New Approach for the One-Pot Synthesis of 1,3,5-Triazine Derivatives: Application of Cu(I) Supported on a Weakly Acidic Cation-Exchanger Resin in a Comparative Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
319/2017/FaF
Internal Grant Agency of University of Veterinary and Pharmaceutical Sciences Brno
PubMed
31590377
PubMed Central
PMC6804075
DOI
10.3390/molecules24193586
PII: molecules24193586
Knihovny.cz E-zdroje
- Klíčová slova
- 1,3,5-triazine, Ullmann reaction, one-pot synthesis, supported Cu(I) catalyst,
- MeSH
- katalýza MeSH
- měď chemie MeSH
- molekulární struktura MeSH
- poréznost MeSH
- triaziny chemická syntéza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- měď MeSH
- triaziny MeSH
An efficient and simple methodology for Ullmann Cu(I)-catalyzed synthesis of di- and trisubstituted 1,3,5-triazine derivatives from dichlorotriazinyl benzenesulfonamide and corresponding nucleophiles is reported. Cations Cu(I) supported on macroporous and weakly acidic, low-cost industrial resin of polyacrylate type were used as a catalyst. The reaction times and yields were compared with traditional synthetic methods for synthesis of substituted 1,3,5-triazine derivatives via nucleophilic substitution of chlorine atoms in dichlorotriazinyl benzenesulfonamide. It was found that Ullmann-type reactions provide significantly shortened reaction times and, in some cases, also higher yields. Finally, trisubstituted s-triazine derivatives were effectively prepared via Ullmann-type reaction in a one-pot synthetic design. Six new s-triazine derivatives with potential biological activity were prepared and characterized.
Zobrazit více v PubMed
Al-Turki D.A., Abou-Zeid L.A., Shehata I.A., Al-Omar M.A. Therapeutic and toxic effects of new NSAIDs and related compounds: A review and prospective study. Int. J. Pharm. 2010;6:813–825. doi: 10.3923/ijp.2010.813.825. DOI
Chen X., Zhan P., Liu X., Cheng Z., Meng C., Shao S., Pannecouque C., Clercq E.D., Liu X. Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as potent non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. 2012;20:3856–3864. doi: 10.1016/j.bmc.2012.04.030. PubMed DOI
Shah D.R., Modh R.P., Chikhalia K.H. Privileged s-triazines: Structure and pharmacological applications. Future Med. Chem. 2014;6:463–477. doi: 10.4155/fmc.13.212. PubMed DOI
Singla P., Luxami V., Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur. J. Med. Chem. 2015;102:39–57. doi: 10.1016/j.ejmech.2015.07.037. PubMed DOI
Capasso C., Supuran C.T. An overview of the selectivity and efficiency of the bacterial carbonic anhydrase inhibitors. Curr. Med. Chem. 2015;22:2130–2139. doi: 10.2174/0929867321666141012174921. PubMed DOI
Capasso C., Supuran C. Inhibition of bacterial carbonic anhydrases as a novel approach to escape drug resistance. Curr. Top. Med. Chem. 2017;17:1237–1248. doi: 10.2174/1568026617666170104101058. PubMed DOI
Supuran C.T., Alterio V., Di Fiore A., D’ Ambrosio K., Carta F., Monti S.M., De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med. Res. Rev. 2018;38:1799–1836. doi: 10.1002/med.21497. PubMed DOI
Supuran C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov. 2016;12:61–88. doi: 10.1080/17460441.2017.1253677. PubMed DOI
Supuran C. Carbonic Anhydrases and metabolism. Metabolites. 2018;8:25. doi: 10.3390/metabo8020025. PubMed DOI PMC
Carta F., Garaj V., Maresca A., Wagner J., Avvaru B.S., Robbins A.H., Scozzafava A., McKenna R., Supuran C.T. Sulfonamides incorporating 1,3,5-triazine moieties selectively and potently inhibit carbonic anhydrase transmembrane isoforms IX, XII and XIV over cytosolic isoforms I and II: Solution and X-ray crystallographic studies. Bioorg. Med. Chem. 2011;19:3105–3119. doi: 10.1016/j.bmc.2011.04.005. PubMed DOI
Huthmacher K., Most D. Cyanuric acid and cyanuric chloride. In: Elvers B., editor. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; Weinheim, Germany: 2000.
Garaj V., Puccetti L., Fasolis G., Winum J.-Y., Montero J.-L., Scozzafava A., Vullo D., Innocenti A., Supuran C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties. Bioorg. Med. Chem. Lett. 2004;14:5427–5433. doi: 10.1016/j.bmcl.2004.07.087. PubMed DOI
Garaj V., Puccetti L., Fasolis G., Winum J.-Y., Montero J.-L., Scozzafava A., Vullo D., Innocenti A., Supuran C.T. Carbonic anhydrase inhibitors: Novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX. Bioorg. Med. Cem. Lett. 2005;15:3102–3108. doi: 10.1016/j.bmcl.2005.04.056. PubMed DOI
Afonso C., Lourenco N., Rosatella A. Synthesis of 2,4,6-Trisubstituted-1,3,5-Triazines. Molecules. 2006;11:81–102. doi: 10.3390/11010081. PubMed DOI PMC
Chen H., Dao P., Laporte A., Garbay C. High yielding microwave-assisted synthesis of 2-(arylmethyl)amino-4-arylamino-6-alkyl-1,3,5-triazines. Tetrahedron Lett. 2010;51:3174–3176. doi: 10.1016/j.tetlet.2010.04.042. DOI
Alkalay D., Volk J., Bartlett M.F. Conversion of biguanides into substituted s-triazines assayable by GC or mass fragmentography. J. Pharm. Sci. 1976;65:525–529. doi: 10.1002/jps.2600650412. PubMed DOI
You Q., Wang F., Wu C., Shi T., Min D., Chen H., Zhang W. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides. Org. Biomol. Chem. 2015;13:6723–6727. doi: 10.1039/C5OB00724K. PubMed DOI
Zhang C., Ban M.-T., Zhu K., Zhang L.-Y., Luo Z.-Y., Guo S.-N., Cui D.-M., Zhang Y. Copper-catalyzed synthesis of substituted 2,4-diamino-1,3,5-triazines from 1,1-dibromoalkenes and biguanides. Org. Lett. 2017;19:3947–3949. doi: 10.1021/acs.orglett.7b01608. PubMed DOI
Kore N., Pazdera P. New stable Cu(I) catalyst supported on weakly acidic polyacrylate resin for green C-N coupling: Synthesis of N-(pyridin-4-yl)benzene amines and N,N-bis(pyridine-4-yl)benzene amines. Molecules. 2017;22:2. doi: 10.3390/molecules22010002. PubMed DOI PMC
Kore N., Pazdera P. New stable Cu(I) catalyst supported on weakly acidic polyacrylate resin for “click” chemistry: Synthesis of 1,2,3-triazole and novel synthesis of 1,2,3-triazol-5-amine. Curr. Org. Synth. 2018;15:552–565. doi: 10.2174/1570179415666180110152642. DOI
Reddy K.R., Kumar N.S., Sreedhar B., Kantam M.L. N-Arylation of nitrogen heterocycles with aryl halides and arylboronic acids catalyzed by cellulose supported copper(0) J. Mol. Catal. A Chem. 2006;252:136–141. doi: 10.1016/j.molcata.2006.02.053. DOI
Ouali A., Laurent R., Caminade A.-M., Majoral J.-P., Taillefer M. Enhanced catalytic properties of copper in O- and N-arylation and vinylation reactions, using phosphorus dendrimers as ligands. J. Am. Chem. Soc. 2006;128:15990–15991. doi: 10.1021/ja066505s. PubMed DOI
Choudary B.M., Sridhar C., Kantam M.L., Venkanna G.T., Sreedhar B. Design and evolution of copper apatite catalysts for N- Arylation of heterocycles with chloro- and fluoroarenes. J. Am. Chem. Soc. 2005;127:9948–9949. doi: 10.1021/ja0436594. PubMed DOI
Kantam M.L., Venkanna G.T., Sridhar C., Shiva Kumar K.B. Copper fluorapatite catalyzed N-arylation of heterocycles with bromo and iodoarenes. Tetrahedron Lett. 2006;47:3897–3899. doi: 10.1016/j.tetlet.2006.03.173. DOI
Rout L., Jammi S., Punniyamurthy T. Novel CuO nanoparticle catalyzed C−N cross coupling of amines with iodobenzene. Org. Lett. 2007;9:3397–3399. doi: 10.1021/ol0713887. PubMed DOI
Son S.-U., Park I.-K., Park J., Hyeon T. Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem. Commun. 2004;7:778–779. doi: 10.1039/b316147a. PubMed DOI
Dutta P.K., Sen S., Saha D., Dhar B. Solid supported nano structured Cu-catalyst for solvent/ligand free C 2 amination of azoles. Eur. J. Org. Chem. 2018;2018:657–665. doi: 10.1002/ejoc.201701669. DOI
Islam S.M., Salam N., Mondal P., Roy A.S., Ghosh K., Tuhina K. A highly active reusable polymer anchored copper catalyst for C–O, C–N and C–S cross coupling reactions. 2014, 387, 7–19. J. Mol. Catal. A Chem. 2014;387:7–19. doi: 10.1016/j.molcata.2014.02.007. DOI
Jia Z., Wang K., Li T., Tan B., Gu Y. Functionalized hypercrosslinked polymers with knitted N-heterocyclic carbene–copper complexes as efficient and recyclable catalysts for organic transformations. Catal. Sci. Technol. 2016;6:4345–4355. doi: 10.1039/C5CY02260F. DOI
Benaskar F., Patil N.G., Rebrov E.V., Ben-Abdelmoumen A., Meuldijk J., Hulshof L.A., Hessel V., Schouten J.C. Micro/Milliflow Processing with selective catalyst microwave heating in the Cu-catalyzed ullmann etherification reaction: A μ2-process. ChemSusChem. 2013;6:353–366. doi: 10.1002/cssc.201200504. PubMed DOI
Likhar P.R., Roy S., Roy M., Kantam M.L., De R.L. Silica immobilized copper complexes: Efficient and reusable catalysts for N-arylation of N(H)-heterocycles and benzyl amines with aryl halides and arylboronic acids. J. Mol. Catal. A Chem. 2007;271:57–62. doi: 10.1016/j.molcata.2007.02.036. DOI
Choplin A., Quignard F. From supported homogeneous catalysts to heterogeneous molecular catalysts. Coord. Chem. Rev. 1998;178–180:1679–1702. doi: 10.1016/S0010-8545(98)00062-9. DOI
Ahluwalia V.K., Aggarwal R. Organic Synthesis: Special Techniques. 2nd ed. Alpha Science International; Oxford, England: 2006.
Pazdera P. Handbook on Applications of Ultrasound-Sonochemistry for Sustainability. 1st ed. CRC Press/Taylor & Francis Group; Boca Raton, FL, USA: 2011. Chapter 1. Emerging ubiquity of green chemistry in engineering and technology.
Barbaro P., Liguori F. Ion exchange resins: Catalyst recovery and recycle. Chem. Rev. 2009;109:515–529. doi: 10.1021/cr800404j. PubMed DOI
Keiji O., Mutsumi S. Method for producing hydroxylamine compound using platinum catalyst fixed on ion-exchange resin. U.S. 020060106254 Al. 2006 May 18;
Herrmann W.A., Kratzer R.M., Bliimel J., Friedrich H.B., Fischer R.W., Apperley D.C., Mink J., Berkesi O. Polymer supported catalyst for the effective autoxidation of cumene to cumene hydroperoxide. J. Mol. Catal. A Chem. 1997;120:109–116.
Yu L., Chen D., Li J., Wang P.G. Preparation, characterization, and synthetic uses of Lanthanide(III) catalysts supported on ion exchange resins. J. Org. Chem. 1997;62:3575–3581. doi: 10.1021/jo961933+. DOI
Havránková E., Csollei J., Vullo D., Garaj V., Pazdera P., Supuran C.T. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action. Bioorg. Chem. 2018;77:25–37. doi: 10.1016/j.bioorg.2017.12.034. PubMed DOI
Sambiago C., Marsden S.P., Blacker A.J., McGowan P.C. Copper catalyzed Ullmann type chemistry: From mechanistic aspects to modern development. Chem. Soc. Rev. 2014;43:3525–3550. doi: 10.1039/C3CS60289C. PubMed DOI
Chassaing S., Bénéteau V., Pale P. When CuAAC “click chemistry” goes heterogeneous. Catal. Sci. Technol. 2016;6:923–957. doi: 10.1039/C5CY01847A. DOI