Pharmaceutical metabolite identification in lettuce (Lactuca sativa) and earthworms (Eisenia fetida) using liquid chromatography coupled to high-resolution mass spectrometry and in silico spectral library

. 2024 Nov ; 416 (28) : 6291-6306. [epub] 20240910

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39251428

Grantová podpora
FCH-S-24-8591 Ministerstvo Školství, Mládeže a Tělovýchovy
Shimadzu Lab4u Shimadzu Europa GmbH

Odkazy

PubMed 39251428
PubMed Central PMC11541386
DOI 10.1007/s00216-024-05515-2
PII: 10.1007/s00216-024-05515-2
Knihovny.cz E-zdroje

Pharmaceuticals released into the aquatic and soil environments can be absorbed by plants and soil organisms, potentially leading to the formation of unknown metabolites that may negatively affect these organisms or contaminate the food chain. The aim of this study was to identify pharmaceutical metabolites through a triplet approach for metabolite structure prediction (software-based predictions, literature review, and known common metabolic pathways), followed by generating in silico mass spectral libraries and applying various mass spectrometry modes for untargeted LC-qTOF analysis. Therefore, Eisenia fetida and Lactuca sativa were exposed to a pharmaceutical mixture (atenolol, enrofloxacin, erythromycin, ketoprofen, sulfametoxazole, tetracycline) under hydroponic and soil conditions at environmentally relevant concentrations. Samples collected at different time points were extracted using QuEChERS and analyzed with LC-qTOF in data-dependent (DDA) and data-independent (DIA) acquisition modes, applying both positive and negative electrospray ionization. The triplet approach for metabolite structure prediction yielded a total of 3762 pharmaceutical metabolites, and an in silico mass spectral library was created based on these predicted metabolites. This approach resulted in the identification of 26 statistically significant metabolites (p < 0.05), with DDA + and DDA - outperforming DIA modes by successfully detecting 56/67 sample type:metabolite combinations. Lettuce roots had the highest metabolite count (26), followed by leaves (6) and earthworms (2). Despite the lower metabolite count, earthworms showed the highest peak intensities, closely followed by roots, with leaves displaying the lowest intensities. Common metabolic reactions observed included hydroxylation, decarboxylation, acetylation, and glucosidation, with ketoprofen-related metabolites being the most prevalent, totaling 12 distinct metabolites. In conclusion, we developed a high-throughput workflow combining open-source software with LC-HRMS for identifying unknown metabolites across various sample types.

Zobrazit více v PubMed

Miller EL, Nason SL, Karthikeyan KG, Pedersen JA. Root uptake of pharmaceuticals and personal care product ingredients. Environ Sci Technol. 2016;50:525–41. PubMed

Wu C, Spongberg AL, Witter JD, Fang M, Czajkowski KP. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ Sci Technol. 2010;44:6157–61. PubMed

Carter LJ, Williams M, Böttcher C, Kookana RS. Uptake of pharmaceuticals influences plant development and affects nutrient and hormone homeostases. Environ Sci Technol. 2015;49:12509–18. PubMed

Riemenschneider C, Seiwert B, Moeder M, Schwarz D, Reemtsma T. Extensive transformation of the pharmaceutical carbamazepine following uptake into intact tomato plants. Environ Sci Technol. 2017;51:6100–9. PubMed

Tanoue R, Sato Y, Motoyama M, Nakagawa S, Shinohara R, Nomiyama K. Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J Agric Food Chem. 2012;60:10203–11. PubMed

Carter LJ, Garman CD, Ryan J, Dowle A, Bergström E, Thomas-Oates J, et al. Fate and uptake of pharmaceuticals in soil-earthworm systems. Environ Sci Technol. 2014;48:5955–63. PubMed PMC

Chuang Y-H, Liu C-H, Hammerschmidt R, Zhang W, Boyd SA, Li H. Metabolic demethylation and oxidation of caffeine during uptake by lettuce. J Agric Food Chem. 2018;66:7907–15. PubMed

Fu Q, Zhang J, Borchardt D, Schlenk D, Gan J. Direct conjugation of emerging contaminants in Arabidopsis : indication for an overlooked risk in plants? Environ Sci Technol. 2017;51:6071–81. PubMed

He Y, Langenhoff AAM, Sutton NB, Rijnaarts HHM, Blokland MH, Chen F, et al. Metabolism of ibuprofen by Phragmites australis: uptake and phytodegradation. Environ Sci Technol. 2017;51:4576–84. PubMed PMC

Riemenschneider C, Al-Raggad M, Moeder M, Seiwert B, Salameh E, Reemtsma T. Pharmaceuticals, their metabolites, and other polar pollutants in field-grown vegetables irrigated with treated municipal wastewater. J Agric Food Chem. 2016;64:5784–92. PubMed

Tadić Đ, Gramblicka M, Mistrik R, Bayona JM. Systematic identification of trimethoprim metabolites in lettuce. Anal Bioanal Chem. 2022;414:3121–35. PubMed PMC

Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, et al. Individual and mixture toxicity evaluation of three pharmaceuticals to the germination and growth of Lactuca sativa seeds. Sci Total Environ. 2019;673:102–9. PubMed

Akenga P, Gachanja A, Fitzsimons MF, Tappin A, Comber S. Uptake, accumulation and impact of antiretroviral and antiviral pharmaceutical compounds in lettuce. Sci Total Environ. 2021;766:144499. PubMed

Ceci L, Cavalera MA, Serrapica F, Di Francia A, Masucci F, Carelli G. Use of reclaimed urban wastewater for the production of hydroponic barley forage: water characteristics, feed quality and effects on health status and production of lactating cows. Front Vet Sci. 2023;10:1274466. PubMed PMC

Geng J, Liu X, Wang J, Li S. Accumulation and risk assessment of antibiotics in edible plants grown in contaminated farmlands: A review. Sci Total Environ. 2022;853:158616. PubMed

Keerthanan S, Jayasinghe C, Biswas JK, Vithanage M. Pharmaceutical and Personal Care Products (PPCPs) in the environment: Plant uptake, translocation, bioaccumulation, and human health risks. Crit Rev Environ Sci Technol. 2021;51:1221–58.

Srichamnong W, Kalambaheti N, Woskie S, Kongtip P, Sirivarasai J, Matthews KR. Occurrence of antibiotic-resistant bacteria on hydroponically grown butterhead lettuce (Lactucasativavarcapitata). Food Sci Nutr. 2021;9:1460–70. PubMed PMC

Mlynek F, Himmelsbach M, Buchberger W, Klampfl CW. A new analytical workflow using HPLC with drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry for the detection of drug-related metabolites in plants. Anal Bioanal Chem. 2020;412:1817–24. PubMed PMC

Madmon M, Zvuluni Y, Mordehay V, Hindi A, Malchi T, Drug E, et al. Pharmacokinetics of the recalcitrant drug lamotrigine: identification and distribution of metabolites in cucumber plants. Environ Sci Technol. 2023;57:20228–37. PubMed PMC

Emhofer L, Himmelsbach M, Buchberger W, Klampfl CW. High-performance liquid chromatography – mass spectrometry analysis of the parent drugs and their metabolites in extracts from cress ( Lepidium sativum ) grown hydroponically in water containing four non-steroidal anti-inflammatory drugs. J Chromatogr A. 2017;1491:137–44. PubMed

Marsik P, Sisa M, Lacina O, Motkova K, Langhansova L, Rezek J, et al. Metabolism of ibuprofen in higher plants: A model Arabidopsis thaliana cell suspension culture system. Environ Pollut. 2017;220:383–92. PubMed

Martínez-Piernas AB, Nahim-Granados S, Polo-López MI, Fernández-Ibáñez P, Murgolo S, Mascolo G, et al. Identification of transformation products of carbamazepine in lettuce crops irrigated with Ultraviolet-C treated water. Environ Pollut. 2019;247:1009–19. PubMed

Koba O, Golovko O, Kodešová R, Klement A, Grabic R. Transformation of atenolol, metoprolol, and carbamazepine in soils: The identification, quantification, and stability of the transformation products and further implications for the environment. Environ Pollut. 2016;218:574–85. PubMed

Xu Y, Wang N, Peng L, Li S, Liang C, Song K, et al. Free nitrous acid inhibits atenolol removal during the sidestream partial nitritation process through regulating microbial-induced metabolic types. Environ Sci Technol. 2022;56:11614–24. PubMed

Quaresma AV, Sousa BA, Silva KTS, Silva SQ, Werle AA, Afonso RJCF. Oxidative treatments for atenolol removal in water: Elucidation by mass spectrometry and toxicity evaluation of degradation products. Rapid Commun Mass Spectrom. 2019;33:303–13. PubMed

Toolaram AP, Menz J, Rastogi T, Leder C, Kümmerer K, Schneider M. Hazard screening of photo-transformation products from pharmaceuticals: Application to selective β1-blockers atenolol and metoprolol. Sci Total Environ. 2017;579:1769–80. PubMed

Xu Y, Radjenovic J, Yuan Z, Ni B-J. Biodegradation of atenolol by an enriched nitrifying sludge: Products and pathways. Chem Eng J. 2017;312:351–9.

Medana C, Calza P, Carbone F, Pelizzetti E, Hidaka H, Baiocchi C. Characterization of atenolol transformation products on light-activated TiO 2 surface by high-performance liquid chromatography/high-resolution mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:301–13. PubMed

Rusch M, Spielmeyer A, Zorn H, Hamscher G. Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Appl Microbiol Biotechnol. 2019;103:6933–48. PubMed

Morales-Gutiérrez FJ, Barbosa J, Barrón D. Metabolic study of enrofloxacin and metabolic profile modifications in broiler chicken tissues after drug administration. Food Chem. 2015;172:30–9. PubMed

Wetzstein HG, Schmeer N, Karl W. Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol. 1997;63:4272–81. PubMed PMC

Zhao C-Y, Ru S, Cui P, Qi X, Kurade MB, Patil SM, et al. Multiple metabolic pathways of enrofloxacin by Lolium perenne L.: Ecotoxicity, biodegradation, and key driven genes. Water Res. 2021;202:117413. PubMed

Chen Q, Zhang L, Han Y, Fang J, Wang H. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems. Environ Sci Pollut Res. 2020;27:28198–208. PubMed

Salgado R, Pereira VJ, Carvalho G, Soeiro R, Gaffney V, Almeida C, et al. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. J Hazard Mater. 2013;244–245:516–27. PubMed

Marco-Urrea E, Pérez-Trujillo M, Cruz-Morató C, Caminal G, Vicent T. White-rot fungus-mediated degradation of the analgesic ketoprofen and identification of intermediates by HPLC–DAD–MS and NMR. Chemosphere. 2010;78:474–81. PubMed

Mlynek F, Himmelsbach M, Buchberger W, Klampfl CW. A fast-screening approach for the tentative identification of drug-related metabolites from three non-steroidal anti-inflammatory drugs in hydroponically grown edible plants by HPLC-drift-tube-ion-mobility quadrupole time-of-flight mass spectrometry. Electrophoresis. 2021;42:482–9. PubMed PMC

Quintana J, Weiss S, Reemtsma T. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res. 2005;39:2654–64. PubMed

Wang L, Zheng Y, Zhou Y, Lu J, Chovelon J-M, Ji Y. Aquatic photolysis of ketoprofen generates products with photosensitizing activity and toxicity. Water Res. 2022;210:117982. PubMed

Menacherry SPM, Kodešová R, Švecová H, Klement A, Fér M, Nikodem A, et al. Selective accumulation of pharmaceutical residues from 6 different soils by plants: a comparative study on onion, radish, and spinach. Environ Sci Pollut Res. 2023;30:54160–76. PubMed PMC

Wang J, Gardinali PR. Identification of phase II pharmaceutical metabolites in reclaimed water using high resolution benchtop Orbitrap mass spectrometry. Chemosphere. 2014;107:65–73. PubMed

Huynh K, Reinhold D. Metabolism of Sulfamethoxazole by the Model Plant Arabidopsisthaliana. Environ Sci Technol. 2019;53:4901–11. PubMed

Dudley S, Sun C, Jiang J, Gan J. Metabolism of sulfamethoxazole in Arabidopsis thaliana cells and cucumber seedlings. Environ Pollut. 2018;242:1748–57. PubMed

García-Galán MJ, Arashiro L, Santos LHMLM, Insa S, Rodríguez-Mozaz S, Barceló D, et al. Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems. J Hazard Mater. 2020;390:121771. PubMed

Kurade MB, Xiong J-Q, Govindwar SP, Roh H-S, Saratale GD, Jeon B-H, et al. Uptake and biodegradation of emerging contaminant sulfamethoxazole from aqueous phase using Ipomoea aquatica. Chemosphere. 2019;225:696–704. PubMed

Sengupta A, Sarkar D, Das P, Panja S, Parikh C, Ramanathan D, et al. Tetracycline uptake and metabolism by vetiver grass (Chrysopogon zizanioides L. Nash). Environ Sci Pollut Res. 2016;23:24880–9. PubMed

Arslan Topal EI. Uptake of tetracycline and metabolites in Phragmites australis exposed to treated poultry slaughterhouse wastewaters. Ecol Eng. 2015;83:233–8.

Bhatt P, Jeon C-H, Kim W. Tetracycline bioremediation using the novel Serratia marcescens strain WW1 isolated from a wastewater treatment plant. Chemosphere. 2022;298:134344. PubMed

Pan M, Lyu T, Zhan L, Matamoros V, Angelidaki I, Cooper M, et al. Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism. Water Res. 2021;190:116735. PubMed

Wishart DS, Tian S, Allen D, Oler E, Peters H, Lui VW, et al. BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. Nucleic Acids Res. 2022;50:W115-23. PubMed PMC

de Bruyn KC, Šícho M, Mazzolari A, Kirchmair J. GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics. Chem Res Toxicol. 2021;34:286–99. PubMed PMC

Wicker J, Lorsbach T, Gütlein M, Schmid E, Latino D, Kramer S, et al. enviPath – The environmental contaminant biotransformation pathway resource. Nucleic Acids Res. 2016;44:D502–8. PubMed PMC

Jacobs PL, Ridder L, Ruijken M, Rosing H, Jager NG, Beijnen JH, et al. Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC–HRMS and untargeted data processing. Bioanalysis. 2013;5:2115–28. PubMed

Pietrini F, Di Baccio D, Aceña J, Pérez S, Barceló D, Zacchini M. Ibuprofen exposure in Lemna gibba L.: Evaluation of growth and phytotoxic indicators, detection of ibuprofen and identification of its metabolites in plant and in the medium. J Hazard Mater. 2015;300:189–93. PubMed

Lahti M, Brozinski J, Jylhä A, Kronberg L, Oikari A. Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout. Environ Toxicol Chem. 2011;30:1403–11. PubMed

Stuchlíková Raisová L, Podlipná R, Szotáková B, Syslová E, Skálová L. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants. Ecotoxicol Environ Saf. 2017;141:37–42. PubMed

Sauvêtre A, May R, Harpaintner R, Poschenrieder C, Schröder P. Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis. J Hazard Mater. 2018;342:85–95. PubMed

Huber C, Bartha B, Harpaintner R, Schröder P. Metabolism of acetaminophen (paracetamol) in plants—two independent pathways result in the formation of a glutathione and a glucose conjugate. Environ Sci Pollut Res. 2009;16:206. PubMed

Chen F, Huber C, May R, Schröder P. Metabolism of oxybenzone in a hairy root culture: Perspectives for phytoremediation of a widely used sunscreen agent. J Hazard Mater. 2016;306:230–6. PubMed

Bartha B, Huber C, Schröder P. Uptake and metabolism of diclofenac in Typha latifolia – How plants cope with human pharmaceutical pollution. Plant Sci. 2014;227:12–20. PubMed

Wang F, Allen D, Tian S, Oler E, Gautam V, Greiner R, et al. CFM-ID 4.0 – a web server for accurate MS-based metabolite identification. Nucleic Acids Res. 2022;50:W165-74. PubMed PMC

Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, et al. A lipidome atlas in MS-DIAL 4. Nat Biotechnol. 2020;38:1159–63. PubMed

Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486-94. PubMed PMC

Mravcová L, Amrichová A, Navrkalová J, et al. Optimization and validation of multiresidual extraction methods for pharmaceuticals in soil, lettuce, and earthworms. Environ Sci Pollut Res. 2024;31:33120–40. 10.1007/s11356-024-33492-7. PubMed PMC

Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14:72. PubMed PMC

Godzien J, Alonso-Herranz V, Barbas C, Armitage EG. Controlling the quality of metabolomics data: new strategies to get the best out of the QC sample. Metabolomics. 2015;11:518–28.

Rodríguez-Coira J, Delgado-Dolset M, Obeso D, Dolores-Hernández M, Quintás G, Angulo S, et al. Troubleshooting in large-scale LC-ToF-MS metabolomics analysis: solving complex issues in big cohorts. Metabolites. 2019;9:247. PubMed PMC

Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83. PubMed

David A, Lange A, Abdul-Sada A, Tyler CR, Hill EM. Disruption of the prostaglandin metabolome and characterization of the pharmaceutical exposome in fish exposed to wastewater treatment works effluent as revealed by nanoflow-nanospray mass spectrometry-based metabolomics. Environ Sci Technol. 2017;51:616–24. PubMed

Fu Q, Scheidegger A, Laczko E, Hollender J. Metabolomic Profiling and Toxicokinetics Modeling to Assess the Effects of the Pharmaceutical Diclofenac in the Aquatic Invertebrate Hyalella azteca. Environ Sci Technol. 2021;55:7920–9. PubMed

Wang H, Li Z, Chen H, Jin J, Zhang P, Shen L, et al. Metabolomic analysis reveals the impact of ketoprofen on carbon and nitrogen metabolism in rice (Oryza sativa L.) seedling leaves. Environ Sci Pollut Res. 2022;30:21825–37. PubMed

Karpuzcu ME, Fairbairn D, Arnold WA, Barber BL, Kaufenberg E, Koskinen WC, et al. Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis. Environ Sci Processes Impacts. 2014;16:2390–9. PubMed

Papa E, Fick J, Lindberg R, Johansson M, Gramatica P, Andersson PL. Multivariate chemical mapping of antibiotics and identification of structurally representative substances. Environ Sci Technol. 2007;41:1653–61. PubMed

Agius JE, Kimble B, Govendir M, Rose K, Pollard C-L, Phalen DN. Pharmacokinetic profile of enrofloxacin and its metabolite ciprofloxacin in Asian house geckos (Hemidactylus frenatus) after single-dose oral administration of enrofloxacin. Vet Anim Sci. 2020;9:100116. PubMed PMC

Huynh K, Banach E, Reinhold D. Transformation, conjugation, and sequestration following the uptake of triclocarban by jalapeno pepper plants. J Agric Food Chem. 2018;66:4032–43. PubMed

Tian R, Zhang R, Uddin M, Qiao X, Chen J, Gu G. Uptake and metabolism of clarithromycin and sulfadiazine in lettuce. Environ Pollut. 2019;247:1134–42. PubMed

Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–8. PubMed

Guo J, Huan T. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem. 2020;92:8072–80. PubMed

Helbling DE, Hollender J, Kohler H-PE, Singer H, Fenner K. High-throughput identification of microbial transformation products of organic micropollutants. Environ Sci Technol. 2010;44:6621–7. PubMed

González de la Huebra MJ, Vincent U. Analysis of macrolide antibiotics by liquid chromatography. J Pharm Biomed Anal. 2005;39:376–98. PubMed

Tadić Đ, Gramblicka M, Mistrik R, Flores C, Piña B, Bayona JM. Elucidating biotransformation pathways of ofloxacin in lettuce (Lactuca sativa L). Environ Pollut. 2020;260:114002. PubMed

Li Y, Sallach JB, Zhang W, Boyd SA, Li H. Insight into the distribution of pharmaceuticals in soil-water-plant systems. Water Res. 2019;152:38–46. PubMed

Bigott Y, Khalaf DM, Schröder P, Schröder PM, Cruzeiro C. Uptake and translocation of pharmaceuticals in plants: principles and data analysis. In: Pérez Solsona S, Montemurro N, Chiron S, Barceló D, editors. Interaction and Fate of Pharmaceuticals in Soil-Crop Systems, vol. 103. The Handbook of Environmental Chemistry. Cham: Springer; 2020. 10.1007/698_2020_622.

Song W, Guo M. Residual Veterinary Pharmaceuticals in Animal Manures and Their Environmental Behaviors in Soils. Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment. Dordrecht: Springer; 2014. p. 23–52.

Kim K-R, Owens G, Kwon S-I, So K-H, Lee D-B, Ok YS. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut. 2011;214:163–74.

Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y, Yannarell AC, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual. 2009;38:1086–108. PubMed

Carvalho PN, Basto MCP, Almeida CMR, Brix H. A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res. 2014;21:11729–63. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...