GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32786543
PubMed Central
PMC7887798
DOI
10.1021/acs.chemrestox.0c00224
Knihovny.cz E-zdroje
- MeSH
- biotransformace * MeSH
- lidé MeSH
- molekulární struktura MeSH
- strojové učení * MeSH
- testy toxicity * MeSH
- xenobiotika chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- xenobiotika MeSH
Predicting the structures of metabolites formed in humans can provide advantageous insights for the development of drugs and other compounds. Here we present GLORYx, which integrates machine learning-based site of metabolism (SoM) prediction with reaction rule sets to predict and rank the structures of metabolites that could potentially be formed by phase 1 and/or phase 2 metabolism. GLORYx extends the approach from our previously developed tool GLORY, which predicted metabolite structures for cytochrome P450-mediated metabolism only. A robust approach to ranking the predicted metabolites is attained by using the SoM probabilities predicted by the FAME 3 machine learning models to score the predicted metabolites. On a manually curated test data set containing both phase 1 and phase 2 metabolites, GLORYx achieves a recall of 77% and an area under the receiver operating characteristic curve (AUC) of 0.79. Separate analysis of performance on a large amount of freely available phase 1 and phase 2 metabolite data indicates that achieving a meaningful ranking of predicted metabolites is more difficult for phase 2 than for phase 1 metabolites. GLORYx is freely available as a web server at https://nerdd.zbh.uni-hamburg.de/ and is also provided as a software package upon request. The data sets as well as all the reaction rules from this work are also made freely available.
Zobrazit více v PubMed
Kirchmair J.; Göller A. H.; Lang D.; Kunze J.; Testa B.; Wilson I. D.; Glen R. C.; Schneider G. (2015) Predicting Drug Metabolism: Experiment and/or Computation?. Nat. Rev. Drug Discovery 14 (6), 387–404. 10.1038/nrd4581. PubMed DOI
Pedretti A., Mazzolari A., Vistoli G., and Testa B. (2020) MetaQSAR Database, version MetaQSAR_05_2020.
Pedretti A.; Mazzolari A.; Vistoli G.; Testa B. (2018) MetaQSAR: An Integrated Database Engine to Manage and Analyze Metabolic Data. J. Med. Chem. 61 (3), 1019–1030. 10.1021/acs.jmedchem.7b01473. PubMed DOI
Testa B.; Pedretti A.; Vistoli G. (2012) Reactions and Enzymes in the Metabolism of Drugs and Other Xenobiotics. Drug Discovery Today 17 (11–12), 549–560. 10.1016/j.drudis.2012.01.017. PubMed DOI
Jancova P.; Anzenbacher P.; Anzenbacherova E. (2010) Phase II Drug Metabolizing Enzymes. Biomed. Pap. 154 (2), 103–116. 10.5507/bp.2010.017. PubMed DOI
Kirchmair J.; Williamson M. J.; Tyzack J. D.; Tan L.; Bond P. J.; Bender A.; Glen R. C. (2012) Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms. J. Chem. Inf. Model. 52 (3), 617–648. 10.1021/ci200542m. PubMed DOI PMC
Marchant C. A.; Briggs K. A.; Long A. (2008) In Silico Tools for Sharing Data and Knowledge on Toxicity and Metabolism: Derek for Windows, Meteor, and Vitic. Toxicol. Mech. Methods 18 (2–3), 177–187. 10.1080/15376510701857320. PubMed DOI
Mekenyan O. G.; Dimitrov S. D.; Pavlov T. S.; Veith G. D. (2004) A Systematic Approach to Simulating Metabolism in Computational Toxicology. I. The TIMES Heuristic Modelling Framework. Curr. Pharm. Des. 10 (11), 1273–1293. 10.2174/1381612043452596. PubMed DOI
Darvas F. (1987) Metabolexpert: An Expert System for Predicting Metabolism of Substances. In QSAR in Environmental Toxicology - II (Kaiser K. L., Ed.), pp 71–81, Springer, Dordrecht.
Ridder L.; Wagener M. (2008) SyGMa: Combining Expert Knowledge and Empirical Scoring in the Prediction of Metabolites. ChemMedChem 3 (5), 821–832. 10.1002/cmdc.200700312. PubMed DOI
(2001) MDL Metabolite Database, Elsevier, Amsterdam.
Djoumbou-Feunang Y.; Fiamoncini J.; Gil-de-la-Fuente A.; Greiner R.; Manach C.; Wishart D. S. (2019) BioTransformer: A Comprehensive Computational Tool for Small Molecule Metabolism Prediction and Metabolite Identification. J. Cheminf. 11 (1), 2.10.1186/s13321-018-0324-5. PubMed DOI PMC
Rudik A. V.; Bezhentsev V. M.; Dmitriev A. V.; Druzhilovskiy D. S.; Lagunin A. A.; Filimonov D. A.; Poroikov V. V. (2017) MetaTox: Web Application for Predicting Structure and Toxicity of Xenobiotics’ Metabolites. J. Chem. Inf. Model. 57 (4), 638–642. 10.1021/acs.jcim.6b00662. PubMed DOI
Rudik A.; Bezhentsev V.; Dmitriev A.; Lagunin A.; Filimonov D.; Poroikov V. (2019) Metatox - Web Application for Generation of Metabolic Pathways and Toxicity Estimation. J. Bioinf. Comput. Biol. 17 (1), 1940001.10.1142/S0219720019400018. PubMed DOI
de Bruyn Kops C.; Stork C.; Šícho M.; Kochev N.; Svozil D.; Jeliazkova N.; Kirchmair J. (2019) GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism. Front. Chem. 7, 402.10.3389/fchem.2019.00402. PubMed DOI PMC
Šícho M.; de Bruyn Kops C.; Stork C.; Svozil D.; Kirchmair J. (2017) FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity. J. Chem. Inf. Model. 57 (8), 1832–1846. 10.1021/acs.jcim.7b00250. PubMed DOI
Šícho M.; Stork C.; Mazzolari A.; de Bruyn Kops C.; Pedretti A.; Testa B.; Vistoli G.; Svozil D.; Kirchmair J. (2019) FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes. J. Chem. Inf. Model. 59 (8), 3400–3412. 10.1021/acs.jcim.9b00376. PubMed DOI
ADMET Predictor Metabolism Module, SimulationsPlus. Simulations-Plus.com/software/admetpredictor/metabolism/ (accessed 2020/05/07).
Tyzack J. D.; Hunt P. A.; Segall M. D. (2016) Predicting Regioselectivity and Lability of Cytochrome P450 Metabolism Using Quantum Mechanical Simulations. J. Chem. Inf. Model. 56 (11), 2180–2193. 10.1021/acs.jcim.6b00233. PubMed DOI
Cruciani G.; Carosati E.; De Boeck B.; Ethirajulu K.; Mackie C.; Howe T.; Vianello R. (2005) MetaSite: Understanding Metabolism in Human Cytochromes from the Perspective of the Chemist. J. Med. Chem. 48 (22), 6970–6979. 10.1021/jm050529c. PubMed DOI
DrugBank, version 5.1.4. https://www.drugbank.ca/ (accessed 2019/09/26).
Wishart D. S.; Feunang Y. D.; Guo A. C.; Lo E. J.; Marcu A.; Grant J. R.; Sajed T.; Johnson D.; Li C.; Sayeeda Z.; Assempour N.; Iynkkaran I.; Liu Y.; Maciejewski A.; Gale N.; Wilson A.; Chin L.; Cummings R.; Le D.; Pon A.; Knox C.; Wilson M. (2018) DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 46 (D1), D1074–D1082. 10.1093/nar/gkx1037. PubMed DOI PMC
MetXBioDB, version 1.0, https://bitbucket.org/djoumbou/biotransformer/src/master/ (accessed 2019/01/11).
Top 200 Brand Name Drugs by Retail Sales in 2018, The Njardarson Group at the University of Arizona, Tucson, AZ.https://njardarson.lab.arizona.edu/content/top-Pharmaceuticals-Poster (accessed 2019/09/12).
McGrath N. A.; Brichacek M.; Njardarson J. T. (2010) A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. J. Chem. Educ. 87 (12), 1348–1349. 10.1021/ed1003806. DOI
Gaulton A.; Hersey A.; Nowotka M.; Bento A. P.; Chambers J.; Mendez D.; Mutowo P.; Atkinson F.; Bellis L. J.; Cibrián-Uhalte E.; Davies M.; Dedman N.; Karlsson A.; Magariños M. P.; Overington J. P.; Papadatos G.; Smit I.; Leach A. R. (2017) The ChEMBL Database in 2017. Nucleic Acids Res. 45 (D1), D945–D954. 10.1093/nar/gkw1074. PubMed DOI PMC
ChEMBL Database. https://www.ebi.ac.uk/chembl/ (accessed 2020/02/21).
(2017) MarvinSketch, version 17.1.9, ChemAxon, Budapest, Hungary. http://www.chemaxon.com (accessed 2017/10/01).
(2018) RDKit: Open-Source Cheminformatics, version 2018.09.1.
Pedregosa F.; Varoquaux G.; Gramfort A.; Michel V.; Thirion B.; Grisel O.; Blondel M.; Prettenhofer P.; Weiss R.; Dubourg V.; Vanderplas J.; Passos A.; Cournapeau D.; Brucher M.; Perrot M.; Duchesnay E. (2011) Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
Scikit-Learn: Machine Learning in Python, version 0.20.1.
(2018) Molecular Operating Environment (MOE), version 2018.01, Chemical Computing Group, Montreal, QC, Canada.
SMIRKS - A Reaction Transform Language, Daylight, Laguna Niguel, CA. https://www.daylight.com/dayhtml/doc/theory/theory.smirks.html (accessed 2020/05/08).
SyGMa, version 1.1.0.
Allocati N.; Masulli M.; Di Ilio C.; Federici L. (2018) Glutathione Transferases: Substrates, Inhibitors and pro-Drugs in Cancer and Neurodegenerative Diseases. Oncogenesis 7 (1), 8.10.1038/s41389-017-0025-3. PubMed DOI PMC
van Bladeren P. J. (2000) Glutathione Conjugation as a Bioactivation Reaction. Chem.-Biol. Interact. 129 (1–2), 61–76. 10.1016/S0009-2797(00)00214-3. PubMed DOI
Awasthi Y. C. (2006) Toxicology of Glutathione Transferases, CRC Press, Boca Raton, FL.
Armstrong R. N. (1991) Glutathione S-Transferases: Reaction Mechanism, Structure, and Function. Chem. Res. Toxicol. 4 (2), 131–140. 10.1021/tx00020a001. PubMed DOI
Zhang Y.; den Braver-Sewradj S. P.; den Braver M. W.; Hiemstra S.; Vermeulen N. P. E.; van de Water B.; Commandeur J. N. M.; Vos J. C. (2018) Glutathione S-Transferase P1 Protects Against Amodiaquine Quinoneimines-Induced Cytotoxicity but Does Not Prevent Activation of Endoplasmic Reticulum Stress in HepG2 Cells. Front. Pharmacol. 9, 388.10.3389/fphar.2018.00388. PubMed DOI PMC
MacFaul P. A.; Morley A. D.; Crawford J. J. (2009) A Simple in Vitro Assay for Assessing the Reactivity of Nitrile Containing Compounds. Bioorg. Med. Chem. Lett. 19 (4), 1136–1138. 10.1016/j.bmcl.2008.12.105. PubMed DOI
Willighagen E. L.; Mayfield J. W.; Alvarsson J.; Berg A.; Carlsson L.; Jeliazkova N.; Kuhn S.; Pluskal T.; Rojas-Chertó M.; Spjuth O.; Torrance G.; Evelo C. T.; Guha R.; Steinbeck C. (2017) The Chemistry Development Kit (CDK) v2.0: Atom Typing, Depiction, Molecular Formulas, and Substructure Searching. J. Cheminf. 9 (1), 33.10.1186/s13321-017-0220-4. PubMed DOI PMC
Chemistry Development Kit, version 2.0.
Pedretti A., Mazzolari A., Vistoli G., and Testa B. (2018) MetaQSAR Database (snapshot from March 15, 2018).
Ambit-SMARTS Java Library, version 3.1.0.
Kochev N.; Avramova S.; Jeliazkova N. (2018) Ambit-SMIRKS: A Software Module for Reaction Representation, Reaction Search and Structure Transformation. J. Cheminf. 10 (1), 42.10.1186/s13321-018-0295-6. PubMed DOI PMC
Guengerich F. P. (2001) Common and Uncommon Cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity. Chem. Res. Toxicol. 14 (6), 611–650. 10.1021/tx0002583. PubMed DOI
Kirchmair J.; Howlett A.; Peironcely J. E.; Murrell D. S.; Williamson M. J.; Adams S. E.; Hankemeier T.; van Buren L.; Duchateau G.; Klaffke W.; Glen R. C. (2013) How Do Metabolites Differ from Their Parent Molecules and How Are They Excreted?. J. Chem. Inf. Model. 53 (2), 354–367. 10.1021/ci300487z. PubMed DOI
Judson P. N. (2014) Knowledge-Based Approaches for Predicting the Sites and Products of Metabolism. In Drug Metabolism Prediction; Kirchmair J., Ed.; Wiley-VCH, Weinheim, Germany; pp 293−318.
Evidence for widespread human exposure to food contact chemicals