Antioxidative Activity of 1,3,5-Triazine Analogues Incorporating Aminobenzene Sulfonamide, Aminoalcohol/Phenol, Piperazine, Chalcone, or Stilbene Motifs

. 2020 Apr 14 ; 25 (8) : . [epub] 20200414

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32295147

Grantová podpora
317/2017/FaF Veterinární a Farmaceutická Univerzita Brno
MUNI 2222/312 Masarykova Univerzita

A series of 1,3,5-triazine analogues, incorporating aminobenzene sulfonamide, aminoalcohol/phenol, piperazine, chalcone, or stilbene structural motifs, were evaluated as potential antioxidants. The compounds were prepared by using step-by-step nucleophilic substitution of chlorine atoms in starting 2,4,6-trichloro-1,3,5-triazine. Reactions were catalyzed by Cu(I)-supported on a weakly acidic resin. The radical scavenging activity was determined in terms of %inhibition activity and EC50, using the ABTS method. Trolox and ascorbic acid (ASA) were used as standards. In the lowest concentration 1 × 10-4 M, the %inhibition activity values at 0 min were comparable with both standards at least for 10 compounds. After 60 min, compounds 5, 6, 13, and 25 showed nearly twice %inhibition (73.44-87.09%) in comparison with the standards (Trolox = 41.49%; ASA = 31.07%). Values of EC50 at 60 min (17.16-27.78 μM) were 5 times lower for compounds 5, 6, 13, and 25 than EC50 of both standards (trolox = 178.33 μM; ASA = 147.47 μM). Values of EC50 correlated with %inhibition activity. Based on these results, the presented 1,3,5-triazine analogues have a high potential in the treatment of illnesses caused or related to oxidative stress.

Zobrazit více v PubMed

Pisoschi A.M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015;97:55–74. doi: 10.1016/j.ejmech.2015.04.040. PubMed DOI

Persson T., Popescu B.O., Cedazo-Minguez A. Oxidative Stress in Alzheimer’s Disease: Why Did Antioxidant Therapy Fail? Oxid. Med. Cell. Longev. 2014;2014:1–11. doi: 10.1155/2014/427318. PubMed DOI PMC

Gonzalez P., Pota K., Turan L.S., da Costa V.C.P., Akkaraju G., Green K.N. Synthesis, Characterization, and Activity of a Triazine Bridged Antioxidant Small Molecule. ACS Chem. Neurosci. 2017;8:2414–2423. doi: 10.1021/acschemneuro.7b00184. PubMed DOI

Neha K., Haider M.R., Pathak A., Yar M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019;178:687–704. doi: 10.1016/j.ejmech.2019.06.010. PubMed DOI

Sisein E.A. Biochemistry of free radicals and antioxidants. Scholars Acad. J. Biosci. 2014;2:110–118.

Kumar S. The importance of antioxidant and their role in pharmaceutical science—A review. Asian. J. Med. Chem. Pharm. Sci. 2014;1:27–44.

López-Alarcón C., Denicola A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta. 2013;763:1–10. doi: 10.1016/j.aca.2012.11.051. PubMed DOI

Maulik N., McFadden D., Otani H., Thirunavukkarasu M., Parinandi N.L. Antioxidants in Longevity and Medicine. Oxid. Med. Cell. Longev. 2013;2013:1–3. doi: 10.1155/2013/820679. PubMed DOI PMC

Toda S. Polyphenol Content and Antioxidant Effects in Herb Teas. Chin. Med. 2011;2:29–31. doi: 10.4236/cm.2011.21005. DOI

Esfahani A., Ghoreishi Z., Nikanfar A., Sanaat Z., Ghorbanihaghjo A. Influence of Chemotherapy on the Lipid Peroxidation and Antioxidant Status in Patients with Acute Myeloid Leukemia. Acta Med. Iran. 2012;50:454–458. PubMed

Singh K., Bhori M., Kasu Y.A., Bhat G., Marar T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity—Exploring the armoury of obscurity. Saudi Pharm. J. 2018;26:177–190. doi: 10.1016/j.jsps.2017.12.013. PubMed DOI PMC

Conklin K.A. Chemotherapy-Associated Oxidative Stress: Impact on Chemotherapeutic Effectiveness. Integr. Cancer Ther. 2016;3:294–300. doi: 10.1177/1534735404270335. PubMed DOI

Joensuu H. Systemic chemotherapy for cancer: From weapon to treatment. Lancet Oncol. 2008;9:304. doi: 10.1016/S1470-2045(08)70075-5. PubMed DOI

Perumal S.S., Shanthi P., Sachdanandam P. Combined efficacy of tamoxifen and coenzyme Q10 on the status of lipid peroxidation and antioxidants in DMBA induced breast cancer. Mol. Cell. Biochem. 2005;273:151–160. doi: 10.1007/s11010-005-0325-3. PubMed DOI

Perumal S.S., Shanthi P., Sachdanandam P. Augmented efficacy of tamoxifen in rat breast tumorigenesis when gavaged along with riboflavin, niacin, and CoQ10: Effects on lipid peroxidation and antioxidants in mitochondria. Chem. Biol. Interact. 2005;152:49–58. doi: 10.1016/j.cbi.2005.01.007. PubMed DOI

Simone C.B., 2nd, Simone N.L., Simone V., Simone C.B. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, part I. Altern. Ther. Health Med. 2007;13:22–28. PubMed

Simone C.B., 2nd, Simone N.L., Simone V., Simone C.B. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, part II. Altern. Ther. Health Med. 2007;13:40–47. PubMed

Huthmacher K., Most D. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co.; Weinheim, Germany: 2000. Cyanuric Acid and Cyanuric Chloride; pp. 1–21.

European Chemicals Agency Substance Infocard: 2,4,6-trichloro-1,3,5-triazine. [(accessed on 10 April 2020)]; Available online: Echa.europa.eu/substance-information/-/substanceinfo/100.003.287.

Shafei A.Z., Nagaty H.F., Rifaat M.A., Salem S. Piperazine as Anthelmintic. Lancet. 1955;266:827–828. doi: 10.1016/S0140-6736(55)92427-2. DOI

Wood W.B., Austrian R. Studies on the Antibacterial Action of the Sulfonamide Drugs. J. Exp. Med. 1942;75:383–394. doi: 10.1084/jem.75.4.383. PubMed DOI PMC

Shah D.R., Modh R.P., Chikhalia K.H. Privileged s -triazines: Structure and pharmacological applications. Fut. Med. Chem. 2014;6:463–477. doi: 10.4155/fmc.13.212. PubMed DOI

Singla P., Luxami V., Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur. J. Med. Chem. 2015;102:39–57. doi: 10.1016/j.ejmech.2015.07.037. PubMed DOI

Cascioferro S., Parrino B., Spanò V., Carbone A., Montalbano A., Barraja P., Diana P., Cirrincione G. 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur. J. Med. Chem. 2017;142:523–549. doi: 10.1016/j.ejmech.2017.09.035. PubMed DOI

Marín-Ocampo L., Veloza L.A., Abonia R., Sepúlveda-Arias J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem. 2019;162:435–447. doi: 10.1016/j.ejmech.2018.11.027. PubMed DOI

Tripathi P.N., Srivastava P., Sharma P., Tripathi M.K., Seth A., Tripathi A., Rai S.N., Singh S.P., Shrivastava S.K. Biphenyl–3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem. 2019;85:82–96. doi: 10.1016/j.bioorg.2018.12.017. PubMed DOI

Iraji A., Firuzi O., Khoshneviszadeh M., Nadri H., Edraki N., Miri R. Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer’s disease. Bioorg. Chem. 2018;77:223–235. doi: 10.1016/j.bioorg.2018.01.017. PubMed DOI

Akocak S., Boga M., Lolak N., Tuneg M., Sanku R.K.K. Design, synthesis and biological evaluation of 1,3-diaryltriazene-substituted sulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors. J. Turk. Chem. Soc. Sect. A Chem. 2019;6:63–70. doi: 10.18596/jotcsa.516444. DOI

Narsinghani T., Sharma M.C., Bhargav S. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Med. Chem. Res. 2013;22:4059–4068. doi: 10.1007/s00044-012-0413-3. DOI

Phenolic Compounds: Biological Activity. IntechOpen; London, UK: 2017. Phenolic Antioxidant Capacity: A Review of the State of the Art; pp. 59–74.

Treml J., Leláková V., Šmejkal K., Paulíčková T., Labuda Š., Granica S., Havlík J., Jankovská D., Padrtová T., Hošek J. Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. Biomolecules. 2019;9:468. doi: 10.3390/biom9090468. PubMed DOI PMC

Taslimi P., Köksal E., Gören A.C., Bursal E., Aras A., Kılıç Ö., Alwasel S., Gülçin İ. Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arab. J. Chem. 2020;13:4528–4537. doi: 10.1016/j.arabjc.2019.10.002. DOI

Murlimanju B.V. Neuroprotective effects of resveratrol in Alzheimer rsquo s disease. Front. Biosci. 2020;12:139–149. doi: 10.2741/e863. PubMed DOI

Wu P.-Q., Li B., Yu Y.-F., Su P.-J., Liu X., Zhang Z.-P., Zhi D.-J., Qi F.-M., Fei D.-Q., Zhang Z.-X. Isolation, characterization, and possible anti-Alzheimer’s disease activities of bisabolane-type sesquiterpenoid derivatives and phenolics from the rhizomes of Curcuma longa. Chem. Biodivers. 2020:17. doi: 10.1002/cbdv.202000067. PubMed DOI

Xu Q.-N., Zhu D., Wang G.-H., Lin T., Sun C.-L., Ding R., Tian W.-J., Chen H.-F. Phenolic glycosides and flavonoids with antioxidant and anticancer activities from Desmodium caudatum. Nat. Prod. Res. 2020;34 doi: 10.1080/14786419.2020.1739044. PubMed DOI

Sharman M.J., Verdile G., Kirubakaran S., Münch G. Neurodegeneration and Alzheimer’s Disease. John Wiley; Chichester, UK: 2019. Inflammation in Alzheimer’s Disease, and Prevention with Antioxidants and Phenolic Compounds—What Are the Most Promising Candidates? pp. 233–266.

Pashirova T.N., Burilova E.A., Tagasheva R.G., Zueva I.V., Gibadullina E.M., Nizameev I.R., Sudakov I.A., Vyshtakalyuk A.B., Voloshina A.D., Kadirov M.K., et al. Delivery nanosystems based on sterically hindered phenol derivatives containing a quaternary ammonium moiety: Synthesis, cholinesterase inhibition and antioxidant activity. Chem. Biol. Interact. 2019;310:108753. doi: 10.1016/j.cbi.2019.108753. PubMed DOI

Zhang S., Yu Z., Xia J., Zhang X., Liu K., Sik A., Jin M. Anti-Parkinson’s disease activity of phenolic acids from Eucommia ulmoides Oliver leaf extracts and their autophagy activation mechanism. Food Funct. 2020;11:1425–1440. doi: 10.1039/C9FO02288K. PubMed DOI

Garcia-Moreno J.C., Porta de la Riva M., Martínez-Lara E., Siles E., Cañuelo A. Tyrosol, a simple phenol from EVOO, targets multiple pathogenic mechanisms of neurodegeneration in a C. elegans model of Parkinson’s disease. Neurobiol. Aging. 2019;82:60–68. doi: 10.1016/j.neurobiolaging.2019.07.003. PubMed DOI

Kallscheuer N., Menezes R., Foito A., da Silva M.H., Braga A., Dekker W., Sevillano D.M., Rosado-Ramos R., Jardim C., Oliveira J., et al. Identification and Microbial Production of the Raspberry Phenol Salidroside that Is Active against Huntington’s Disease. Plant Physiol. 2019;179:969–985. doi: 10.1104/pp.18.01074. PubMed DOI PMC

Essa M.M., Moghadas M., Ba-Omar T., Walid Qoronfleh M., Guillemin G.J., Manivasagam T., Justin-Thenmozhi A., Ray B., Bhat A., Chidambaram S.B., et al. Protective Effects of Antioxidants in Huntington’s Disease: An Extensive Review. Neurotox. Res. 2019;35:739–774. doi: 10.1007/s12640-018-9989-9. PubMed DOI

Antonenko T.A., Shpakovsky D.B., Berseneva D.A., Gracheva Y.A., Dubova L.G., Shevtsov P.N., Redkozubova O.M., Shevtsova E.F., Tafeenko V.A., Aslanov L.A., et al. Cytotoxic activity of organotin carboxylates based on synthetic phenolic antioxidants and polycyclic bile acids. J. Organomet. Chem. 2020;909:121089. doi: 10.1016/j.jorganchem.2019.121089. DOI

Teixeira-Guedes C.I., Oppolzer D., Barros A.I., Pereira-Wilson C. Phenolic rich extracts from cowpea sprouts decrease cell proliferation and enhance 5-fluorouracil effect in human colorectal cancer cell lines. J. Funct. Foods. 2019;60:103452. doi: 10.1016/j.jff.2019.103452. DOI

Han M., Li G., Liu X., Li A., Mao P., Liu P., Li H. Phenolic Profile, Antioxidant Activity and Anti-proliferative Activity of Crabapple Fruits. Hortic. Plant J. 2019;5:155–163. doi: 10.1016/j.hpj.2019.01.003. DOI

Golonko A., Pienkowski T., Swislocka R., Lazny R., Roszko M., Lewandowski W. Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system. Eur. J. Med. Chem. 2019;167:291–311. doi: 10.1016/j.ejmech.2019.01.044. PubMed DOI

Garaj V., Puccetti L., Fasolis G., Winum J.Y., Montero J.L., Scozzafava A., Supuran C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties. Bioorg. Med. Chem. Lett. 2004;14:5427–5433. doi: 10.1016/j.bmcl.2004.07.087. PubMed DOI

Havránková E., Csöllei J., Pazdera P. New Approach for the One-Pot Synthesis of 1,3,5-Triazine Derivatives: Application of Cu(I) Supported on a Weakly Acidic Cation-Exchanger Resin in a Comparative Study. Molecules. 2019;24:3586. doi: 10.3390/molecules24193586. PubMed DOI PMC

Havránková E., Csöllei J., Vullo D., Garaj V., Pazdera P., Supuran C.T. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action. Bioorg. Chem. 2018;77:25–37. doi: 10.1016/j.bioorg.2017.12.034. PubMed DOI

Mut-Salud N., Álvarez P.J., Garrido J.M., Carrasco E., Aránega A., Rodríguez-Serrano F. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results. Oxid. Med. Cell. Longev. 2016;2016:1–19. doi: 10.1155/2016/6719534. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...