New Approach for the One-Pot Synthesis of 1,3,5-Triazine Derivatives: Application of Cu(I) Supported on a Weakly Acidic Cation-Exchanger Resin in a Comparative Study

. 2019 Oct 05 ; 24 (19) : . [epub] 20191005

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31590377

Grantová podpora
319/2017/FaF Internal Grant Agency of University of Veterinary and Pharmaceutical Sciences Brno

An efficient and simple methodology for Ullmann Cu(I)-catalyzed synthesis of di- and trisubstituted 1,3,5-triazine derivatives from dichlorotriazinyl benzenesulfonamide and corresponding nucleophiles is reported. Cations Cu(I) supported on macroporous and weakly acidic, low-cost industrial resin of polyacrylate type were used as a catalyst. The reaction times and yields were compared with traditional synthetic methods for synthesis of substituted 1,3,5-triazine derivatives via nucleophilic substitution of chlorine atoms in dichlorotriazinyl benzenesulfonamide. It was found that Ullmann-type reactions provide significantly shortened reaction times and, in some cases, also higher yields. Finally, trisubstituted s-triazine derivatives were effectively prepared via Ullmann-type reaction in a one-pot synthetic design. Six new s-triazine derivatives with potential biological activity were prepared and characterized.

Zobrazit více v PubMed

Al-Turki D.A., Abou-Zeid L.A., Shehata I.A., Al-Omar M.A. Therapeutic and toxic effects of new NSAIDs and related compounds: A review and prospective study. Int. J. Pharm. 2010;6:813–825. doi: 10.3923/ijp.2010.813.825. DOI

Chen X., Zhan P., Liu X., Cheng Z., Meng C., Shao S., Pannecouque C., Clercq E.D., Liu X. Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as potent non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. 2012;20:3856–3864. doi: 10.1016/j.bmc.2012.04.030. PubMed DOI

Shah D.R., Modh R.P., Chikhalia K.H. Privileged s-triazines: Structure and pharmacological applications. Future Med. Chem. 2014;6:463–477. doi: 10.4155/fmc.13.212. PubMed DOI

Singla P., Luxami V., Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur. J. Med. Chem. 2015;102:39–57. doi: 10.1016/j.ejmech.2015.07.037. PubMed DOI

Capasso C., Supuran C.T. An overview of the selectivity and efficiency of the bacterial carbonic anhydrase inhibitors. Curr. Med. Chem. 2015;22:2130–2139. doi: 10.2174/0929867321666141012174921. PubMed DOI

Capasso C., Supuran C. Inhibition of bacterial carbonic anhydrases as a novel approach to escape drug resistance. Curr. Top. Med. Chem. 2017;17:1237–1248. doi: 10.2174/1568026617666170104101058. PubMed DOI

Supuran C.T., Alterio V., Di Fiore A., D’ Ambrosio K., Carta F., Monti S.M., De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med. Res. Rev. 2018;38:1799–1836. doi: 10.1002/med.21497. PubMed DOI

Supuran C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov. 2016;12:61–88. doi: 10.1080/17460441.2017.1253677. PubMed DOI

Supuran C. Carbonic Anhydrases and metabolism. Metabolites. 2018;8:25. doi: 10.3390/metabo8020025. PubMed DOI PMC

Carta F., Garaj V., Maresca A., Wagner J., Avvaru B.S., Robbins A.H., Scozzafava A., McKenna R., Supuran C.T. Sulfonamides incorporating 1,3,5-triazine moieties selectively and potently inhibit carbonic anhydrase transmembrane isoforms IX, XII and XIV over cytosolic isoforms I and II: Solution and X-ray crystallographic studies. Bioorg. Med. Chem. 2011;19:3105–3119. doi: 10.1016/j.bmc.2011.04.005. PubMed DOI

Huthmacher K., Most D. Cyanuric acid and cyanuric chloride. In: Elvers B., editor. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; Weinheim, Germany: 2000.

Garaj V., Puccetti L., Fasolis G., Winum J.-Y., Montero J.-L., Scozzafava A., Vullo D., Innocenti A., Supuran C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties. Bioorg. Med. Chem. Lett. 2004;14:5427–5433. doi: 10.1016/j.bmcl.2004.07.087. PubMed DOI

Garaj V., Puccetti L., Fasolis G., Winum J.-Y., Montero J.-L., Scozzafava A., Vullo D., Innocenti A., Supuran C.T. Carbonic anhydrase inhibitors: Novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX. Bioorg. Med. Cem. Lett. 2005;15:3102–3108. doi: 10.1016/j.bmcl.2005.04.056. PubMed DOI

Afonso C., Lourenco N., Rosatella A. Synthesis of 2,4,6-Trisubstituted-1,3,5-Triazines. Molecules. 2006;11:81–102. doi: 10.3390/11010081. PubMed DOI PMC

Chen H., Dao P., Laporte A., Garbay C. High yielding microwave-assisted synthesis of 2-(arylmethyl)amino-4-arylamino-6-alkyl-1,3,5-triazines. Tetrahedron Lett. 2010;51:3174–3176. doi: 10.1016/j.tetlet.2010.04.042. DOI

Alkalay D., Volk J., Bartlett M.F. Conversion of biguanides into substituted s-triazines assayable by GC or mass fragmentography. J. Pharm. Sci. 1976;65:525–529. doi: 10.1002/jps.2600650412. PubMed DOI

You Q., Wang F., Wu C., Shi T., Min D., Chen H., Zhang W. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides. Org. Biomol. Chem. 2015;13:6723–6727. doi: 10.1039/C5OB00724K. PubMed DOI

Zhang C., Ban M.-T., Zhu K., Zhang L.-Y., Luo Z.-Y., Guo S.-N., Cui D.-M., Zhang Y. Copper-catalyzed synthesis of substituted 2,4-diamino-1,3,5-triazines from 1,1-dibromoalkenes and biguanides. Org. Lett. 2017;19:3947–3949. doi: 10.1021/acs.orglett.7b01608. PubMed DOI

Kore N., Pazdera P. New stable Cu(I) catalyst supported on weakly acidic polyacrylate resin for green C-N coupling: Synthesis of N-(pyridin-4-yl)benzene amines and N,N-bis(pyridine-4-yl)benzene amines. Molecules. 2017;22:2. doi: 10.3390/molecules22010002. PubMed DOI PMC

Kore N., Pazdera P. New stable Cu(I) catalyst supported on weakly acidic polyacrylate resin for “click” chemistry: Synthesis of 1,2,3-triazole and novel synthesis of 1,2,3-triazol-5-amine. Curr. Org. Synth. 2018;15:552–565. doi: 10.2174/1570179415666180110152642. DOI

Reddy K.R., Kumar N.S., Sreedhar B., Kantam M.L. N-Arylation of nitrogen heterocycles with aryl halides and arylboronic acids catalyzed by cellulose supported copper(0) J. Mol. Catal. A Chem. 2006;252:136–141. doi: 10.1016/j.molcata.2006.02.053. DOI

Ouali A., Laurent R., Caminade A.-M., Majoral J.-P., Taillefer M. Enhanced catalytic properties of copper in O- and N-arylation and vinylation reactions, using phosphorus dendrimers as ligands. J. Am. Chem. Soc. 2006;128:15990–15991. doi: 10.1021/ja066505s. PubMed DOI

Choudary B.M., Sridhar C., Kantam M.L., Venkanna G.T., Sreedhar B. Design and evolution of copper apatite catalysts for N- Arylation of heterocycles with chloro- and fluoroarenes. J. Am. Chem. Soc. 2005;127:9948–9949. doi: 10.1021/ja0436594. PubMed DOI

Kantam M.L., Venkanna G.T., Sridhar C., Shiva Kumar K.B. Copper fluorapatite catalyzed N-arylation of heterocycles with bromo and iodoarenes. Tetrahedron Lett. 2006;47:3897–3899. doi: 10.1016/j.tetlet.2006.03.173. DOI

Rout L., Jammi S., Punniyamurthy T. Novel CuO nanoparticle catalyzed C−N cross coupling of amines with iodobenzene. Org. Lett. 2007;9:3397–3399. doi: 10.1021/ol0713887. PubMed DOI

Son S.-U., Park I.-K., Park J., Hyeon T. Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem. Commun. 2004;7:778–779. doi: 10.1039/b316147a. PubMed DOI

Dutta P.K., Sen S., Saha D., Dhar B. Solid supported nano structured Cu-catalyst for solvent/ligand free C 2 amination of azoles. Eur. J. Org. Chem. 2018;2018:657–665. doi: 10.1002/ejoc.201701669. DOI

Islam S.M., Salam N., Mondal P., Roy A.S., Ghosh K., Tuhina K. A highly active reusable polymer anchored copper catalyst for C–O, C–N and C–S cross coupling reactions. 2014, 387, 7–19. J. Mol. Catal. A Chem. 2014;387:7–19. doi: 10.1016/j.molcata.2014.02.007. DOI

Jia Z., Wang K., Li T., Tan B., Gu Y. Functionalized hypercrosslinked polymers with knitted N-heterocyclic carbene–copper complexes as efficient and recyclable catalysts for organic transformations. Catal. Sci. Technol. 2016;6:4345–4355. doi: 10.1039/C5CY02260F. DOI

Benaskar F., Patil N.G., Rebrov E.V., Ben-Abdelmoumen A., Meuldijk J., Hulshof L.A., Hessel V., Schouten J.C. Micro/Milliflow Processing with selective catalyst microwave heating in the Cu-catalyzed ullmann etherification reaction: A μ2-process. ChemSusChem. 2013;6:353–366. doi: 10.1002/cssc.201200504. PubMed DOI

Likhar P.R., Roy S., Roy M., Kantam M.L., De R.L. Silica immobilized copper complexes: Efficient and reusable catalysts for N-arylation of N(H)-heterocycles and benzyl amines with aryl halides and arylboronic acids. J. Mol. Catal. A Chem. 2007;271:57–62. doi: 10.1016/j.molcata.2007.02.036. DOI

Choplin A., Quignard F. From supported homogeneous catalysts to heterogeneous molecular catalysts. Coord. Chem. Rev. 1998;178–180:1679–1702. doi: 10.1016/S0010-8545(98)00062-9. DOI

Ahluwalia V.K., Aggarwal R. Organic Synthesis: Special Techniques. 2nd ed. Alpha Science International; Oxford, England: 2006.

Pazdera P. Handbook on Applications of Ultrasound-Sonochemistry for Sustainability. 1st ed. CRC Press/Taylor & Francis Group; Boca Raton, FL, USA: 2011. Chapter 1. Emerging ubiquity of green chemistry in engineering and technology.

Barbaro P., Liguori F. Ion exchange resins: Catalyst recovery and recycle. Chem. Rev. 2009;109:515–529. doi: 10.1021/cr800404j. PubMed DOI

Keiji O., Mutsumi S. Method for producing hydroxylamine compound using platinum catalyst fixed on ion-exchange resin. U.S. 020060106254 Al. 2006 May 18;

Herrmann W.A., Kratzer R.M., Bliimel J., Friedrich H.B., Fischer R.W., Apperley D.C., Mink J., Berkesi O. Polymer supported catalyst for the effective autoxidation of cumene to cumene hydroperoxide. J. Mol. Catal. A Chem. 1997;120:109–116.

Yu L., Chen D., Li J., Wang P.G. Preparation, characterization, and synthetic uses of Lanthanide(III) catalysts supported on ion exchange resins. J. Org. Chem. 1997;62:3575–3581. doi: 10.1021/jo961933+. DOI

Havránková E., Csollei J., Vullo D., Garaj V., Pazdera P., Supuran C.T. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action. Bioorg. Chem. 2018;77:25–37. doi: 10.1016/j.bioorg.2017.12.034. PubMed DOI

Sambiago C., Marsden S.P., Blacker A.J., McGowan P.C. Copper catalyzed Ullmann type chemistry: From mechanistic aspects to modern development. Chem. Soc. Rev. 2014;43:3525–3550. doi: 10.1039/C3CS60289C. PubMed DOI

Chassaing S., Bénéteau V., Pale P. When CuAAC “click chemistry” goes heterogeneous. Catal. Sci. Technol. 2016;6:923–957. doi: 10.1039/C5CY01847A. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...