New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-yl)benzene Amines and N,N-Bis(pyridine-4-yl)benzene Amines
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28025513
PubMed Central
PMC6155682
DOI
10.3390/molecules22010002
PII: molecules22010002
Knihovny.cz E-zdroje
- Klíčová slova
- C-N coupling, polymer solid support, recyclable green catalyst, supported Cu(I) catalyst,
- MeSH
- 2-naftylamin chemie MeSH
- akrylové pryskyřice chemie MeSH
- aniliny chemie MeSH
- elektrony * MeSH
- katalýza MeSH
- koncentrace vodíkových iontů MeSH
- měď chemie MeSH
- opakované použití vybavení MeSH
- piperazin MeSH
- piperaziny chemie MeSH
- pyridinové sloučeniny chemická syntéza MeSH
- technologie zelené chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2-naftylamin MeSH
- akrylové pryskyřice MeSH
- aniliny MeSH
- měď MeSH
- piperazin MeSH
- piperaziny MeSH
- pyridinové sloučeniny MeSH
A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.
Zobrazit více v PubMed
Gujadhur R.K., Venkataraman D., Kintigh J.T. Formation of arylnitrogen bonds using a soluble copper(I) catalyst. Tetrahedron Lett. 2001;42:4791–4793. doi: 10.1016/S0040-4039(01)00888-7. DOI
Gujadhur R.K., Bates C.G., Venkataraman D. Formation of aryl−nitrogen, aryl−oxygen, and aryl−carbon bonds using well-defined copper(I)-based catalysts. Org. Lett. 2001;3:4315–4317. doi: 10.1021/ol0170105. PubMed DOI
Kiyomori A., Marcoux J.F., Buchwald S.L. An efficient copper-catalyzed coupling of aryl halides with imidazoles. Tetrahedron Lett. 1999;40:2657–2660. doi: 10.1016/S0040-4039(99)00291-9. DOI
Klapars A., Antilla J.C., Huang X., Buchwald S.L. A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles. J. Am. Chem. Soc. 2001;123:7727–7729. doi: 10.1021/ja016226z. PubMed DOI
Antilla J.C., Klapars A., Buchwald S.L. The Copper-Catalyzed N-Arylation of Indoles. J. Am. Chem. Soc. 2002;124:11684–11688. doi: 10.1021/ja027433h. PubMed DOI
Wolter M., Klapars A., Buchwald S.L. Synthesis of N-aryl hydrazides by copper-catalyzed coupling of hydrazides with aryl iodides. Org. Lett. 2001;3:3803–3805. doi: 10.1021/ol0168216. PubMed DOI
Xu H., Wolf C. Efficient copper-catalyzed coupling of aryl chlorides, bromides and iodides with aqueous ammonia. Chem. Commun. 2009;21:3035–3037. doi: 10.1039/b904188e. PubMed DOI
Correa A., Bolm C. Ligand-free copper-catalyzed N-arylation of nitrogen nucleophiles. Adv. Synth. Catal. 2007;349:2673–2676. doi: 10.1002/adsc.200700408. DOI
Sperotto E., de Vries J.G., van Klink G.P.M., van Koten G. Ligand-free copper(I) catalyzed N- and O-arylation of aryl halides. Tetrahedron Lett. 2007;48:7366–7370. doi: 10.1016/j.tetlet.2007.08.026. DOI
Jammi S., Sakthivel S., Rout L., Mukherjee T., Mandal S., Mitra R., Saha P., Punniyamurthy T. CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: Scope and mechanism. J. Org. Chem. 2009;74:1971–1976. doi: 10.1021/jo8024253. PubMed DOI
Rout L., Jammi S., Punniyamurthy T. Novel CuO nanoparticle catalyzed C-N cross coupling of amines with iodobenzene. Org. Lett. 2007;9:3397–3399. doi: 10.1021/ol0713887. PubMed DOI
Likhar P.R., Roy S., Roy M., Kantam M.L., de R.L. Silica immobilized copper complexes: Efficient and reusable catalysts for N-arylation of N(H)-heterocycles and benzyl amines with aryl halides and arylboronic acids. J. Mol. Catal. A Chem. 2007;271:57–62. doi: 10.1016/j.molcata.2007.02.036. DOI
Lechat P., Tesleff S., Bownan W.C. Aminopyridines and Similarly Acting Drugs. Pergamon Press; Oxford, UK: 1982.
Burgeson J.R., Moore A.L., Boutilier J.K., Cerruti N.R., Gharaibeh D.N., Lovejoy C.E., Amberg S.M., Hruby D.E., Tyavanagimatt S.R., Allen R.D., et al. SAR analysis of a series of acylthiourea derivatives possessing broad-spectrum antiviral activity. Bioorg. Med. Chem. Lett. 2012;22:4263–4272. doi: 10.1016/j.bmcl.2012.05.035. PubMed DOI
Schulte J.P., Tweedie S.R. Palladium-catalyzed couplings of heteroaryl amines with aryl halides using sodium phenolate as the stoichiometric base. Synlett. 2007;15:2331–2336. doi: 10.1055/s-2007-985597. DOI
Keddie D.J., Guerrero-Sanchez C., Moad G., Mulder R.J., Rizzardo E., Thang S.H. Chain transfer kinetics of acid/base switchable N-aryl-N-pyridyl dithiocarbamate RAFT agents in methyl acrylate, N-vinylcarbazole and vinyl acetate polymerization. Macromolecules. 2012;45:4205–4215. doi: 10.1021/ma300616g. DOI
Barbaro P., Liguori F. Ion exchange resins: Catalyst recovery and recycle. Chem. Rev. 2009;109:515–529. doi: 10.1021/cr800404j. PubMed DOI
Keiji O., Mutsumi S. Method for Producing Hydroxylamine Compound Using Platinum Catalyst Fixed on Ion-Exchange Resin. U.S. 020060106254 Al. 2006 May 18;
Herrmann W.A., Kratzer R.M., Bliimel J., Friedrich H.B., Fischer R.W., Apperley D.C., Mink J., Berkesi O. Polymer supported catalyst for the effective autoxidation of cumene to cumene hydroperoxide. J. Mol. Catal. A Chem. 1997;120:109–116.
Yu L., Chen D., Li J., Wang P.G. Preparation, characterization, and synthetic uses of Lanthanide(III) catalysts supported on ion exchange resins. J. Org. Chem. 1997;62:3575–3581. doi: 10.1021/jo961933+. DOI
Parkash R., Zpka J. The reaction between copper(II) and cyanide ions. Microchem. J. 1972;17:309–317. doi: 10.1016/0026-265X(72)90069-0. DOI
Zimmerman L. Toxicity of copper and ascorbic acid to Serratia marcescens. J. Bacteriol. 1966;91:1537–1542. PubMed PMC
Labuda J., Korgova E. Reaction of macrocyclic complex Cu(TAAB)2+ with hydroxylamine. Chem. Papers. 1986;40:301–307.
Nguyen L.M., Dellinger M.E., Lee J.T., Quinlan R.A., Rheingold A.L., Pike R.D. Convenient synthesis of copper(I) thiolates and related compounds. Inorg. Chim. Acta. 2005;358:1331–1336. doi: 10.1016/j.ica.2004.11.030. DOI
Dams M., Vsarman E. The reduction of copper sulphate with hydroxyl amine. J. Am. Chem. Soc. 1909;31:637–640.
Shigetomi Y., Arimoto R., Nagahota T. Reducing elution method for copper(II) in cation-exchange chromatography by hydroxylamine hydrochloride solution. Talanta. 1972;19:1210–1213. doi: 10.1016/0039-9140(72)80065-1. PubMed DOI
Purolite®. [(accessed on 20 November 2016)]. Available online: http://www.purolite.com/product/c104plus.
Zoghbi M., Chen L. Synthesis of Pharmaceutically Useful Pyridine Derivatives. U.S. Patent 6437139. 2002 Aug 20;
Brenelli E.C.S., Moran P.J.S. The reactivity of some primary amines in SN2Ar reactions with 2- and 4-chloro-1-methylpyridinium ions. J. Chem. Soc. Perkin Trans. 2. 1989:1219–1222. doi: 10.1039/p29890001219. DOI