Antioxidative Activity of 1,3,5-Triazine Analogues Incorporating Aminobenzene Sulfonamide, Aminoalcohol/Phenol, Piperazine, Chalcone, or Stilbene Motifs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
317/2017/FaF
Veterinární a Farmaceutická Univerzita Brno
MUNI 2222/312
Masarykova Univerzita
PubMed
32295147
PubMed Central
PMC7221710
DOI
10.3390/molecules25081787
PII: molecules25081787
Knihovny.cz E-zdroje
- Klíčová slova
- 1,3,5-triazine, 4-aminophenol, ABTS method, antioxidative activity, hydroxychalcone, hydroxystilbene,
- MeSH
- antioxidancia chemická syntéza chemie farmakologie MeSH
- chalkon chemie MeSH
- fenol chemie MeSH
- molekulární struktura MeSH
- piperazin chemie MeSH
- sulfonamidy chemie MeSH
- techniky syntetické chemie MeSH
- triaziny chemická syntéza chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- chalkon MeSH
- fenol MeSH
- piperazin MeSH
- sulfonamidy MeSH
- triaziny MeSH
A series of 1,3,5-triazine analogues, incorporating aminobenzene sulfonamide, aminoalcohol/phenol, piperazine, chalcone, or stilbene structural motifs, were evaluated as potential antioxidants. The compounds were prepared by using step-by-step nucleophilic substitution of chlorine atoms in starting 2,4,6-trichloro-1,3,5-triazine. Reactions were catalyzed by Cu(I)-supported on a weakly acidic resin. The radical scavenging activity was determined in terms of %inhibition activity and EC50, using the ABTS method. Trolox and ascorbic acid (ASA) were used as standards. In the lowest concentration 1 × 10-4 M, the %inhibition activity values at 0 min were comparable with both standards at least for 10 compounds. After 60 min, compounds 5, 6, 13, and 25 showed nearly twice %inhibition (73.44-87.09%) in comparison with the standards (Trolox = 41.49%; ASA = 31.07%). Values of EC50 at 60 min (17.16-27.78 μM) were 5 times lower for compounds 5, 6, 13, and 25 than EC50 of both standards (trolox = 178.33 μM; ASA = 147.47 μM). Values of EC50 correlated with %inhibition activity. Based on these results, the presented 1,3,5-triazine analogues have a high potential in the treatment of illnesses caused or related to oxidative stress.
Zobrazit více v PubMed
Pisoschi A.M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015;97:55–74. doi: 10.1016/j.ejmech.2015.04.040. PubMed DOI
Persson T., Popescu B.O., Cedazo-Minguez A. Oxidative Stress in Alzheimer’s Disease: Why Did Antioxidant Therapy Fail? Oxid. Med. Cell. Longev. 2014;2014:1–11. doi: 10.1155/2014/427318. PubMed DOI PMC
Gonzalez P., Pota K., Turan L.S., da Costa V.C.P., Akkaraju G., Green K.N. Synthesis, Characterization, and Activity of a Triazine Bridged Antioxidant Small Molecule. ACS Chem. Neurosci. 2017;8:2414–2423. doi: 10.1021/acschemneuro.7b00184. PubMed DOI
Neha K., Haider M.R., Pathak A., Yar M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019;178:687–704. doi: 10.1016/j.ejmech.2019.06.010. PubMed DOI
Sisein E.A. Biochemistry of free radicals and antioxidants. Scholars Acad. J. Biosci. 2014;2:110–118.
Kumar S. The importance of antioxidant and their role in pharmaceutical science—A review. Asian. J. Med. Chem. Pharm. Sci. 2014;1:27–44.
López-Alarcón C., Denicola A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta. 2013;763:1–10. doi: 10.1016/j.aca.2012.11.051. PubMed DOI
Maulik N., McFadden D., Otani H., Thirunavukkarasu M., Parinandi N.L. Antioxidants in Longevity and Medicine. Oxid. Med. Cell. Longev. 2013;2013:1–3. doi: 10.1155/2013/820679. PubMed DOI PMC
Toda S. Polyphenol Content and Antioxidant Effects in Herb Teas. Chin. Med. 2011;2:29–31. doi: 10.4236/cm.2011.21005. DOI
Esfahani A., Ghoreishi Z., Nikanfar A., Sanaat Z., Ghorbanihaghjo A. Influence of Chemotherapy on the Lipid Peroxidation and Antioxidant Status in Patients with Acute Myeloid Leukemia. Acta Med. Iran. 2012;50:454–458. PubMed
Singh K., Bhori M., Kasu Y.A., Bhat G., Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity—Exploring the armoury of obscurity. Saudi Pharm. J. 2018;26:177–190. doi: 10.1016/j.jsps.2017.12.013. PubMed DOI PMC
Conklin K.A. Chemotherapy-Associated Oxidative Stress: Impact on Chemotherapeutic Effectiveness. Integr. Cancer Ther. 2016;3:294–300. doi: 10.1177/1534735404270335. PubMed DOI
Joensuu H. Systemic chemotherapy for cancer: From weapon to treatment. Lancet Oncol. 2008;9:304. doi: 10.1016/S1470-2045(08)70075-5. PubMed DOI
Perumal S.S., Shanthi P., Sachdanandam P. Combined efficacy of tamoxifen and coenzyme Q10 on the status of lipid peroxidation and antioxidants in DMBA induced breast cancer. Mol. Cell. Biochem. 2005;273:151–160. doi: 10.1007/s11010-005-0325-3. PubMed DOI
Perumal S.S., Shanthi P., Sachdanandam P. Augmented efficacy of tamoxifen in rat breast tumorigenesis when gavaged along with riboflavin, niacin, and CoQ10: Effects on lipid peroxidation and antioxidants in mitochondria. Chem. Biol. Interact. 2005;152:49–58. doi: 10.1016/j.cbi.2005.01.007. PubMed DOI
Simone C.B., 2nd, Simone N.L., Simone V., Simone C.B. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, part I. Altern. Ther. Health Med. 2007;13:22–28. PubMed
Simone C.B., 2nd, Simone N.L., Simone V., Simone C.B. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, part II. Altern. Ther. Health Med. 2007;13:40–47. PubMed
Huthmacher K., Most D. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co.; Weinheim, Germany: 2000. Cyanuric Acid and Cyanuric Chloride; pp. 1–21.
European Chemicals Agency Substance Infocard: 2,4,6-trichloro-1,3,5-triazine. [(accessed on 10 April 2020)]; Available online: Echa.europa.eu/substance-information/-/substanceinfo/100.003.287.
Shafei A.Z., Nagaty H.F., Rifaat M.A., Salem S. Piperazine as Anthelmintic. Lancet. 1955;266:827–828. doi: 10.1016/S0140-6736(55)92427-2. DOI
Wood W.B., Austrian R. Studies on the Antibacterial Action of the Sulfonamide Drugs. J. Exp. Med. 1942;75:383–394. doi: 10.1084/jem.75.4.383. PubMed DOI PMC
Shah D.R., Modh R.P., Chikhalia K.H. Privileged s -triazines: Structure and pharmacological applications. Fut. Med. Chem. 2014;6:463–477. doi: 10.4155/fmc.13.212. PubMed DOI
Singla P., Luxami V., Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur. J. Med. Chem. 2015;102:39–57. doi: 10.1016/j.ejmech.2015.07.037. PubMed DOI
Cascioferro S., Parrino B., Spanò V., Carbone A., Montalbano A., Barraja P., Diana P., Cirrincione G. 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur. J. Med. Chem. 2017;142:523–549. doi: 10.1016/j.ejmech.2017.09.035. PubMed DOI
Marín-Ocampo L., Veloza L.A., Abonia R., Sepúlveda-Arias J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem. 2019;162:435–447. doi: 10.1016/j.ejmech.2018.11.027. PubMed DOI
Tripathi P.N., Srivastava P., Sharma P., Tripathi M.K., Seth A., Tripathi A., Rai S.N., Singh S.P., Shrivastava S.K. Biphenyl–3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem. 2019;85:82–96. doi: 10.1016/j.bioorg.2018.12.017. PubMed DOI
Iraji A., Firuzi O., Khoshneviszadeh M., Nadri H., Edraki N., Miri R. Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer’s disease. Bioorg. Chem. 2018;77:223–235. doi: 10.1016/j.bioorg.2018.01.017. PubMed DOI
Akocak S., Boga M., Lolak N., Tuneg M., Sanku R.K.K. Design, synthesis and biological evaluation of 1,3-diaryltriazene-substituted sulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors. J. Turk. Chem. Soc. Sect. A Chem. 2019;6:63–70. doi: 10.18596/jotcsa.516444. DOI
Narsinghani T., Sharma M.C., Bhargav S. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Med. Chem. Res. 2013;22:4059–4068. doi: 10.1007/s00044-012-0413-3. DOI
Phenolic Compounds: Biological Activity. IntechOpen; London, UK: 2017. Phenolic Antioxidant Capacity: A Review of the State of the Art; pp. 59–74.
Treml J., Leláková V., Šmejkal K., Paulíčková T., Labuda Š., Granica S., Havlík J., Jankovská D., Padrtová T., Hošek J. Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. Biomolecules. 2019;9:468. doi: 10.3390/biom9090468. PubMed DOI PMC
Taslimi P., Köksal E., Gören A.C., Bursal E., Aras A., Kılıç Ö., Alwasel S., Gülçin İ. Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arab. J. Chem. 2020;13:4528–4537. doi: 10.1016/j.arabjc.2019.10.002. DOI
Murlimanju B.V. Neuroprotective effects of resveratrol in Alzheimer rsquo s disease. Front. Biosci. 2020;12:139–149. doi: 10.2741/e863. PubMed DOI
Wu P.-Q., Li B., Yu Y.-F., Su P.-J., Liu X., Zhang Z.-P., Zhi D.-J., Qi F.-M., Fei D.-Q., Zhang Z.-X. Isolation, characterization, and possible anti-Alzheimer’s disease activities of bisabolane-type sesquiterpenoid derivatives and phenolics from the rhizomes of Curcuma longa. Chem. Biodivers. 2020:17. doi: 10.1002/cbdv.202000067. PubMed DOI
Xu Q.-N., Zhu D., Wang G.-H., Lin T., Sun C.-L., Ding R., Tian W.-J., Chen H.-F. Phenolic glycosides and flavonoids with antioxidant and anticancer activities from Desmodium caudatum. Nat. Prod. Res. 2020;34 doi: 10.1080/14786419.2020.1739044. PubMed DOI
Sharman M.J., Verdile G., Kirubakaran S., Münch G. Neurodegeneration and Alzheimer’s Disease. John Wiley; Chichester, UK: 2019. Inflammation in Alzheimer’s Disease, and Prevention with Antioxidants and Phenolic Compounds—What Are the Most Promising Candidates? pp. 233–266.
Pashirova T.N., Burilova E.A., Tagasheva R.G., Zueva I.V., Gibadullina E.M., Nizameev I.R., Sudakov I.A., Vyshtakalyuk A.B., Voloshina A.D., Kadirov M.K., et al. Delivery nanosystems based on sterically hindered phenol derivatives containing a quaternary ammonium moiety: Synthesis, cholinesterase inhibition and antioxidant activity. Chem. Biol. Interact. 2019;310:108753. doi: 10.1016/j.cbi.2019.108753. PubMed DOI
Zhang S., Yu Z., Xia J., Zhang X., Liu K., Sik A., Jin M. Anti-Parkinson’s disease activity of phenolic acids from Eucommia ulmoides Oliver leaf extracts and their autophagy activation mechanism. Food Funct. 2020;11:1425–1440. doi: 10.1039/C9FO02288K. PubMed DOI
Garcia-Moreno J.C., Porta de la Riva M., Martínez-Lara E., Siles E., Cañuelo A. Tyrosol, a simple phenol from EVOO, targets multiple pathogenic mechanisms of neurodegeneration in a C. elegans model of Parkinson’s disease. Neurobiol. Aging. 2019;82:60–68. doi: 10.1016/j.neurobiolaging.2019.07.003. PubMed DOI
Kallscheuer N., Menezes R., Foito A., da Silva M.H., Braga A., Dekker W., Sevillano D.M., Rosado-Ramos R., Jardim C., Oliveira J., et al. Identification and Microbial Production of the Raspberry Phenol Salidroside that Is Active against Huntington’s Disease. Plant Physiol. 2019;179:969–985. doi: 10.1104/pp.18.01074. PubMed DOI PMC
Essa M.M., Moghadas M., Ba-Omar T., Walid Qoronfleh M., Guillemin G.J., Manivasagam T., Justin-Thenmozhi A., Ray B., Bhat A., Chidambaram S.B., et al. Protective Effects of Antioxidants in Huntington’s Disease: An Extensive Review. Neurotox. Res. 2019;35:739–774. doi: 10.1007/s12640-018-9989-9. PubMed DOI
Antonenko T.A., Shpakovsky D.B., Berseneva D.A., Gracheva Y.A., Dubova L.G., Shevtsov P.N., Redkozubova O.M., Shevtsova E.F., Tafeenko V.A., Aslanov L.A., et al. Cytotoxic activity of organotin carboxylates based on synthetic phenolic antioxidants and polycyclic bile acids. J. Organomet. Chem. 2020;909:121089. doi: 10.1016/j.jorganchem.2019.121089. DOI
Teixeira-Guedes C.I., Oppolzer D., Barros A.I., Pereira-Wilson C. Phenolic rich extracts from cowpea sprouts decrease cell proliferation and enhance 5-fluorouracil effect in human colorectal cancer cell lines. J. Funct. Foods. 2019;60:103452. doi: 10.1016/j.jff.2019.103452. DOI
Han M., Li G., Liu X., Li A., Mao P., Liu P., Li H. Phenolic Profile, Antioxidant Activity and Anti-proliferative Activity of Crabapple Fruits. Hortic. Plant J. 2019;5:155–163. doi: 10.1016/j.hpj.2019.01.003. DOI
Golonko A., Pienkowski T., Swislocka R., Lazny R., Roszko M., Lewandowski W. Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system. Eur. J. Med. Chem. 2019;167:291–311. doi: 10.1016/j.ejmech.2019.01.044. PubMed DOI
Garaj V., Puccetti L., Fasolis G., Winum J.Y., Montero J.L., Scozzafava A., Supuran C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties. Bioorg. Med. Chem. Lett. 2004;14:5427–5433. doi: 10.1016/j.bmcl.2004.07.087. PubMed DOI
Havránková E., Csöllei J., Pazdera P. New Approach for the One-Pot Synthesis of 1,3,5-Triazine Derivatives: Application of Cu(I) Supported on a Weakly Acidic Cation-Exchanger Resin in a Comparative Study. Molecules. 2019;24:3586. doi: 10.3390/molecules24193586. PubMed DOI PMC
Havránková E., Csöllei J., Vullo D., Garaj V., Pazdera P., Supuran C.T. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action. Bioorg. Chem. 2018;77:25–37. doi: 10.1016/j.bioorg.2017.12.034. PubMed DOI
Mut-Salud N., Álvarez P.J., Garrido J.M., Carrasco E., Aránega A., Rodríguez-Serrano F. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results. Oxid. Med. Cell. Longev. 2016;2016:1–19. doi: 10.1155/2016/6719534. PubMed DOI PMC