GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism

. 2019 ; 7 () : 402. [epub] 20190612

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31249827

Computational prediction of xenobiotic metabolism can provide valuable information to guide the development of drugs, cosmetics, agrochemicals, and other chemical entities. We have previously developed FAME 2, an effective tool for predicting sites of metabolism (SoMs). In this work, we focus on the prediction of the chemical structures of metabolites, in particular metabolites of xenobiotics. To this end, we have developed a new tool, GLORY, which combines SoM prediction with FAME 2 and a new collection of rules for metabolic reactions mediated by the cytochrome P450 enzyme family. GLORY has two modes: MaxEfficiency and MaxCoverage. For MaxEfficiency mode, the use of predicted SoMs to restrict the locations in the molecule at which the reaction rules could be applied was explored. For MaxCoverage mode, the predicted SoM probabilities were instead used to develop a new scoring approach for the predicted metabolites. With this scoring approach, GLORY achieves a recall of 0.83 and can predict at least one known metabolite within the top three ranked positions for 76% of the molecules of a new, manually curated test set. GLORY is freely available as a web server at https://acm.zbh.uni-hamburg.de/glory/, and the datasets and reaction rules are provided in the Supplementary Material.

Zobrazit více v PubMed

Bell-Parikh L. C., Guengerich F. P. (1999). Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. J. Biol. Chem. 274, 23833–23840. 10.1074/jbc.274.34.23833 PubMed DOI

Cruciani G., Carosati E., De Boeck B., Ethirajulu K., Mackie C., Howe T., et al. . (2005). MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem. 48, 6970–6979. 10.1021/jm050529c PubMed DOI

Darvas F. (1987). Metabolexpert: an expert system for predicting metabolism of substances, in QSAR in Environmental Toxicology - II, ed Kaiser K. L. E. (Dordrecht: Springer; ), 71–81.

Di L. (2014). The role of drug metabolizing enzymes in clearance. Expert Opin Drug Metabol. Toxicol. 10, 379–393. 10.1517/17425255.2014.876006 PubMed DOI

Djoumbou-Feunang Y., Fiamoncini J., Gil-de-la-Fuente A., Greiner R., Manach C., Wishart D. S. (2019). BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J. Cheminform. 11:2. 10.1186/s13321-018-0324-5 PubMed DOI PMC

Guengerich F. P. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14, 611–650. 10.1021/tx0002583 PubMed DOI

Judson P. N. (2014). Knowledge-based approaches for predicting the sites and products of metabolism, in Drug Metabolism Prediction, ed Kirchmair J. Methods and Principles in Medicinal Chemistry (Weinheim: Wiley-VCH; ), 293–318.

Kirchmair J., Göller A. H., Lang D., Kunze J., Testa B., Wilson I. D. (2015). Predicting drug metabolism: experiment and/or computation? Nat. Rev. Drug Disc. 14, 387–404. 10.1038/nrd4581 PubMed DOI

Kirchmair J., Williamson M. J., Tyzack J. D., Tan L., Bond P. J., Bender A., et al. (2012). Computational prediction of metabolism: sites, products, S. A. R., P450 enzyme dynamics, and mechanisms. J. Chem. Inform. Model. 52, 617–48. 10.1021/ci200542m PubMed DOI PMC

Klopman G., Dimayuga M., Talafous J. (1994). META. 1. a program for the evaluation of metabolic transformation of chemicals. J. Chem. Inform. Comp. Sci. 34, 1320–1325. PubMed

Kochev N., Avramova S., Jeliazkova N. (2018). Ambit-SMIRKS: a software module for reaction representation, reaction search and structure transformation. J. Cheminform. 10:42. 10.1186/s13321-018-0295-6 PubMed DOI PMC

Marchant C. A., Briggs K. A., Long A. (2008). In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for Windows, Meteor, and Vitic. Toxicol. Mechanisms Methods. 18, 177–187. 10.1080/15376510701857320 PubMed DOI

Mekenyan O. G., Dimitrov S. D., Pavlov T. S., Veith G. D. (2004). A systematic approach to simulating metabolism in computational toxicology. I. the TIMES heuristic modelling framework. Curr. Pharmaceutical Design. 10, 1273–1293. 10.2174/1381612043452596 PubMed DOI

Olsen L., Montefiori M., Tran K. P., Jørgensen F. S. (2019). SMARTCyp 3.0: Enhanced cytochrome P450 site-of-metabolism prediction server. Bioinformatics. [Epub ahead of print]. 10.1093/bioinformatics/btz037 PubMed DOI

Patlewicz G., Jeliazkova N., Safford R. J, Worth A. P, Aleksiev B. (2008). An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ. Res. 19, 495–524. 10.1080/10629360802083871 PubMed DOI

Ridder L., Wagener M. (2008). SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. Chem. Med. Chem. 3, 821–832. 10.1002/cmdc.200700312 PubMed DOI

Rudik A., Dmitriev A., Lagunin A., Filimonov D., Poroikov V. (2015). SOMP: web server for in silico prediction of sites of metabolism for drug-like compounds. Bioinformatics 31, 2046–2048. 10.1093/bioinformatics/btv087 PubMed DOI

Rudik A. V., Bezhentsev V. M., Dmitriev A. V., Druzhilovskiy D. S., Lagunin A. A., Filimonov D. A., et al. . (2017). MetaTox: web application for predicting structure and toxicity of xenobiotics' metabolites. J. Chem. Inform. Model. 57, 638–642. 10.1021/acs.jcim.6b00662 PubMed DOI

Rydberg P., Gloriam D. E., Zaretzki J., Breneman C., Olsen L. (2010). SMARTCyp: a 2D method for prediction of cytochrome p450-mediated drug metabolism. ACS Med. Chem. Lett. 1, 96–100. 10.1021/ml100016x PubMed DOI PMC

Šícho M., de Bruyn Kops C., Stork C., Svozil D., Kirchmair J. (2017). FAME 2: simple and effective machine learning model of cytochrome P450 regioselectivity. J. Chem. Inform. Model. 57, 1832–1846. 10.1021/acs.jcim.7b00250 PubMed DOI

Sing T., Sander O., Beerenwinkel N., Lengauer T. (2005). ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940–3941. 10.1093/bioinformatics/bti623 PubMed DOI

Testa B., Pedretti A., Vistoli G. (2012). Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Disc. Today 17, 549–560. 10.1016/j.drudis.2012.01.017 PubMed DOI

Tian S., Djoumbou-Feunang Y., Greiner R., Wishart D. S. (2018). CypReact: a software tool for in silico reactant prediction for human cytochrome P450 enzymes. J. Chem. Inform. Model. 58, 1282–1291. 10.1021/acs.jcim.8b00035 PubMed DOI

Tyzack J. D., Hunt P. A., Segall M. D. (2016). Predicting regioselectivity and lability of cytochrome p450 metabolism using quantum mechanical simulations. J. Chem. Inform. Model. 56, 2180–2193. 10.1021/acs.jcim.6b00233 PubMed DOI

Tyzack J. D., Kirchmair J. (2018). Computational methods and tools to predict cytochrome P450 metabolism for drug discovery. Chem. Biol. Drug Design 93, 377–386. 10.1111/cbdd.13445 PubMed DOI PMC

Willighagen E. L., Mayfield J. W., Alvarsson J., Berg A., Carlsson L., Jeliazkova N., et al. (2017). The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J. Cheminform. 9:33 10.1186/s13321-017-0220-4 PubMed DOI PMC

Wishart D. S., Feunang Y. D., Guo A. C., Lo E. J., Marcu A., Grant J. R., et al. . (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082. 10.1093/nar/gkx1037 PubMed DOI PMC

Zaretzki J., Matlock M., Swamidass S. J. (2013). XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks. J. Chem. Inform. Model. 53, 3373–3383. 10.1021/ci400518g PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...