Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37342155
PubMed Central
PMC10277272
DOI
10.3114/sim.2022.103.04
Knihovny.cz E-zdroje
- Klíčová slova
- 35 new taxa, Chaetosphaeriaceae, molecular systematics, phialidic conidiogenesis, soil fungi, species delimitation methods, wood-inhabiting fungi,
- Publikační typ
- časopisecké články MeSH
Chloridium is a little-studied group of soil- and wood-inhabiting dematiaceous hyphomycetes that share a rare mode of phialidic conidiogenesis on multiple loci. The genus has historically been divided into three morphological sections, i.e. Chloridium, Gongromeriza, and Psilobotrys. Sexual morphs have been placed in the widely perceived genus Chaetosphaeria, but unlike their asexual counterparts, they show little or no morphological variation. Recent molecular studies have expanded the generic concept to include species defined by a new set of morphological characters, such as the collar-like hyphae, setae, discrete phialides, and penicillately branched conidiophores. The study is based on the consilience of molecular species delimitation methods, phylogenetic analyses, ancestral state reconstruction, morphological hypotheses, and global biogeographic analyses. The multilocus phylogeny demonstrated that the classic concept of Chloridium is polyphyletic, and the original sections are not congeneric. Therefore, we abolish the existing classification and propose to restore the generic status of Gongromeriza and Psilobotrys. We present a new generic concept and define Chloridium as a monophyletic, polythetic genus comprising 37 species distributed in eight sections. In addition, of the taxa earlier referred to Gongromeriza, two have been redisposed to the new genus Gongromerizella. Analysis of published metabarcoding data showed that Chloridium is a common soil fungus representing a significant (0.3 %) proportion of sequence reads in environmental samples deposited in the GlobalFungi database. The analysis also showed that they are typically associated with forest habitats, and their distribution is strongly influenced by climate, which is confirmed by our data on their ability to grow at different temperatures. We demonstrated that Chloridium forms species-specific ranges of distribution, which is rarely documented for microscopic soil fungi. Our study shows the feasibility of using the GlobalFungi database to study the biogeography and ecology of fungi. Taxonomic novelties: New genus: Gongromerizella Réblová; New sections: Chloridium section Cryptogonytrichum Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Gonytrichopsis Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Metachloridium Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Volubilia Réblová, Hern.-Restr., M. Kolařík & F. Sklenar; New species: Chloridium bellum Réblová & Hern.-Restr., Chloridium biforme Réblová & Hern.-Restr., Chloridium detriticola Réblová & Hern.-Restr., Chloridium gamsii Réblová & Hern.-Restr., Chloridium guttiferum Réblová & Hern.-Restr., Chloridium moratum Réblová & Hern.-Restr., Chloridium peruense Réblová & Hern.-Restr., Chloridium novae-zelandiae Réblová & Hern.-Restr., Chloridium elongatum Réblová & Hern.-Restr., Chloridium volubile Réblová & Hern.-Restr.; New varieties: Chloridium bellum var. luteum Réblová & Hern.-Restr., Chloridium detriticola var. effusum Réblová & Hern.-Restr., Chloridium chloridioides var. convolutum Réblová & Hern.-Restr.; New combinations: Chloridium section Gonytrichum (Nees & T. Nees) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Mesobotrys (Sacc.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Pseudophialocephala (M.S. Calabon et al.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium simile (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium chloridioides (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium subglobosum (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium fuscum (Corda) Réblová & Hern.-Restr., Chloridium ypsilosporum (Hol.-Jech.) Réblová & Hern.-Restr., Chloridium costaricense (G. Weber et al.) Réblová & Hern.-Restr., Chloridium cuneatum (N.G. Liu et al.) Réblová & Hern.-Restr., Fusichloridium cylindrosporum (W. Gams & Hol.-Jech.) Réblová, Gongromeriza myriocarpa (Fr.) Réblová, Gongromeriza pygmaea (P. Karst.) Réblová, Gongromerizella lignicola (F. Mangenot) Réblová, Gongromerizella pachytrachela (W. Gams & Hol.-Jech) Réblová, Gongromerizella pini (Crous & Akulov) Réblová; New name: Chloridium pellucidum Réblová & Hern.-Restr.; Epitypifications (basionyms): Chaetopsis fusca Corda, Gonytrichum caesium var. subglobosum W. Gams & Hol.-Jech.; Lectotypification (basionym): Gonytrichum caesium Nees & T. Nees. Citation: Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M (2022). Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Studies in Mycology 103: 87-212. doi: 10.3114/sim.2022.103.04.
Zobrazit více v PubMed
Asplund J, Kauserud H, Ohlson M, et al. (2019). Spruce and beech as local determinants of forest fungal community structure in litter, humus and mineral soil. FEMS Microbiology Ecology 95: fiy232. PubMed
Balami S, Vašutová M, Košnar J, et al. (2021). Soil fungal communities in abandoned agricultural land has not yet moved towards the seminatural forest. Forest Ecology and Management 491: 119181.
Barron GL. (1968). The Genera of Hyphomycetes from Soil. Williams & Wilkins Co., Baltimore, USA.
Barron GL, Bhatt GC. (1967). A new species of Gonytrichum from soil. Mycopathologia et Mycologia Applicata 32: 126–128. PubMed
Bengtsson-Palme J, Ryberg M, Hartmann M, et al. (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution 4: 914–919.
Benucci GMN, Bonito V, Bonito G. (2019). Fungal, bacterial, and archaeal diversity in soils beneath native and introduced plants in Fiji, South Pacific. Microbial Ecology 78: 136–146. PubMed
Booth C. (1957). Studies of Pyrenomycetes: I. Four species of Chaetosphaeria, two with Catenularia conidia. II. Melanopsamma pomiformis and its Stachybotrys conidia. Mycological Papers 68: 1–27.
Bouckaert R, Vaughan TG, Barido-Sottani J, et al. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15: e1006650. PubMed PMC
Carstens BC, Pelletier TA, Reid NM, et al. (2013). How to fail at species delimitation. Molecular Ecology 22: 4369–4383. PubMed
Castresana J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. PubMed
Coleman AW. (2009). Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution 50: 197–203. PubMed
Coleman AW, Vacquier VD. (2002). Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis). Journal of Molecular Evolution 54: 246–257. PubMed
Constantinescu O, Holm K, Holm L. (1995). Teleomorph-anamorph connections in Ascomycetes: the anamorphs of three species of Chaetosphaeria. Mycological Research 99: 585–592.
Corda ACJ. (1837). Icones fungorum hucusque cognitorum I. J.G. Calve, Prague, Czech Republic.
Crous PW, Shivas RG, Quaedvlieg W, et al. (2014). Fungal Planet description sheets: 214–280. Persoonia 32: 184–306. PubMed PMC
Crous PW, Schumacher RK, Wingfield MJ, et al. (2015). Fungal systematics and evolution: FUSE 1. Sydowia 67: 81–118.
Crous PW, Verkley GJM, Christensen M, et al. (2012). How important are conidial appendages? Persoonia 28: 126–137. PubMed PMC
Crous PW, Verkley GJM, Groenewald JZ, et al. (2019). Fungal Biodiversity. Westerdijk Laboratory Manual Series 1. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
Crous PW, Wingfield MJ, Guarro J, et al. (2013). Fungal Planet description sheets: 154–213. Persoonia 31: 188–296. PubMed PMC
Crous PW, Wingfield MJ, Schumacher RK, et al. (2020). New and Interesting Fungi. 3. Fungal Systematics and Evolution 6: 157–231. PubMed PMC
Cruz ACR da, Gusmão LFP. (2009). Fungos conidiais na Caatinga: espécies lignícolas. Acta Botanica Brasilica 23: 1133–1144.
Curlevski NJA, Drigo B, Cairney JW, et al. (2014). Influence of elevated atmospheric CO2 and water availability on soil fungal communities under Eucalyptus saligna. Soil Biology and Biochemistry 70: 263–271.
Currah RS, Tsuneda A, Murakami S. (1993). Morphology and ecology of Phialocephala fortinii in roots of Rhododendron brachycarpum. Canadian Journal of Botany 71: 1639–1644.
Darty K, Denise A, Ponty Y. (2009). VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25: 1974–1975 PubMed PMC
Dayarathne MC, Jones EBG, Maharachchikumbura SSN, et al. (2020). Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere 11: 1–188.
Domsch KH, Gams W, Anderson TH. (2007). Compendium of Soil Fungi. IHW-Verlag Eching, Germany.
Drummond AJ, Xie W, Heled J. (2012). Bayesian inference of species trees from multilocus data using *BEAST. Molecular Biology and Evolution 29: 1969–1973. PubMed PMC
Ellis MB. (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England.
Ellis JB, Everhart BM. (1883). New species of fungi. Bulletin of the Torrey Botanical Club 10(9): 97–98.
Fehrer J, Réblová M, Bambasová V, et al. (2019). The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Studies in Mycology 92: 195–225. PubMed PMC
Fernández FA, Huhndorf SM. (2005). New species of Chaetosphaeria, Melanopsammella and Tainosphaeria gen. nov. from the Americas. Fungal Diversity 18: 15–57.
Fernández FA, Miller AN, Huhndorf SM, et al. (2006) Systematics of the genus Chaetosphaeria and its allied genera: morphological and phylogenetic diversity in north temperate and neotropical taxa. Mycologia 98: 121–130. PubMed
Fries EM. (1823). Systema Mycologicum 2(2): 276–620.
Fujisawa T, Barraclough TG. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 62: 707–724. PubMed PMC
Gams W, Holubová-Jechová V. (1976). Chloridium and some other dematiaceous hyphomycetes growing on decaying wood. Studies in Mycology 13: 1–99.
Gams W, Holubová-Jechová V. (1981). Chloridium and some other dematiaceous hyphomycetes growing on decaying wood. Corrections and additions. Mycotaxon 13: 257–258.
Gilman JC, Abbott EV. (1927). A summary of the soil fungi. Iowa State College Journal of Science 1: 225–343.
Glass NL, Donaldson GC. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. PubMed PMC
Glässnerová K, Sklenář F, Jurjeviæ Ž, et al. (2022) A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1–51. PubMed PMC
Goidànich G. (1933). Inforno ad alcuni micromiceti nuovi o rari. Annales Mycologici 31: 134–143.
Goos RD. (1969). Conidium ontogeny in Cacumisporium capitulatum. Mycologia 61: 52–56.
Groenewald M, Lombard L, de Vries M, et al. (2018). Diversity of yeast species from Dutch garden soil and the description of six novel Ascomycetes. FEMS Yeast Research 18: foy076. PubMed
Grove WB. (1886). New or noteworthy fungi: Part III. Journal of Botany, British and Foreign. 24: 129–137.
Gutell RR, Gray MW, Schnare MN. (1993). A compilation of large subunit (23S and 23 S-like) ribosomal RNA structures. Nucleic Acids Research 21: 3055–3074. PubMed PMC
Grünig CR, Sieber TN, Rogers SO, et al. (2002). Genetic variability among strains of Phialocephala fortinii and phylogenetic analysis of the genus Phialocephala based on rDNA ITS sequence comparisons. Canadian Journal of Botany 80: 1239–1249.
Hall TA. (1999). BioEdit 5.0.9: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Hammill T. M (1972). Electron microscopy of conidiogenesis of Chloridium chlamydosporis. Mycologia 64: 1054–1065.
Harrington TC. (1988). Leptographium species, their distributions, hosts and insect vectors. In: Leptographium root diseases on conifers (Harrington TC, Cobb FW, jr, eds). American Phytopathological Society Press, St. Paul, Minnesota: 1–39.
Hashimoto A, Sato G, Matsuda T, et al. (2015). Taxonomic revision of Pseudolachnea and Pseudolachnella, and establishment of Neopseudolachnella and Pseudodinemasporium genera nova. Mycologia 107: 383–408. PubMed
Hernández-Restrepo M, Gené J, Castañeda-Ruiz RF, et al. (2017). Phylogeny of saprobic microfungi from Southern Europe. Studies in Mycology 86: 53–97. PubMed PMC
Holubová-Jechová V. (1982). New or interesting phialidic hyphomycetes from Cuba. Mycotaxon 15: 277–292.
Hoog de GS, Gerrits van den Ende AH. (1998). Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41: 183–189. PubMed
Hubka V, Barrs V, Dudová Z, et al. (2018). Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia 41: 142–174. PubMed PMC
Hughes SJ. (1951). Stachylidium, Gonytrichum, Mesobotrys, Chaetopsis and Chaetopsella. Transactions of the British Mycological Society 34: 551–576.
Hughes SJ. (1953). Conidiophores, conidia and classification. Canadian Journal of Botany 31: 577–659.
Hughes SJ. (1958). Revisiones Hyphomycetum aliquot cum appendice de nominibus rejiciendis. Canadian Journal of Botany 36: 727–836.
Hughes SJ, Kendrick WB. (1968). New Zealand Fungi 12. Menispora, Codinaea, Menisporopsis. New Zealand Journal of Botany 6: 323–375.
Huhndorf SM, Fernández FA. (2005). Teleomorph-anamorph connections: Chaetosphaeria raciborskii and related species, and their Craspedodidymum-like anamorphs. Fungal Diversity 19: 23–49.
Hyde KD, Norphanphoun C, Maharachchikumbura SSN, et al. (2020). Refined families of Sordariomycetes. Mycosphere 11: 305–1059.
Iwamoto S, Tokumasu S. (2001). Dematiaceous hyphomycetes inhabiting decaying blackish needles of Abies firma and their distribution in the Kanto district, Japan. Mycoscience 42: 273–279.
Jacobs A, Coetzee MPA, Wingfield BD, et al. (2003). Phylogenetic relationships among Phialocephala species and other Ascomycetes. Mycologia 95: 637–645. PubMed
Jacobs K, Wingfield MJ. (2001). Leptographium species: tree pathogens, insect associates and agents of blue-stain. American Phytopathological Society Press, St. Paul, Minnesota: 1–224.
Jones G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology 74: 447–467. PubMed
Jones G, Aydin Z, Oxelman B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31: 991–998. PubMed
Jong SC, Davis EE. (1972). Phialocephala humicola, a new hyphomycete. Mycologia 64: 1351–1356
Jong SC, Davis EE. (1975). Phialocephala gabalongii as a synonym of Phialocephala humicola. Mycotaxon 3: 126–128.
Jörgensen K, Granath G, Strengbom J, et al. (2022). Links between boreal forest management, soil fungal communities and below-ground carbon sequestration. Functional Ecology 36: 392–405.
Katoh K, Standley DM. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. PubMed PMC
Kharwar RN, Verma VC, Strobel G, et al. (2008). The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Current Science 95: 228–233.
Kekkonen M, Hebert PD. (2014). DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14: 706–715. PubMed PMC
Kendrick WB. (1961). The Leptographium complex. Phialocephala gen. nov. Canadian Journal of Botany 39: 1079–1085.
Kendrick WB. (1963). The Leptographium complex. Two new species of Phialocephala. Canadian Journal of Botany 41: 1015–1023.
Kendrick WB. (ed) (1971). Taxonomy of Fungi Imperfecti. Proceedings of the First International Specialists’ Workshop Conference on Criteria and Terminology in the Classification of Fungi Imperfecti, Kananaskis, Alberta, Canada. University of Toronto Press, Canada.
Klich MA. (2002). Biogeography of Aspergillus species in soil and litter. Mycologia 94: 21–27. PubMed
Kiyuna T, An K-D, Kigawa R, et al. (2012). Bristle-like fungal colonizers on the stone walls of the Kitora and Takamatsuzuka Tumuli are identified as Kendrickiella phycomyces. Mycoscience 53: 446–459.
Landvik S. (1996). Neolecta, a fruit-body-producing genus of the basal ascomycetes, as shown by SSU and LSU DNA sequences. Mycological Research 100: 199–202.
Lee S, Go S-J. (2000). A polyphialidic hyphomycete Gonytrichum macrocladum new to Korea from the arable soil in Jinju-shi. Mycobiology 28: 127–129.
Letunic I, Bork P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research 44: W242–W245. PubMed PMC
Li C-X, Yu X-D, Dong W, et al. (2021). Freshwater hyphomycetes in Sordariomycetes: two new species of Tainosphaeria (Chaetosphaeriaceae, Chaetosphaeriales) from Thailand. Phytotaxa 509: 56–68.
Liu H, Pan F-J, Han X-Z, et al. (2020). A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops. Journal of Integrative Agriculture 19: 866–880.
Lin CG, McKenzie EHC, Liu JK, et al. (2019). Hyaline-spored chaetosphaeriaceous hyphomycetes from Thailand and China, with a review of the family Chaetosphaeriaceae. Mycosphere 10: 655–700.
Lindau G. (1907). Fungi Imperfecti: Hyphomycetes (erste Hälfte), Mucedinaceae, Dematiaceae (Phaeosporae und Phaeodidymae). In: Dr. Rabenhorst’s Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz. 1. Pilze. 2nd ed. Verlag von Eruard Kummer, Leipzig, Germany.
Link HF. (1809). Observationes in ordines plantarum naturales. Dissertatio I. Magazin der Gesellschaft Naturforschenden Freunde Berlin 3: 3–42.
Luo ZL, Hyde KD, Liu JK, et al. (2019). Freshwater Sordariomycetes. Fungal Diversity 99: 451–660.
Ma Y-R, Xia J-W, Gao J-M, et al. (2016). Anacacumisporium, a new genus based on morphology and molecular analyses from Hainan, China. Cryptogamie Mycologie 37: 45–59.
Magyar D, Shoemaker RA, Bobvos J, Crous PW, et al. (2011). Pyrigemmula, a novel hyphomycete genus on grapevine and tree bark from Hungary. Mycological Progress 10: 307–314.
Maharachchikumbura SSN, Chen Y, Ariyawansa HA, et al. (2021). Integrative approaches for species delimitation in Ascomycota. Fungal Diversity 109: 155–179.
Maggi O, Persiani AM. (1984). Codinaea coffeae and Phialocephala xalapensis, two new hyphomycetes from Mexico. Mycotaxon 20: 251–258.
Maggi O, Persiani AM, Casado MA, et al. (1990). Esdaphic mycoflora recovery in tropical forests after shifting cultivations. Acta Ecologica 11: 337–350.
Malloch D. (1981). Moulds: Their isolation, cultivation and identification. University of Toronto Press, Ontario, Canada.
Manawasinghe IS, Calabon MS, Jones EBG, et al. (2022). Mycosphere notes 345–386. Mycosphere 13: 454–557.
Mangenot F. (1952). Recherches méthodiques sur les champignons de certains bois en décomposition. Thesis, Paris, France.
Marin-Felix Y, Hernández-Restrepo M, Iturrieta-González I, et al. (2019). Genera of phytopathogenic fungi: GOPHY 3. Studies in Mycology 94: 1–124. PubMed PMC
Markham NR, Zuker M. (2008). UNAFold: Software for Nucleic Acid Folding and Hybridization. Methods in Molecular Biology 453: 3–31. PubMed
Massee GE. (1887). British Pyrenomycetes. Grevillea 16(78): 34–39.
Matsushima T. (1975). Icones Microfungorum a Matsushima lectorum. Kobe, Japan.
Miller MA, Pfeiffer W, Schwartz T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA: 1–8.
Morgan-Jones G, Goos RD. (1992). Chloridium virescens and Helicosporium virescens, binominals for different fungi based on the same basionym Dematium virescens. Mycologia 84: 921–923.
Morgan-Jones G, Sinclair RC, Eicker A. (1991). Notes on Hyphomycetes. LXII: Concerning Chloridium virescens var. allantosporum, a new taxon, C. virescens var. caudigerum, and Chloridium phaeosporum, from southern Africa. Mycotaxon 41: 459–468.
Meyer J. (1959). Moisissures du sol et des litières de la region de Yangambi (Congo Belge). Publications de l’Institut national pour l’étude agronomique du Congo Belge 75: 1–211.
Meyer W, Irinyi L, Hoang MTV, et al. (2019). Database establishment for the secondary fungal DNA barcode translational elongation factor 1α (TEF1α). Genome 62: 160–169. PubMed
Minh BQ, Schmidt HA, Chernomor O, et al. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. PubMed PMC
Müller T, Philippi N, Dandekar T, et al. (2007). Distinguishing species. RNA 13: 1469–1472. PubMed PMC
Müller E, von Arx JA. (1962). Die Gattungen der didymosporen Pyrenomyceten. Beiträge zur Kryptogamenflora der Schweiz 11(2): 1–922.
Mundra S, Kjønaas OJ, Morgado LN, et al. (2021). Soil depth matters: shift in composition and inter-kingdom co-occurrence patterns of microorganisms in forest soils. FEMS Microbiology Ecology 97: fiab022. PubMed PMC
Nees von Esenbeck CGD, Nees von Esenbeck TFL. (1818). De plantis nonnullis e mycetoidearum regno tum nuper detectis, tum minus cognitis commentatio prior doctoris Nees ab Esenbeck et Friderici Nees fratrum. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum 9: 226–262.
Novinscak A, Goyer C, Zebarth BJ, et al. (2016). Novel P450nor gene detection assay used to characterize the prevalence and diversity of soil fungal denitrifiers. Applied and Environmental Microbiology 82: 4560–4569. PubMed PMC
O’Donnell K, Cigelnik E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103–116. PubMed
Odriozola I, Navrátilová D, Tláskalová P, et al. (2021). Predictors of soil fungal biomass and community composition in temperate mountainous forests in Central Europe. Soil Biology and Biochemistry 161: 108366.
Onofri S, Pagano S, Zucconi L. (1994). Conidiogenesis in Phialocephala humicola. Mycological Research 98: 745–748.
Paradis E. (2010). Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26: 419–420. PubMed
Patouillard NT, Lagerheim G. de (1891). Champignons de l’Equateur (Pugillus I). Bulletin de la Société Mycologique de France 7: 158–184.
Persoon CH. (1794). Neuer Versuch einer systematischen Eintheilung der Schwämme. Neues Magazin für die Botanik 1: 63–80.
Persoon CH. (1822). Mycologia Europaea 1: 1–356.
Posada D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. PubMed
Prabhugaonkar A, Bhat DJ. (2009). Rattania setulifera, an undescribed endophytic hyphomycete on rattans from Western Ghats, India. Mycotaxon 108: 217–222.
Preuss CGT. (1851). Übersicht untersuchter pilze, besonders aus der umgegend von Hoyerswerda. Linnaea 24: 99–153.
Puillandre N, Lambert A, Brouillet S, et al. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877. PubMed
R. Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
Rabenhorst GL. (1844). Deutschlands Kryptogamenflora. 1. Pilze. Verlag Eduard Sommer, Leipzig, Germany.
Rambaut A, Drummond AJ, Xie D, et al. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904. PubMed PMC
Rao V, de Hoog GS. (1986). New or critical hyphomycetes from India. Studies in Mycology 28: 1–84.
Réblová M, Barr ME, Samuels GJ. (1999). Chaetosphaeriaceae, a new family for Chaetosphaeria and its relatives. Sydowia 51: 49–70.
Réblová M, Gams W. (1999) Teleomorph-anamorph connections in Ascomycetes. 1. Cylindrotrichum and Cacumisporium anamorphs of Chaetosphaeria. Czech Mycology 51: 1–40.
Réblová M, Gams W. (2000). Life-history of Ascomycetes: Two new species of Chaetosphaeria with Chloridium- and Chloridium-Dictyochaeta anamorphs. Mycoscience 41: 129–138.
Réblová M, Hernández-Restrepo M, Fournier J, et al. (2020). New insights into the systematics of Bactrodesmium and its allies and introducing new genera, species and morphological patterns in the Pleurotheciales and Savoryellales (Sordariomycetes). Studies in Mycology 95: 415–466. PubMed PMC
Réblová M, Kolařík M, Nekvindová J, et al. (2021c). Phylogeny, global biogeography and pleomorphism of Zanclospora. Microorganisms 9: 706. PubMed PMC
Réblová M, Kolařík M, Nekvindová J, et al. (2021b). Phylogenetic reassessment, taxonomy and biogeography of Codinaea and similar fungi. Journal of Fungi 7: 1097. PubMed PMC
Réblová M, Miller AN, Rossman AY, et al. (2016) Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 7: 131–153. PubMed PMC
Réblová M, Nekvindová J, Hernández-Restrepo M. (2021d). Reflections on Menisporopsis, Multiguttulispora and Tainosphaeria using molecular and morphological data. Journal of Fungi 7: 438. PubMed PMC
Réblová M, Nekvindová J, Kolařík M, et al. (2021a). Delimitation and phylogeny of Dictyochaeta, and introduction of Achrochaeta and Tubulicolla, genera nova. Mycologia 113: 390–433. PubMed
Réblová M, Nekvindová J, Miller AN. (2021e). Phylogeny and taxonomy of Catenularia and similar fungi with catenate conidia. MycoKeys 81: 1–44. PubMed PMC
Réblová M, Winka K. (2000). Phylogeny of Chaetosphaeria and its anamorphs based on morphological and molecular data. Mycologia 92: 939–934.
Reddy SR, Reddy SS. (1980). Gonytrichum state of Melanopsammella inaequalis: a new record to Indian mycoflora. Current Science 49: 29–30.
Rehner S, Buckley E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98. PubMed
Robert V, Szöke S, Eberhardt U, et al. (2011). The quest for a general and reliable fungal DNA barcode. The Open and Applied Informatics Journal 5: 45–61.
Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. PubMed PMC
Rossman AY, Samuels GJ, Rogerson CT, et al. (1999). Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Studies in Mycology 42: 1–248.
Rossum van G, Drake FL. (2019). Python language reference, version 3. Python Software Foundation.
Saccardo PA. (1877). Fungi Italici Autographice Delineati. Fascs 1–4: tabs 1–160. Patavii, Italy.
Saccardo PA. (1879). Fungi Gallici lecti a cl. viris P. Brunaud, C.C. Gillet et Abb. Letendre. Michelia 1(5): 500–538.
Saccardo PA. (1880). Conspectus generum fungorum Italiae inferiorum nempe ad Sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium systemate sporologico dispositorum. Michelia 2(6): 1–38.
Saccardo PA. (1886). Sylloge Hyphomycetum. Sylloge Fungorum 4: 1–807.
Sawada K, Watanabe S, Nguyen HL, et al. (2021). Comparison of the structure and diversity of root-associated and soil microbial communities between Acacia plantations and native tropical mountain forests. Frontiers in Microbiology 12: 735121. PubMed PMC
Schoch CL, Seifert KA, Huhndorf SM, et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences 109: 6241–6246. PubMed PMC
Schoch C, Sung GH, López-Giráldez F, et al. (2009). The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58: 224–239. PubMed
Seifert KA. (2017). When should we describe species? IMA Fungus 8: A37–A39.
Seifert K, Morgan-Jones G, Gams W, et al. (2011). The Genera of Hyphomycetes. CBS Biodiversity Series no. 9: 1–997. CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands
Sharma AD, Munjal RL. (1978). The genera Ceratocladium and Gonytrichum in India. Indian Phytopathology 31: 319–322.
Sklenář F, Jurjeviæ Ž, Houbraken J, et al. (2021). Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species. Studies in Mycology 99: 100–120. PubMed PMC
Sklenář F, Glässnerová K, Jurjeviæ Ž, et al. (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lesson learned about intraspecific variability. Studies in Mycology 102: 53–93. PubMed PMC
Sivasithamparam K. (1975). Two dematiaceous hyphomycetes with a similar mode of conidiogenesis. Transactions of the British Mycological Society 64: 335–338.
Somrithipol S, Sakayaroj J, Rungjindamai N, et al. (2008). Phylogenetic relationship of the coelomycete genus Infundibulomyces based on nuclear rDNA data. Mycologia 100: 735–741. PubMed
Stamatakis A. (2014). RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. PubMed PMC
Stielow JB, Lévesque CA, Seifert KA, et al. (2015). One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35: 242–263. PubMed PMC
Subramanian CV. (1955). Fungi imperfecti from Madras - VII. Proceedings of the Indian Academy of Sciences Section B 42(6): 283–292.
Sükösd Z, Knudsen B, Kjems J, et al. (2012). PPfold 3.0: Fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics 28: 2691–2692. PubMed
Sun X, Hu Y-H, Wang J, et al. (2021). Efficient and stable metabarcoding sequencing data using a DNBSEQ-G400 sequencer validated by comprehensive community analyses. Gigabyte 2021. PubMed PMC
Sutton BC. (1973). Hyphomycetes from Manitoba and Saskatchewan, Canada. Mycological Papers 132: 1–143.
Swart HJ. (1959). A comparative study of the genera Gonytrichum and Bisporomyces. Antonie van Leeuwenhoek 25: 439–444. PubMed
Tamura K, Stecher G, Kumar S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38: 3022–3027. PubMed PMC
Tanney JB, Douglas B, Seifert KA. (2016) Sexual and asexual states of some endophytic Phialocephala species of Picea. Mycologia 108: 255–280. PubMed
Tanney JB, Seifert KA. (2020). Mollisiaceae: An overlooked lineage of diverse endophytes. Studies in Mycology 95: 293–380. PubMed PMC
Tedersoo L, Bahram M, Põlme S, et al. (2014). Global diversity and geography of soil fungi. Science 346: 6213. PubMed
Torres-Garcia D, García D, Cano-Lira JF, et al. (2022). Two novel genera, Neostemphylium and Scleromyces (Pleosporaceae) from freshwater sediments and their global biogeography. Journal of Fungi 8: 868. PubMed PMC
Trentini CP, Campanello PI, Villagra M, et al. (2020). Thinning partially mitigates the impact of Atlantic forest replacement by pine monocultures on the soil microbiome. Frontiers in Microbiology 11: 1491. PubMed PMC
Tubaki K. (1963). Notes on the Japanese Hyphomycetes. I. Transactions of the Mycological Society of Japan 4: 83–90.
Tulasne LR, Tulasne C. (1863). Selecta Fungorum Carpologia, Tomus Secundus. Xylariei - Valsei - Sphaeriei. In imperiali typographeo excudebatur, Paris, France.
Udaiyan K. (1991). Some interesting hyphomycetes from the industrial water cooling towers of Madras. Journal of Economic and Taxonomic Botany 15: 627–647.
Van Beyma Thoe Kingma FH. (1940). Beschreibung einiger neuer Pilzarten aus dem Centraalbureau voor Schimmelcultures, Baarn (Nederland), VI. Mitteilung. Antonie van Leeuwenhoek 6: 263–290. PubMed
Větrovský T, Baldrian P, Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34: 2292–2294. PubMed PMC
Větrovský T, Kohout P, Kopecký M, et al. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications 10: 5142. PubMed PMC
Větrovský T, Morais D, Kohout P, et al. (2020). GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data 7: 228. PubMed PMC
Vilgalys Mycology Lab – Duke University. Conserved primer sequences for PCR amplification of fungal rDNA. (available online: https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi).
Vilgalys R, Hester M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. PubMed PMC
von Höhnel FXR. (1903). Mycologische Fragmente (Fortsetzung). Annales Mycologici 1: 522–534.
von Höhnel FXR. (1919). Mykologische Fragmente. Annales Mycologici 17: 114–133.
Vu D, Groenewald M, de Vries M, et al. (2019). Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135–154. PubMed PMC
Wang Y, Jie CY, Hyde KD, et al. (2017). Chloridium terricola sp. nov. from China. Mycotaxon 132: 79–86.
Wang CJK, Wilcox HE. (1985). New species of ectendomycorrhizal and pseudomycorrhizal fungi: Phialophora finlandica, Chloridium paucisporum, and Phialocephala fortinii. Mycologia 77: 951–958.
Weber G, Spaaij F, Wingfield MJ. (1996). Leptographium costaricense sp. nov., a new species from roots of Talauma sambuensis from Costa Rica. Mycological Research 100: 732–736.
Wei TP, Wang KY, Zhang H, et al. (2022). A new species and a new combination of Chloridium from southwest China. Phytotaxa 549: 67–76.
Wei MJ, Zhang H, Dong W, et al. (2018). Introducing Dictyochaeta aquatica sp. nov. and two new species of Chloridium (Chaetosphaeriaceae, Sordariomycetes) from aquatic habitats. Phytotaxa 362: 187–199.
White TJ, Bruns T, Lee S, et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: A guide to methods and applications (Innis MA, Gelfand DH, Sninsky JJ, et al., eds), Academic Press, San Diego, California: 315–322.
Wingfield M, Van Wyk PS, Wingfield BD. (1987). Reclassification of Phialocephala based on conidial development. Transactions of the British Mycological Society 89: 509–520.
Wolf M, Friedrich, Dandekar T, et al. (2005). CBC Analyzer: inferring phylogenies based on compensatory base changes in RNA secondary structures. In Silico Biology 5: 0027. PubMed
Wu WP, Diao YZ. (2022). Anamorphic chaetosphaeriaceous fungi from China. Fungal Diversity 116: 1–546
Yang W, Li C, Wang S, et al. (2021). Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil. Applied Soil Ecology 166: 104005.
Yang J, Liu NG, Liu JK, et al. (2018). Phylogenetic placement of Cryptophiale, Cryptophialoidea, Nawawia, Neonawawia gen. nov. and Phialosporostilbe. Mycosphere 9: 1132–1150.
Yasanthika E, Tennakoon DS, Farias ARG, et al. (2022). New soil-inhabiting Chaetosphaeriaceous records from Thailand. Asian Journal of Mycology 5: 16–30.
Yu Y, Blair C, He XJ. (2020). RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Molecular Biology and Evolution 37: 604–606. PubMed
Yuan HS, Lu X, Dai YC, et al. (2020). Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 104: 1–266.
Zhang N, Castlebury LA, Miller AN, et al. (2007). An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98: 1076–1087. PubMed
Zhang Y, Dai S, Huang X, et al. (2020). pH-induced changes in fungal abundance and composition affects soil heterotrophic nitrification after 30 days of artificial pH manipulation. Geoderma 366: 114255.
Zhang J, Kapli P, Pavlidis P, et al. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876. PubMed PMC
Zhou J, Jiang X, Zhou B, et al. (2016). Thirty-four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology and Biochemistry 95: 135–143.
Zuker M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406–3415. PubMed PMC
Amesia hispanica sp. nov., Producer of the Antifungal Class of Antibiotics Dactylfungins