–plant uptake models: a comprehensive experimental and numerical analysis on the translocation of carbamazepine in green pea plants. Environ Sci Technol. 2021;55:2991–3000. PubMed PMC
Brunetti G, Kodešová R, Švecová H, Fér M, Nikodem A, Klement A, Grabic R, Šimůnek J. A novel multiscale biophysical model to predict the fate of ionizable compounds in the soil-plant continuum. J Hazard Mater. 2022;423:127008. PubMed
Bueno MJM, Valverde MG, Gómez-Ramos MM, Andújar JAS, Barceló D, Fernández-Alba AR. Fate, modeling, and human health risk of organic contaminants present in tomato plants irrigated with reclaimed water under real-world field conditions. Sci Total Environ. 2022;806:150909. PubMed
Christou A, Papadavid G, Dalias P, Fotopoulos V, Michael C, Bayona JM, Piña B, Fatta-Kassinos D. Ranking of crop plants according to their potential to uptake and accumulate contaminants of emerging concern. Environ Res. 2019;170:422–432. PubMed
Chuang Y-H, Liu C-H, Sallach JB, Hammerschmidt R, Zhang W, Boyd SA, Li H. Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. Environ Int. 2019;131:104976. PubMed
Collins C, Fryer M, Grosso A. Plant uptake of non-ionic organic chemicals. Environ Sci Technol. 2006;40:45–52. PubMed
Collins CD, Martin I, Doucette W. Plant uptake of xenobiotics. In: Schröder P, Collins CD, editors. Organic xenobiotics and plants: from mode of action to ecophysiology. Netherlands: Springer; 2011. pp. 3–16.
Diez MC. Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr. 2010;10:244–267.
Dodgen LK, Ueda A, Wu X, Parker DR, Gan J. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs. Environ Pollut. 2015;198:144–153. PubMed PMC
Fatta-Kassinos D, Cytryn E, Donner E, Zhang T. Challenges related to antimicrobial resistance in the framework of urban wastewater reuse. Water Res. 2020;170:115308. PubMed
Frková Z, Vystavna Y, Koubová A, Kotas P, Grabicová K, Grabic R, Kodešová R, Chroňáková A. Microbial responses to selected pharmaceuticals in agricultural soils: microcosm study on the roles of soil, treatment and time. Soil Biol Biochem. 2020;149:107924.
García MG, Fernández-López C. Behavior of the uptake of ibuprofen in five varieties of horticultural crops irrigated with regenerated water. Bull Environ Contam Toxicol. 2022;108:253–259. PubMed
Goldstein M, Shenker M, Chefetz B. Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables. Environ Sci Technol. 2014;48:5593–5600. PubMed
Golovko O, Kumar V, Fedorova G, Randak T, Grabic R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere. 2014;111:418–426. PubMed
Golovko O, Kumar V, Fedorova G, Randak T, Grabic R. Removal and seasonal variability of selected analgesics/anti-inflammatory, anti-hypertensive/cardiovascular pharmaceuticals and UV filters in wastewater treatment plant. Environ Sci Pollut Res. 2014;21:7578–7585. PubMed
Golovko O, Koba O, Kodesova R, Fedorova G, Kumar V, Grabic R. Development of fast and robust multiresidual LC-MS/MS method for determination of pharmaceuticals in soils. Environ Sci Pollut Res. 2016;23:14068–14077. PubMed
Goñi-Urriza M, Capdepuy M, Arpin C, Raymond N, Caumette P, Quentin C. Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Appl Environ Microbiol. 2000;66:125. PubMed PMC
Grabicova K, Vojs Staňová A, Koba Ucun O, Borik A, Randak T, Grabic R. Development of a robust extraction procedure for the HPLC-ESI-HRPS determination of multi-residual pharmaceuticals in biota samples. Anal Chim Acta. 2018;1022:53–60. PubMed
Gworek B, Kijeńska M, Wrzosek J, Graniewska M. Pharmaceuticals in the soil and plant environment: a review. Water Air Soil Pollut. 2021;232:145.
Iwane T, Urase T, Yamamoto K. Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci Technol. 2001;43:91–99. PubMed
Keerthanan S, Jayasinghe C, Biswas JK, Vithanage M. Pharmaceutical and personal care products (PPCPs) in the environment plant uptake, translocation, bioaccumulation, and human health risks. Crit Rev Environ Sci Technol. 2021;51:1221–1258.
Khalaf DM, Cruzeiro C, Schröder P. Removal of tramadol from water using Typha angustifolia and Hordeum vulgare as biological models Possible interaction with other pollutants in short-term uptake experiments. Sci Total Environ. 2022;809:151164. PubMed
Klampfl CW. Metabolization of pharmaceuticals by plants after uptake from water and soil: a review. TrAC, Trends Anal Chem. 2019;111:13–26.
Klement A, Kodešová R, Bauerová M, Golovko O, Kočárek M, Fér M, Koba O, Nikodem A, Grabic R. Sorption of citalopram, irbesartan and fexofenadine in soils: estimation of sorption coefficients from soil properties. Chemosphere. 2018;195:615–623. PubMed
Klement A, Kodešová R, Golovko O, Fér M, Nikodem A, Kočárek M, Grabic R. Uptake, translocation and transformation of three pharmaceuticals in green pea plants. J Hydrol Hydromech. 2020;68:1–11.
Koba O, Golovko O, Kodešová R, Klement A, Grabic R. Transformation of atenolol, metoprolol, and carbamazepine in soils: the identification, quantification, and stability of the transformation products and further implications for the environment. Environ Pollut. 2016;218:574–585. PubMed
Koba O, Golovko O, Kodešová R, Fér M, Grabic R. Antibiotics degradation in soil: a case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products. Environ Pollut. 2017;220:1251–1263. PubMed
Kodešová R, Grabic R, Kočárek M, Klement A, Golovko O, Fér M, Nikodem A, Jakšík O. Pharmaceuticals’ sorptions relative to properties of thirteen different soils. Sci Total Environ. 2015;511:435–443. PubMed
Kodešová R, Kočárek M, Klement A, Golovko O, Koba O, Fér M, Nikodem A, Vondráčková L, Jakšík O, Grabic R. An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. Sci Total Environ. 2016;544:369–381. PubMed
Kodešová R, Klement A, Golovko O, Fér M, Kočárek M, Nikodem A, Grabic R. Soil influences on uptake and transfer of pharmaceuticals from sewage sludge amended soils to spinach. J Environ Manage. 2019;250:109407. PubMed
Kodešová R, Klement A, Golovko O, Fér M, Nikodem A, Kočárek M, Grabic R. Root uptake of atenolol, sulfamethoxazole and carbamazepine, and their transformation in three soils and four plants. Environ Sci Pollut Res. 2019;26:9876–9891. PubMed
Kodešová R, Chroňáková A, Grabicová K, Kočárek M, Schmidtová Z, Frková Z, Vojs Staňová A, Nikodem A, Klement A, Fér M, Grabic R. How microbial community composition, sorption and simultaneous application of six pharmaceuticals affect their dissipation in soils. Sci Total Environ. 2020;746:141134. PubMed
Kreuzig R, Haller-Jans J, Bischoff C, Leppin J, Germer J, Mohr M, Bliedung A, Dockhorn T. Reclaimed water driven lettuce cultivation in a hydroponic system: the need of micropollutant removal by advanced wastewater treatment. Environ Sci Pollut Res. 2021;28:50052–50062. PubMed PMC
Kumar K, Gupta SC. A framework to predict uptake of trace organic compounds by plants. J Environ Qual. 2016;45:555–564. PubMed
Kümmerer K. Antibiotics in the aquatic environment – a review – part I. Chemosphere. 2009;75:417–434. PubMed
Kurade MB, Ha Y-H, Xiong J-Q, Govindwar SP, Jang M, Jeon B-H. Phytoremediation as a green biotechnology tool for emerging environmental pollution: a step forward towards sustainable rehabilitation of the environment. Chem Eng J. 2021;415:129040.
Leitão I, Martins LL, Carvalho L, Oliveira MC, Marques MM, Mourato MP. Acetaminophen induces an antioxidative response in lettuce plants. Plants. 2021;10:1152. PubMed PMC
Li Y, Chuang Y-H, Sallach JB, Zhang W, Boyd SA, Li H. Potential metabolism of pharmaceuticals in radish: comparison of in vivo and in vitro exposure. Environ Pollut. 2018;242:962–969. PubMed
Liang C, Zhang L, Nord NB, Carvalho PN, Bester K. Dose-dependent effects of acetate on the biodegradation of pharmaceuticals in moving bed biofilm reactors. Water Res. 2019;159:302–312. PubMed
Lonappan L, Rouissi T, Laadila MA, Brar SK, Hernandez Galan L, Verma M, Surampalli RY. Agro-industrial-produced laccase for degradation of diclofenac and identification of transformation products. ACS Sustain Chem Eng. 2017;5:5772–5781.
Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg RH, Schwesig D, Gawlik BM. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013;47:6475–6487. PubMed
Ma L, Liu Y, Zhang J, Yang Q, Li G, Zhang D. Impacts of irrigation water sources and geochemical conditions on vertical distribution of pharmaceutical and personal care products (PPCPs) in the vadose zone soils. Sci Total Environ. 2018;626:1148–1156. PubMed
Malchi T, Maor Y, Tadmor G, Shenker M, Chefetz B. Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ Sci Technol. 2014;48:9325–9333. PubMed
Meffe R, de Santiago-Martín A, Teijón G, Martínez Hernández V, López-Heras I, Nozal L, de Bustamante I. Pharmaceutical and transformation products during unplanned water reuse: insights into natural attenuation, plant uptake and human health impact under field conditions. Environ Int. 2021;157:106835. PubMed
Menacherry SPM, Aravind UK, Aravindakumar CT. Oxidative degradation of pharmaceutical waste, theophylline, from natural environment. Atmosphere. 2022;13:835.
Menacherry SPM, Kočárek M, Kacerova T, Kotíková Z, Kačer P, Kodešová R. The impact of initial concentration of selected pharmaceuticals on their early stage of dissipation in soils. J Soils Sediments. 2022;22:522–535.
Menachery SPM, Nguyen TP, Gopinathan P, Aravind UK, Aravindakumar CT. Exploring the mechanism of diphenylmethanol oxidation: a combined experimental and theoretical approach. Chem Phys. 2018;513:201–208.
Mezzelani M, Gorbi S, Regoli F. Pharmaceuticals in the aquatic environments: evidence of emerged threat and future challenges for marine organisms. Mar Environ Res. 2018;140:41–60. PubMed
Miller EL, Nason SL, Karthikeyan KG, Pedersen JA. Root uptake of pharmaceuticals and personal care product ingredients. Environ Sci Technol. 2016;50:525–541. PubMed
Papageorgiou M, Kosma C, Lambropoulou D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci Total Environ. 2016;543:547–569. PubMed
Papaioannou D, Koukoulakis PH, Lambropoulou D, Papageorgiou M, Kalavrouziotis IK. The dynamics of the pharmaceutical and personal care product interactive capacity under the effect of artificial enrichment of soil with heavy metals and of wastewater reuse. Sci Total Environ. 2019;662:537–546. PubMed
Pérez DJ, Doucette WJ, Moore MT. Contaminants of emerging concern (CECs) in Zea mays: uptake, translocation and distribution tissue patterns over the time and its relation with physicochemical properties and plant transpiration rate. Chemosphere. 2022;288:132480. PubMed
Poustie A, Yang Y, Verburg P, Pagilla K, Hanigan D. Reclaimed wastewater as a viable water source for agricultural irrigation: a review of food crop growth inhibition and promotion in the context of environmental change. Sci Total Environ. 2020;739:139756. PubMed
Ravichandran MK, Philip L. Insight into the uptake, fate and toxic effects of pharmaceutical compounds in two wetland plant species through hydroponics studies. Chem Eng J. 2021;426:131078.
Rhodes G, Chuang Y-H, Hammerschmidt R, Zhang W, Boyd SA, Li H. Uptake of cephalexin by lettuce, celery, and radish from water. Chemosphere. 2021;263:127916. PubMed
Ribeiro AR, Sures B, Schmidt TC. Cephalosporin antibiotics in the aquatic environment: a critical review of occurrence, fate, ecotoxicity and removal technologies. Environ Pollut. 2018;241:1153–1166. PubMed
Riemenschneider C, Al-Raggad M, Moeder M, Seiwert B, Salameh E, Reemtsma T. Pharmaceuticals, their metabolites, and other polar pollutants in field-grown vegetables irrigated with treated municipal wastewater. J Agric Food Chem. 2016;64:5784–5792. PubMed
Schmidtová Z, Kodešová R, Grabicová K, Kočárek M, Fér M, Švecová H, Klement A, Nikodem A, Grabic R. Competitive and synergic sorption of carbamazepine, citalopram, clindamycin, fexofenadine, irbesartan and sulfamethoxazole in seven soils. J Contam Hydrol. 2020;234:103680. PubMed
Shen G, Zhang Y, Hu S, Zhang H, Yuan Z, Zhang W. Adsorption and degradation of sulfadiazine and sulfamethoxazole in an agricultural soil system under an anaerobic condition: kinetics and environmental risks. Chemosphere. 2018;194:266–274. PubMed
Sossey Alaoui K, Tychon B, Joachim S, Geffard A, Nott K, Ronkart S, Porcher J-M, Beaudouin R, Robert C, Fauconnier M-L, Saive M. Toxic effects of a mixture of five pharmaceutical drugs assessed using Fontinalis antipyretica Hedw. Ecotoxicol Environ Saf. 2021;225:112727. PubMed
Sreekanth R, Menachery SPM, Aravind UK, Marignier J-L, Belloni J, Aravindakumar CT. Oxidation reactions of hydroxy naphthoquinones: mechanistic investigation by LC-Q-TOF-MS analysis. Int J Radiat Biol. 2014;90:495–502. PubMed
Styrishave B, Halling-Sørensen B, Ingerslev F. Environmental risk assessment of three selective serotonin reuptake inhibitors in the aquatic environment: a case study including a cocktail scenario. Environ Toxicol Chem. 2011;30:254–261. PubMed
Sunil Paul MM, Aravind UK, Pramod G, Saha A, Aravindakumar CT. Hydroxyl radical induced oxidation of theophylline in water: a kinetic and mechanistic study. Org Biomol Chem. 2014;12:5611–5620. PubMed
Thiele-Bruhn S, Beck I-C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere. 2005;59:457–465. PubMed
Watkinson AJ, Micalizzi GB, Graham GM, Bates JB, Costanzo SD. Antibiotic-resistant Escherichia coli in wastewaters, surface waters, and oysters from an urban riverine system. Appl Environ Microbiol. 2007;73:5667. PubMed PMC
Wu C, Spongberg AL, Witter JD, Fang M, Czajkowski KP. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ Sci Technol. 2010;44:6157–6161. PubMed
Wu M, Xiang J, Que C, Chen F, Xu G. Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China. Chemosphere. 2015;138:486–493. PubMed
Wu X, Fu Q, Gan J. Metabolism of pharmaceutical and personal care products by carrot cell cultures. Environ Pollut. 2016;211:141–147. PubMed
Xia K, Bhandari A, Das K, Pillar G. Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. J Environ Qual. 2005;34:91–104. PubMed
Yan C, Yang Y, Zhou J, Liu M, Nie M, Shi H, Gu L. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environ Pollut. 2013;175:22–29. PubMed
Zhang Y, Marrs CF, Simon C, Xi C. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci Total Environ. 2009;407:3702–3706. PubMed
Zhang T, Wu B, Sun N, Ye Y, Chen H. Sorption and degradation of wastewater-associated pharmaceuticals and personal care products in agricultural soils and sediment. Water Sci Technol. 2013;68:991–998. PubMed
Zheng W, Guo M. Soil–plant transfer of pharmaceuticals and personal care products. Curr Pollut Rep. 2021;7:510–523.