Novel 1,3,5-Triazinyl Aminobenzenesulfonamides Incorporating Aminoalcohol, Aminochalcone and Aminostilbene Structural Motifs as Potent Anti-VRE Agents, and Carbonic Anhydrases I, II, VII, IX, and XII Inhibitors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1202/2020
INGA MU, with the support of the Specific University Research Grant, as provided by the Ministry of Edu-cation, Youth and Sports of the Czech Republic in the year 2020
APVV-18-0302
Slovak Research and Development Agency
PubMed
35008657
PubMed Central
PMC8745223
DOI
10.3390/ijms23010231
PII: ijms23010231
Knihovny.cz E-zdroje
- Klíčová slova
- benzenesulfonamide, carbonic anhydrase, chalcone, inhibition, stilbene, triazine, vancomycin-resistant enterococci,
- MeSH
- antibakteriální látky farmakologie MeSH
- antitumorózní látky farmakologie terapeutické užití MeSH
- enterokoky rezistentní vůči vankomycinu účinky léků MeSH
- HCT116 buňky MeSH
- inhibitory karboanhydras farmakologie MeSH
- karboanhydrasa I antagonisté a inhibitory MeSH
- karboanhydrasa II antagonisté a inhibitory MeSH
- karboanhydrasa IX antagonisté a inhibitory MeSH
- karboanhydrasy účinky léků MeSH
- lidé MeSH
- nádory farmakoterapie MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- sulfonamidy farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antitumorózní látky MeSH
- carbonic anhydrase XII MeSH Prohlížeč
- inhibitory karboanhydras MeSH
- karboanhydrasa I MeSH
- karboanhydrasa II MeSH
- karboanhydrasa IX MeSH
- karboanhydrasy MeSH
- sulfonamidy MeSH
A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, aminostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic anhydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (32) were the most effective inhibitors with KIs = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (21) (MIC = 26.33 µM) and derivative 32 (MIC range 13.80-55.20 µM) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4'-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 μM; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 µM. The molecular modeling and docking of active compounds into various hCA isoenzymes, including bacterial carbonic anhydrase, specifically α-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.
Institute of Neuroimmunology Slovak Academy of Sciences Dúbravska Cesta 9 845 10 Bratislava Slovakia
Zobrazit více v PubMed
World Health Organization: Fact Sheets–Antibiotic Resistance. [(accessed on 16 October 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance.
Supuran C.T., Capasso C. An Overview of the Bacterial Carbonic Anhydrases. Metabolites. 2017;7:56. doi: 10.3390/metabo7040056. PubMed DOI PMC
Supuran C.T., Capasso C. Antibacterial carbonic anhydrase inhibitors: An update on the recent literature. Expert Opin. Ther. Pat. 2020;30:963–982. doi: 10.1080/13543776.2020.1811853. PubMed DOI
Capasso C., Supuran C.T. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin. Ther. Targets. 2015;19:1689–1704. doi: 10.1517/14728222.2015.1067685. PubMed DOI
Flaherty P., Seleem D.M.N., Supuran C.T. Bacterial carbonic anhydrases: Underexploited antibacterial therapeutic targets. Future Med. Chem. 2021;13:1619–1622. doi: 10.4155/fmc-2021-0207. PubMed DOI PMC
Capasso C., Supuran C.T. An overview of the α-, β- and γ-carbonic anhydrases from Bacteria: Can bacterial carbonic anhydrases shed new light on evolution of bacteria? J. Enzyme Inhib. Med. Chem. 2015;30:325–332. doi: 10.3109/14756366.2014.910202. PubMed DOI
De Luca V., Petreni A., Nocentini A., Scaloni A., Supuran C.T., Capasso C. Effect of Sulfonamides and Their Structurally Related Derivatives on the Activity of ι-Carbonic Anhydrase from Burkholderia territorii. Int. J. Mol. Sci. 2021;22:571. doi: 10.3390/ijms22020571. PubMed DOI PMC
Capasso C., Supuran C.T. An Overview of the Selectivity and Efficiency of the Bacterial Carbonic Anhydrase Inhibitors. Curr. Med. Chem. 2015;22:2130–2139. doi: 10.2174/0929867321666141012174921. PubMed DOI
Supuran C.T., Capasso C. Biomedical applications of prokaryotic carbonic anhydrases. Expert Opin. Ther. Pat. 2018;28:745–754. doi: 10.1080/13543776.2018.1497161. PubMed DOI
Bonardi A., Nocentini A., Osman S.M., Alasmary F.A., Almutairi T.M., Abdullah D.S., Gratteri P., Supuran C.T. Inhibition of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with aromatic sulphonamides and clinically licenced drugs–a joint docking/molecular dynamics study. J. Enzyme Inhib. Med. Chem. 2021;36:469–479. doi: 10.1080/14756366.2020.1862102. PubMed DOI PMC
Del Prete S., Isik S., Vullo D., De Luca V., Carginale V., Scozzafava A., Supuran C.T., Capasso C. DNA Cloning, Characterization, and Inhibition Studies of an α-Carbonic Anhydrase from the Pathogenic Bacterium Vibrio cholerae. J. Med. Chem. 2012;55:10742–10748. doi: 10.1021/jm301611m. PubMed DOI
Ceruso M., Del Prete S., Alothman Z., Capasso C., Supuran C.T. Sulfonamides with Potent Inhibitory Action and Selectivity against the α-Carbonic Anhydrase from Vibrio cholerae. ACS Med. Chem. Lett. 2014;5:826–830. doi: 10.1021/ml500192a. PubMed DOI PMC
Bua S., Berrino E., Del Prete S., Murthy V.S., Vijayakumar V., Tamboli Y., Capasso C., Cerbai E., Mugelli A., Carta F., et al. Synthesis of novel benzenesulfamide derivatives with inhibitory activity against human cytosolic carbonic anhydrase I and II and Vibrio cholerae α- and β-class enzymes. J. Enzyme Inhib. Med. Chem. 2018;33:1125–1136. doi: 10.1080/14756366.2018.1467901. PubMed DOI PMC
Bua S., Osman S.M., Del Prete S., Capasso C., Alothman Z., Nocentini A., Supuran C.T. Click-tailed benzenesulfonamides as potent bacterial carbonic anhydrase inhibitors for targeting Mycobacterium tuberculosis and Vibrio cholerae. Bioorg. Chem. 2019;86:183–186. doi: 10.1016/j.bioorg.2019.01.065. PubMed DOI
Ceruso M., Vullo D., Scozzafava A., Supuran C.T. Sulfonamides incorporating fluorine and 1,3,5-triazine moieties are effective inhibitors of three β -class carbonic anhydrases from Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2014;29:686–689. doi: 10.3109/14756366.2013.842233. PubMed DOI
Angeli A., Pinteala M., Maier S.S., Simionescu B.C., Milaneschi A., Abbas G., del Prete S., Capasso C., Capperucci A., Tanini D., et al. Evaluation of Thio- and Seleno-Acetamides Bearing Benzenesulfonamide as Inhibitor of Carbonic Anhydrases from Different Pathogenic Bacteria. Int. J. Mol. Sci. 2020;21:686–689. doi: 10.3390/ijms21020598. PubMed DOI PMC
Carta F., Maresca A., Covarrubias A.S., Mowbray S.L., Jones T.A., Supuran C.T. Carbonic anhydrase inhibitors. Characterization and inhibition studies of the most active β-carbonic anhydrase from Mycobacterium tuberculosis, Rv3588c. Int. J. Mol. Sci. 2009;19:6649–6654. doi: 10.1016/j.bmcl.2009.10.009. PubMed DOI
Maresca A., Carta F., Vullo D., Scozzafava A., Supuran C.T. Carbonic anhydrase inhibitors. Inhibition of the Rv1284 and Rv3273 β-carbonic anhydrases from Mycobacterium tuberculosis with diazenylbenzenesulfonamides. Int. J. Mol. Sci. 2009;19:4929–4932. doi: 10.1016/j.bmcl.2009.07.088. PubMed DOI
Ali M., Angeli A., Bozdag M., Carta F., Capasso C., Farooq U., Supuran C.T. Benzylaminoethylureido-Tailed Benzenesulfonamides Show Potent Inhibitory Activity against Bacterial Carbonic Anhydrases. ChemMedChem. 2020;15:2444–2447. doi: 10.1002/cmdc.202000680. PubMed DOI
Nocentini A., Supuran C.T., Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J. Enzyme Inhib. Med. Chem. 2021;36:1988–1995. doi: 10.1080/14756366.2021.1972995. PubMed DOI PMC
Del Prete S., De Luca V., Bua S., Nocentini A., Carginale V., Supuran C.T., Capasso C. The Effect of Substituted Benzene-Sulfonamides and Clinically Licensed Drugs on the Catalytic Activity of CynT2, a Carbonic Anhydrase Crucial for Escherichia coli Life Cycle: Characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. Int. J. Mol. Sci. 2020;21:4175. doi: 10.3390/ijms21114175. PubMed DOI PMC
Del Prete S., Bua S., Supuran C.T., Capasso C. Escherichia coli γ -carbonic anhydrase: Characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J. Enzyme Inhib. Med. Chem. 2020;35:1545–1554. doi: 10.1080/14756366.2020.1800670. PubMed DOI PMC
Kaur J., Cao X., Abutaleb N.S., Elkashif A., Graboski A.L., Krabill A.D., AbdelKhalek A.H., An W., Bhardwaj A., Seleem M.N., et al. Optimization of Acetazolamide-Based Scaffold as Potent Inhibitors of Vancomycin-Resistant Enterococcus: Characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J. Med. Chem. 2020;63:9540–9562. doi: 10.1021/acs.jmedchem.0c00734. PubMed DOI PMC
Cetinkaya Y., Falk P., Mayhall C.G. Vancomycin-Resistant Enterococci: Characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. Clin. Microbiol. Rev. 2000;13:686–707. doi: 10.1128/CMR.13.4.686. PubMed DOI PMC
Ayobami O., Willrich N., Reuss A., Eckmanns T., Markwart R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: An epidemiological analysis of bloodstream infections. PeerJ. 2020;9:1180–1193. doi: 10.1080/22221751.2020.1769500. PubMed DOI PMC
Abutaleb N.S., Elhassanny A.E.M., Flaherty D.P., Seleem M.N. In vitro and in vivo activities of the carbonic anhydrase inhibitor, dorzolamide, against vancomycin-resistant enterococci: Characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. PeerJ. 2021;9:686–707. doi: 10.7717/peerj.11059. PubMed DOI PMC
Rossolini G.M., Arena F., Pecile P., Pollini S. Update on the antibiotic resistance crisis: An epidemiological analysis of bloodstream infections. Curr. Opin. Pharmacol. 2014;18:56–60. doi: 10.1016/j.coph.2014.09.006. PubMed DOI
Smith S.V., Friedman D.I. The Idiopathic Intracranial Hypertension Treatment Trial: A Review of the Outcomes. Headache. 2017;57:1303–1310. doi: 10.1111/head.13144. PubMed DOI
Supuran C.T. Emerging role of carbonic anhydrase inhibitors: A Review of the Outcomes. Clin. Sci. 2021;135:1233–1249. doi: 10.1042/CS20210040. PubMed DOI
Angeli A., Carta F., Nocentini A., Winum J.-Y., Zalubovskis R., Akdemir A., Onnis V., Eldehna W.M., Capasso C., Simone G.D., et al. Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment: A Review of the Outcomes. Metabolites. 2020;10:412. doi: 10.3390/metabo10100412. PubMed DOI PMC
Kumar S., Rulhania S., Jaswal S., Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors: A Review of the Outcomes. Eur. J. Med. Chem. 2021;209:1233–1249. doi: 10.1016/j.ejmech.2020.112923. PubMed DOI
Havránková E., Csöllei J., Pazdera P. Comparative study for 3, 3´-[(4-X-phenyl)-methanediyl] bis(1H-indoles) synthesis catalyzed by Ce(III) cations. Int. J. Engin. Res. Sci. 2017;3:9–14.
Havránková E., Pazdera P. Kabachnik-Fields and Prins-Ritter Synthesis: Application of Ce(III) Supported on a Weakly Acidic Cation-exchanger Resin in Comparative Study. J. Chem. Appl. 2015;2:1–6.
Havránková E., Pazdera P. Comparative Studies of Catalytic Application of Cerium(III) Chloride and Resin Supported Cerium(III) in Domino Syntheses of 1,5-Benzodiazepine and 1,3-Diazine Skeletons. J. Chem. Eng. Chem. Res. 2014;1:229–237.
Havránková E., Pospíšil P., Pazdera P. Synergism of Metal and Organocatalysis in Condensation Reactions of Aromatic Aldehydes with Anilines Affording Imines: Effect of Catalysts on the Base of a Supported Cerium(III) and Proline. Sci. J. Chem. 2014;2:1–8. doi: 10.11648/j.sjc.s.2014020601.11. DOI
Gigante B., Esteves M.A., Pires N., Davies M.L., Douglas P., Fonseca S.M., Burrows H.D., Castro R.A.E., Pina J., Seixas de Melo J. Synthesis, spectroscopy, photophysics and thermal behaviour of stilbene-based triarylamines with dehydroabietic acid methyl ester moieties. New J. Chem. 2009;33:877–885. doi: 10.1039/b815711a. DOI
Yang J.-S., Chiou S.-Y., Liau K.-L. Fluorescence Enhancement of trans-4-Aminostilbene by N-Phenyl Substitutions: The “Amino Conjugation Effect”. J. Am. Chem. Soc. 2002;124:2518–2527. doi: 10.1021/ja016416+. PubMed DOI
Havránková E., Csöllei J., Pazdera P. New Approach for the One-Pot Synthesis of 1,3,5-Triazine Derivatives: Application of Cu(I) Supported on a Weakly Acidic Cation-Exchanger Resin in a Comparative Study. Molecules. 2019;24:3586. doi: 10.3390/molecules24193586. PubMed DOI PMC
Havránková E., Csöllei J., Vullo D., Garaj V., Pazdera P., Supuran C.T. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action: Application of Cu(I) Supported on a Weakly Acidic Cation-Exchanger Resin in a Comparative Study. Bioorg. Chem. 2018;77:25–37. doi: 10.1016/j.bioorg.2017.12.034. PubMed DOI
Havránková E., Čalkovská N., Padrtová T., Csöllei J., Opatřilová R., Pazdera P. Antioxidative Activity of 1,3,5-Triazine Analogues Incorporating Aminobenzene Sulfonamide, Aminoalcohol/Phenol, Piperazine, Chalcone, or Stilbene Motifs. Molecules. 2020;25:1787. doi: 10.3390/molecules25081787. PubMed DOI PMC
Rivera C., Voipio J., Kaila K. Two developmental switches in GABAergic signalling: The K -Cl − cotransporter KCC2 and carbonic anhydrase CAVII. J. Physiol. 2005;562:27–36. doi: 10.1113/jphysiol.2004.077495. PubMed DOI PMC
Buonanno M., Di Fiore A., Langella E., D’Ambrosio K., Supuran C., Monti S., De Simone G. The Crystal Structure of a hCA VII Variant Provides Insights into the Molecular Determinants Responsible for Its Catalytic Behavior: The K -Cl − cotransporter KCC2 and carbonic anhydrase CAVII. Int. J. Mol. Sci. 2018;19:1571. doi: 10.3390/ijms19061571. PubMed DOI PMC
Asiedu M., Ossipov M.H., Kaila K., Price T.J. Acetazolamide and midazolam act synergistically to inhibit neuropathic pain: The K -Cl − cotransporter KCC2 and carbonic anhydrase CAVII. Pain. 2010;148:302–308. doi: 10.1016/j.pain.2009.11.015. PubMed DOI PMC
Khalifah R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 1971;246:2561–2573. doi: 10.1016/S0021-9258(18)62326-9. PubMed DOI
Pastorekova S., Parkkila S., Pastorek J., Supuran C.T. Carbonic anhydrases: Current state of the art, therapeutic applications and future prospects. J. Enzyme Inhib. Med. Chem. 2004;19:199–229. doi: 10.1080/14756360410001689540. PubMed DOI
Garaj V., Puccetti L., Fasolis G., Winum J.-Y., Montero J.-L., Scozzafava A., Vullo D., Innocenti A., Supuran C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties. J. Med. Chem. 2004;14:5427–5433. doi: 10.1016/j.bmcl.2004.07.087. PubMed DOI
Vullo D., Voipio J., Innocenti A., Rivera C., Ranki H., Scozzafava A., Kaila K., Supuran C.T. Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isozyme VII with aromatic and heterocyclic sulfonamides. Bioorg. Med. Chem. Lett. 2005;15:971–976. doi: 10.1016/j.bmcl.2004.12.052. PubMed DOI
Brzozowski Z., Sławiński J., Sączewski F., Innocenti A., Supuran C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition of the human cytosolic isozymes I and II and transmembrane isozymes IX, XII (cancer-associated) and XIV with 4-substituted 3-pyridinesulfonamides. Eur. J. Med. Chem. 2010;45:2396–2404. doi: 10.1016/j.ejmech.2010.02.020. PubMed DOI
Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Ferriz J.M., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI
Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI
Menziani M.C., Bendetti P.G.D., Richard E.G. The binding of benzenesulfonamides to carbonic anhydrase enzyme. A molecular mechanics study and quantitative structure−activity relationships. J. Med. Chem. 1989;32:951–956. doi: 10.1021/jm00125a005. PubMed DOI
Yang A.-S., Honig B. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. J. Mol. Biol. 2000;301:691–711. doi: 10.1006/jmbi.2000.3975. PubMed DOI
Abbas S.H., Abd El-Hafeez A.A., Shoman M.E., Montano M.M., Hassan H.A. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem. 2019;82:360–377. doi: 10.1016/j.bioorg.2018.10.064. PubMed DOI PMC
Seo W.D., Kim J.H., Kang J.E., Ryu H.W., Curtis-Long M.J., Lee H.S., Yang M.S., Park K.H. Sulfonamide chalcone as a new class of α-glucosidase inhibitors: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem. 2005;15:5514–5516. doi: 10.1016/j.bmcl.2005.08.087. PubMed DOI
Moreno L., Quiroga J., Abonia R., Ramírez-Prada J., Insuasty B. Synthesis of New 1,3,5-Triazine-Based 2-Pyrazolines as Potential Anticancer Agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Molecules. 2018;23:1956. doi: 10.3390/molecules23081956. PubMed DOI PMC
Leung S.H., Angel S.A. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment. J. Chem. Educ. 2004;81:1181–1186. doi: 10.1021/ed081p1492. DOI
Wang T., Zhang Y.-H., Kong X.-W., Lai Y.-S., Ji H., Chen Y.-P., Peng S.-X., Park K.H. Synthesis and Biological Evaluation of Nitric Oxide-Donating Thalidomide Analogues as Anticancer Agents: A Green Organic Chemistry Laboratory Experiment. J. Chem. Educ. 2009;6:466–474. doi: 10.1002/cbdv.200800014. PubMed DOI
Yu J., Zhang P., Wu J., Shang Z. Metal-free C–N bond-forming reaction: Straightforward synthesis of anilines, through cleavage of aryl C–O bond and amide C–N bond. Tetrahedron Lett. 2013;54:3167–3170. doi: 10.1016/j.tetlet.2013.04.028. DOI
Maresca A., Carta F., Vullo D., Supuran C.T. Dithiocarbamates strongly inhibit the β-class carbonic anhydrases from Mycobacterium tuberculosis: A new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. J. Enzyme Inhib. Med. Chem. 2013;28:407–411. doi: 10.3109/14756366.2011.641015. PubMed DOI
Carta F., Aggarwal M., Maresca A., Scozzafava A., McKenna R., Supuran C.T. Dithiocarbamates: A new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. Chem. Comm. 2012;48:199–229. doi: 10.1039/c2cc16395k. PubMed DOI
Ekinci D., Kurbanoglu N.I., Salamcı E., Şentürk M., Supuran C.T. Carbonic anhydrase inhibitors: Inhibition of human and bovine isoenzymes by benzenesulphonamides, cyclitols and phenolic compounds. J. Enzyme Inhib. Med. Chem. 2012;27:845–848. doi: 10.3109/14756366.2011.621122. PubMed DOI
Ekinci D., Karagoz L., Ekinci D., Senturk M., Supuran C.T. Carbonic anhydrase inhibitors: In vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids: Inhibition of human and bovine isoenzymes by benzenesulphonamides, cyclitols and phenolic compounds. J. Enzyme Inhib. Med. Chem. 2013;28:283–288. doi: 10.3109/14756366.2011.643303. PubMed DOI
Alp C., Maresca A., Alp N.A., Gültekin M.S., Ekinci D., Scozzafava A., Supuran C.T. Secondary/tertiary benzenesulfonamides with inhibitory action against the cytosolic human carbonic anhydrase isoforms I and II: Inhibition of human and bovine isoenzymes by benzenesulphonamides, cyclitols and phenolic compounds. J. Enzyme Inhib. Med. Chem. 2013;28:294–298. doi: 10.3109/14756366.2012.658788. PubMed DOI
Boztaş M., Çetinkaya Y., Topal M., Gülçin İ., Menzek A., Şahin E., Tanc M., Supuran C.T. Synthesis and Carbonic Anhydrase Isoenzymes I, II, IX, and XII Inhibitory Effects of Dimethoxybromophenol Derivatives Incorporating Cyclopropane Moieties: Inhibition of human and bovine isoenzymes by benzenesulphonamides, cyclitols and phenolic compounds. J. Med. Chem. 2015;58:640–650. doi: 10.1021/jm501573b. PubMed DOI
Carta F., Vullo D., Maresca A., Scozzafava A., Supuran C.T. Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV: Inhibition of human and bovine isoenzymes by benzenesulphonamides, cyclitols and phenolic compounds. J. Med. Chem. 2013;21:1564–1569. doi: 10.1016/j.bmc.2012.05.019. PubMed DOI
Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing; The 8th Informational Supplement Document. CLSI; New York, NY, USA: 2012.
Bunz F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J.P., Sedivy J.M., Kinzler K.W., Vogelstein B. Requirement for p53 and p21 to Sustain G2 Arrest After DNA Damage. Science. 1998;282:1497–1501. doi: 10.1126/science.282.5393.1497. PubMed DOI
Alterio V., Hilvo M., Di Fiore A., Supuran C.T., Pan P., Parkkila S., Scaloni A., Pastorek J., Pastorekova S., Pedone C., et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc. Natl. Acad. Sci. USA. 2009;106:16233–16238. doi: 10.1073/pnas.0908301106. PubMed DOI PMC
Sastry G.M., Adzhigirey M., Day T., Annabhimoju R., Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aid. Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI
Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J.Y., Wang L., Lupyan D., Dahlgren M.K., Knight J.L., et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016;12:281–296. doi: 10.1021/acs.jctc.5b00864. PubMed DOI
Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A., Sanschagrin P.C., Mainz D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI
Jacobson M.P., Pincus D.L., Rapp C.S., Day T.J.F., Honig B., Shaw D.E., Friesner R.A. A hierarchical approach to all-atom protein loop prediction. Proteins. 2004;55:351–367. doi: 10.1002/prot.10613. PubMed DOI
Jacobson M.P., Friesner R.A., Xiang Z., Honig B. On the Role of the Crystal Environment in Determining Protein Side-chain Conformations. J. Mol. Biol. 2002;320:597–608. doi: 10.1016/S0022-2836(02)00470-9. PubMed DOI
NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–D13. doi: 10.1093/nar/gkx1095. PubMed DOI PMC
Kozyreva V.K., Truong C.-L., Greninger A.L., Crandall J., Mukhopadhyay R., Chaturvedi V., Diekema D.J. Validation and Implementation of Clinical Laboratory Improvements Act-Compliant Whole-Genome Sequencing in the Public Health Microbiology Laboratory. J. Clin. Microbiol. 2017;55:2502–2520. doi: 10.1128/JCM.00361-17. PubMed DOI PMC
Ramachandran G.N., Ramakrishnan C., Sasisekharan V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963;7:95–99. doi: 10.1016/S0022-2836(63)80023-6. PubMed DOI
Li J., Abel R., Zhu K., Cao Y., Zhao S., Friesner R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins. 2011;79:2794–2812. doi: 10.1002/prot.23106. PubMed DOI PMC
Huang J., MacKerell A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013;25:2135–2145. doi: 10.1002/jcc.23354. PubMed DOI PMC
Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Berendsen H.J.C., Postma J.P.M., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Hess B., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1998;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Sherman W., Day T., Jacobson M.P., Friesner R.A., Farid R. Novel Procedure for Modeling Ligand/Receptor Induced Fit Effects: A next generation energy model for high resolution protein structure modeling. J. Med. Chem. 2006;49:534–553. doi: 10.1021/jm050540c. PubMed DOI
Shelley J.C., Cholleti A., Frye L.L., Greenwood J.R., Timlin M.R., Uchimaya M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comp.Aided Mol. Design. 2007;21:681–691. doi: 10.1007/s10822-007-9133-z. PubMed DOI
Greenwood J.R., Calkins D., Sullivan A.P., Shelley J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comp.Aided Mol. Design. 2010;24:591–604. doi: 10.1007/s10822-010-9349-1. PubMed DOI
Fisher S.Z., Aggarwal M., Kovalevsky A.Y., Silverman D.N., McKenna R. Neutron Diffraction of Acetazolamide-Bound Human Carbonic Anhydrase II Reveals Atomic Details of Drug Binding: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Am. Chem. Soc. 2012;134:14726–14729. doi: 10.1021/ja3068098. PubMed DOI PMC
de Bruyn Kops C., Stork C., Šícho M., Kochev N., Svozil D., Jeliazkova N., Kirchmair J. GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism. Front. Chem. 2019;7:14726–14729. doi: 10.3389/fchem.2019.00402. PubMed DOI PMC
Stork C., Embruch G., Šícho M., de Bruyn Kops C., Chen Y., Svozil D., Kirchmair J. NERDD: A web portal providing access to in silico tools for drug discovery. Bioinformatics. 2019;7:14726–14729. doi: 10.1093/bioinformatics/btz695. PubMed DOI
Yang Z.-Y., Dong J., Yang Z.-J., Yin M., Jiang H.-L., Lu A.-P., Chen X., Hou T.-J., Cao D.-S. ChemFLuo: A web-server for structure analysis and identification of fluorescent compounds. Brief. Bioinformatics. 2021;22:14726–14729. doi: 10.1093/bib/bbaa282. PubMed DOI