The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31998413
PubMed Central
PMC6976342
DOI
10.1016/j.simyco.2018.10.004
PII: S0166-0616(18)30036-8
Knihovny.cz E-zdroje
- Klíčová slova
- Ectomycorrhiza, Ericoid mycorrhiza, Hyaloscypha bicolor (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hyaloscypha finlandica (C.J.K. Wang & H.E. Wilcox) Vohník, Fehrer & Réblová, Hyaloscypha hepaticicola, Hyaloscypha melinii Vohník, Fehrer & Réblová, Hyaloscypha variabilis (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hyaloscypha vraolstadiae (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hymenoscyphus ericae, Meliniomyces, Molecular systematics, Mycorrhizal synthesis, Pezoloma ericae, Pseudaegerita, Sexual-asexual connection,
- Publikační typ
- časopisecké články MeSH
Data mining for a phylogenetic study including the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae revealed nearly identical ITS sequences of the bryophilous Hyaloscypha hepaticicola suggesting they are conspecific. Additional genetic markers and a broader taxonomic sampling furthermore suggested that the sexual Hyaloscypha and the asexual Meliniomyces may be congeneric. In order to further elucidate these issues, type strains of all species traditionally treated as members of the Rhizoscyphus ericae aggregate (REA) and related taxa were subjected to phylogenetic analyses based on ITS, nrLSU, mtSSU, and rpb2 markers to produce comparable datasets while an in vitro re-synthesis experiment was conducted to examine the root-symbiotic potential of H. hepaticicola in the Ericaceae. Phylogenetic evidence demonstrates that sterile root-associated Meliniomyces, sexual Hyaloscypha and Rhizoscyphus, based on R. ericae, are indeed congeneric. To this monophylum also belongs the phialidic dematiaceous hyphomycetes Cadophora finlandica and Chloridium paucisporum. We provide a taxonomic revision of the REA; Meliniomyces and Rhizoscyphus are reduced to synonymy under Hyaloscypha. Pseudaegerita, typified by P. corticalis, an asexual morph of H. spiralis which is a core member of Hyaloscypha, is also transferred to the synonymy of the latter genus. Hyaloscypha melinii is introduced as a new root-symbiotic species from Central Europe. Cadophora finlandica and C. paucisporum are confirmed conspecific, and four new combinations in Hyaloscypha are proposed. Based on phylogenetic analyses, some sexually reproducing species can be attributed to their asexual counterparts for the first time whereas the majority is so far known only in the sexual or asexual state. Hyaloscypha bicolor sporulating in vitro is reported for the first time. Surprisingly, the mycological and mycorrhizal sides of the same coin have never been formally associated, mainly because the sexual and asexual morphs of these fungi have been studied in isolation by different research communities. Evaluating all these aspects allowed us to stabilize the taxonomy of a widespread and ecologically well-studied group of root-associated fungi and to link their various life-styles including saprobes, bryophilous fungi, root endophytes as well as fungi forming ericoid mycorrhizae and ectomycorrhizae.
Zobrazit více v PubMed
Abdullah S.K., Webster J. The aero-aquatic genus, Pseudaegerita. Transactions of the British Mycological Society. 1983;80:247–254. PubMed
Alberton O., Kuyper T.W., Summerbell R.C. Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant and Soil. 2010;328:459–470.
Baird R., Wood-Jones A., Varco J. Rhododendron decline in the Great Smoky Mountains and surrounding areas: intensive site study of biotic and abiotic parameters associated with the decline. Southeastern Naturalist. 2014;13:1–25.
Baral H.-O., De Sloover J.R., Huhtinen S. An emendation of the genus Hyaloscypha to include Fuscoscypha (Hyaloscyphaceae, Helotiales, Ascomycotina) Karstenia. 2009;49:1–17.
Baral H.-O., Krieglsteiner L. Hymenoscyphus subcarneus, a little known bryicolous discomycete found in the Bialowieza National Park. Acta Mycologica Warszawa. 2006;41:11–20.
Bayerová Š., Kukwa M., Fehrer J. A new species of Lepraria (lichenized ascomycetes) from Europe. Bryologist. 2005;108:131‒138.
Bills G.F., Platas G., Pelaez F. Reclassification of a pneumocandin-producing anamorph, Glarea lozoyensis gen. et sp. nov, previously identified as Zalerion arboricola. Mycological Research. 1999;103:179‒192.
Bizabani C. Department of Biochemistry, Microbiology and Biotechnology, Rhodes University; South Africa: 2015. The diversity of root fungi associated with Erica species occurring in the Albany Centre of Endemism. Ph.D. dissertation.
Borchsenius F. Department of Biosciences, Aarhus University; Denmark: 2009. FastGap 1.2.http://www.aubot.dk/FastGap_home.htm
Boudier J.L.É. Nouvelle classification naturelle des Discomycètes charnus. Bulletin de la Société Mycologique de France. 1885;1:97–120.
Brand F., Gronbach E., Taylor A.F.S. Piceirhiza bicolorata. In: Agerer R., editor. Colour Atlas of Ectomycorrhizae, Plate 73. Schwäbisch Gmünd, Einhorn-Verlag; 1992.
Braun U., Mel'nik V.A., Tomoshevich M.A. The genus Cheiromycella: nomenclature, taxonomy and a new species. Mycologia Balcanica. 2009;6:107–110.
Bruzone M.C., Fehrer J., Fontenla S.B. First record of Rhizoscyphus ericae in Southern Hemisphere's Ericaceae. Mycorrhiza. 2017;27:147–163. PubMed
Bruzone M.C., Fontenla S.B., Vohník M. Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere's Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza. 2015;25:25–40. PubMed
Chambers S.M., Liu G., Cairney J.W.G. ITS rDNA sequence comparison of ericoid mycorrhizal endophytes from Woollsia pungens. Mycological Research. 2000;104:168–174.
Chambers S.M., Williams P.G., Seppelt R.D. Molecular identification of Hymenoscyphus sp. from rhizoids of the leafy liverwort Cephaloziella exiliflora in Australia and Antarctica. Mycological Research. 1999;103:286–288.
Chrtek J., Zahradníček J., Krak K. Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Annals of Botany. 2009;104:161–178. PubMed PMC
Clements F.E. Wilson; Minneapolis: 1909. The genera of fungi.
Clements F.E. Nova fungorum Coloradensium genera. Minnesota Botanical Studies. 1911;4:185–188.
Crane J.L., Schoknecht J.D. Revision of Torula species. Pseudaegerita corticalis, Taeniolina deightonii, and Xylohypha bowdichiae. Mycologia. 1981;73:78–87.
Crous P.W., Braun U., Schubert K. Delimiting Cladosporium from morphologically similar genera. Studies in Mycology. 2007;58:33–56. PubMed PMC
Crous P.W., Groenewald J.Z. They seldom occur alone. Fungal Biology. 2016;120:1392–1415. PubMed
Crous P.W., Quaedvlieg W., Hansen K. Phacidium and Ceuthospora (Phacidiaceae) are congeneric: taxonomic and nomenclatural implications. IMA Fungus. 2014;5:173–193. PubMed PMC
Cubeta M.A., Echandi E., Abernethy T. Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology. 1991;81:1395–1400.
Dalpé Y., Litten W., Sigler L. Scytalidium vaccinii sp. nov., an ericoid endophyte of Vaccinium angustifolium roots. Mycotaxon. 1989;35:371–377.
Day M.J., Hall J.C., Currah R.S. Phialide arrangement and character evolution in the helotialean anamorph genera Cadophora and Phialocephala. Mycologia. 2012;104:371–381. PubMed
Descals E., Webster J. Hyaloscypha: perfect state of Clathrosphaerina zalewskii. Transactions of the British Mycological Society. 1976;67:525–528.
Duckett J.G., Read D.J. Ericoid mycorrhizas and rhizoid-ascomycete associations in liverworts share the same mycobiont: isolation of the partners and resynthesis of the associations in vitro. New Phytologist. 1995;129:439–447.
Egger K.N., Sigler L. Relatedness of the ericoid endophytes Scytalidium vaccinii and Hymenoscyphus ericae inferred from analysis of ribosomal DNA. Mycologia. 1993;85:219–230.
Fehrer J., Slavíková-Bayerová Š., Orange A. Large genetic divergence of new, morphologically similar species of sterile lichens from Europe (Lepraria, Stereocaulaceae, Ascomycota): concordance of DNA sequence data with secondary metabolites. Cladistics. 2008;24:443‒458. PubMed
Fisher P.J. The anamorph of Clausenomyces atrovirens. Transactions of the British Mycological Society. 1985;85:759–760.
Gams W. Phialophora and some similar morphologically little-differentiated anamorphs of divergent ascomycetes. Studies in Mycology. 2000;45:187–200.
Gams W., Hoekstra E.S., Aptroot A. 4th ed. Centraalbureau voor Schimmelcultures; Baarn, The Netherlands: 1998. CBS Course of Mycology.
Gams W., Holubová-Jechová V. Chloridium and some other dematiaceous hyphomycetes growing on decaying wood. Studies in Mycology. 1976;13:1–99.
Gorfer M., Persak H., Berger H. Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. Mycological Research. 2009;113:1377–1388. PubMed
Grelet G.-A., Johnson D., Vrålstad T. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytologist. 2010;188:210–222. PubMed
Grélet L.-J. Discomycètes nouveaux. Bulletin Trimestriel de la Société Mycologique de France. 1925;41:83–86.
Grünig C.R., Queloz V., Duò A. Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark-septate conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycological Research. 2009;113:207–221. PubMed
Grünig C.R., Sieber T.N., Rogers S.O. Genetic variability among strains of Phialocephala fortinii and phylogenetic analysis of the genus Phialocephala based on rDNA ITS sequence comparisons. Canadian Journal of Botany. 2002;80:1239–1249.
Hall T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95–98.
Hambleton S., Currah R.S. Fungal endophytes from the roots of alpine and boreal Ericaceae. Canadian Journal of Botany. 1997;75:1570–1581.
Hambleton S., Huhtinen S., Currah R.S. Hymenoscyphus ericae: a new record from western Canada. Mycological Research. 1999;103:1391–1397.
Hambleton S., Sigler L. Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (= Hymenoscyphus ericae), Leotiomycetes. Studies in Mycology. 2005;53:1–27.
Han J.-G., Hosoya T., Sung G.H. Phylogenetic reassessment of Hyaloscyphaceae sensu lato (Helotiales, Leotiomycetes) based on multigene analyses. Fungal Biology. 2014;118:150–167. PubMed
Hansen K., LoBuglio K.F., Pfister D.H. Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, beta-tubulin, and LSU rDNA. Molecular Phylogenetics and Evolution. 2005;36:1–23. PubMed
Harrington T.C., McNew D.L. Phylogenetic analysis places the Phialophora-like anamorph genus Cadophora in the Helotiales. Mycotaxon. 2003;87:141–151.
Hosoya T., Han J.-G., Sung G.-H. Molecular phylogenetic assessment of the genus Hyphodiscus with description of Hyphodiscus hyaloscyphoides sp. nov. Mycological Progress. 2011;10:239–248.
Hosoya T., Huhtinen S. Hyaloscyphaceae in Japan (7): Hyaloscypha albohyalina var. monodictys var. nov. Mycoscience. 2002;43:405–409.
Hughes S.J. Revisiones Hyphomycetum aliquot cum appendice de nominibus rejiciendis. Canadian Journal of Botany. 1958;36:727–836.
Huhtinen S. A monograph of Hyaloscypha and allied genera. Karstenia. 1989 (1990);29:45–252.
Jaklitsch W., Baral H.-O., Lücking R., Lumbsch H.T. Vol. 13. 2015. (Engler's Syllabus of Plant Families). Edition, Part 1/2. Ascomycota. Gebr. Borntraeger Verlagsbuchhandlung.
Kaplan Z., Fehrer J., Bambasová V. The endangered Florida pondweed (Potamogeton floridanus) is a hybrid: why we need to understand biodiversity thoroughly. PLoS One. 2018;13:e0195241. PubMed PMC
Kernaghan G., Patriquin G. Host associations between fungal root endophytes and boreal trees. Microbial Ecology. 2011;62:460–473. PubMed
Kernan M.J., Finocchio A.F. A new discomycetes associated with the roots of Monotropa uniflora (Ericaceae) Mycologia. 1983;75:916–920.
Kirschstein W. Beiträge zur Kenntnis der Ascomyceten. Verhandlungen des Botanischen Vereins der Provinz Brandenburg. 1923;66:23–29.
Kohout P., Sýkorová Z., Bahram M. Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza. 2011;21:403–412. PubMed
Kohout P., Tedersoo L. Effect of soil moisture on root-associated fungal communities of Erica dominans in Drakensberg mountains in South Africa. Mycorrhiza. 2017;27:397–406. PubMed
Kolařík M., Vohník M. When the ribosomal DNA does not tell the truth: the case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biology. 2018;122:1–18. PubMed
Kowal J., Pressel S., Duckett J.G. Liverworts to the rescue: an investigation of their efficacy as mycorrhizal inoculum for vascular plants. Functional Ecology. 2016;30:1014–1023.
Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution. 1999;16:1799–1808. PubMed
Long M.-R., Xie X.-L., Feng G.-D. Isolation and identification of cadmium-tolerant filamentous fungi from lead-zinc tailings. Microbiology China. 2013;40:2203–2216. [in Chinese]
Lorberau K.E., Botnen S.S., Mundra S. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? Mycorrhiza. 2017;27:513–524. PubMed
Lukešová T., Kohout P., Větrovský T. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS One. 2015;10:e0124752. PubMed PMC
Lygis V., Vasiliauskas R., Stenlid J. Planting Betula pendula on pine sites infested by Heterobasidion annosum: disease transfer, silvicultural evaluation, and community of wood-inhabiting fungi. Canadian Journal of Forest Research. 2004;34:120–130.
Malloch D. University of Toronto Press; Toronto, Ontario: 1981. Moulds: Their Isolation, Cultivation and Identification.
Marx D.H. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology. 1969;59:153–163. PubMed
McCarthy C. School of Health Science, Griffith University; Queensland, Australia: 1996–1998. Chromas 1.45. Technelysium DNA Sequencing Software.http://technelysium.com.au/
McLean C.B., Cunnington J.H., Lawrie A.C. Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridacaeae. New Phytologist. 1999;144:351–358.
Midgley D.J., Greenfield P., Bissett A. First evidence of Pezoloma ericae in Australia: using the Biomes of Australia Soil Environments (BASE) to explore the Australian phylogeography of known ericoid mycorrhizal and root-associated fungi. Mycorrhiza. 2017;27:587–594. PubMed
Monreal M., Berch S.M., Berbee M. Molecular diversity of ericoid mycorrhizal fungi. Canadian Journal of Botany. 1999;77:1580–1594.
Mrnka L., Tokárová H., Vosátka M. Interaction of soil filamentous fungi affects needle composition and nutrition of Norway spruce seedlings. Trees. 2009;23:887–897.
Pawlowska J., Wilk M., Śliwińska-Wyrzychowska A. The diversity of endophytic fungi in the above-ground tissue of two Lycopodium species in Poland. Symbiosis. 2014;63:87–97. PubMed PMC
Pearson V., Read D.J. Biology of mycorrhiza in Ericaceae I: Isolation of endophyte and synthesis of mycorrhizas in aseptic culture. New Phytologist. 1973;72:371–379.
Posada D., Crandall K.A. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. PubMed
Prihatini I., Glen M., Wardlaw Z.J. Diversity and identification of fungi associated with needles of Pinus radiata in Tasmania. Southern Forests: a Journal of Forest Science. 2016;78:19–34.
Quijada L., Huhtinen S., Negrín R. Studies in Hyaloscyphaceae associated with major vegetation types in the Canary Islands II: a revision of Hyaloscypha. Willdenowia. 2017;47:31–42.
Read D.J. Pezizella ericae sp. nov., the perfect state of a typical mycorrhizal endophyte of Ericaceae. Transactions of the British Mycological Society. 1974;63:381–383.
Réblová M., Jaklitsch W., Réblová K. Phylogenetic reconstruction of the Calosphaeriales and Togniniales using five genes and predicted RNA secondary structures of ITS, and Flabellascus tenuirostris gen. et sp. nov. PLoS One. 2015;10:e0144616. PubMed PMC
Réblová M., Miller A.N., Réblová K. Phylogenetic classification and generic delineation of Calyptosphaeria gen. nov., Lentomitella, Spadicoides and Torrentispora (Sordariomycetes) Studies in Mycology. 2018;89:1–62. PubMed PMC
Réblová M., Winka K. Phylogeny of Chaetosphaeria and its anamorphs based on morphological and molecular data. Mycologia. 2000;92:939–954.
Ronquist F., Huelsenbeck J. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. PubMed
Saenz G.S., Taylor J.W. Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer ribosomal DNA sequences. Canadian Journal of Botany. 1999;77:150–168.
Schoch C.L., Sung G.H., López-Giráldez F. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology. 2009;58:224–239. PubMed
Schoch C.L., Seifert K.A., Huhndorf S. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:6241–6246. PubMed PMC
Schol-Schwarz M.B. Revision of the genus Phialophora (Moniliales) Persoonia. 1970;6:59–94.
Simmons M.P., Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology. 2000;49:369–381. PubMed
Smith S.E., Read D.J. 3rd ed. Academic Press; London, UK: 2008. Mycorrhizal Symbiosis.
Soltis D.E., Mavrodiev E.V., Doyle J.J. ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Systematic Botany. 2008;33:7–20.
Spatafora J.W., Sung G.H., Johnson D. A five-gene phylogeny of Pezizomycotina. Mycologia. 2006;98:1018–1028. PubMed
Stenroos S., Laukka T., Huhtinen S. Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. Cladistics. 2010;26:281–300. PubMed
Štorchová H., Hrdličková R., Chrtek J. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon. 2000;49:79–84.
Summerbell R.C. Microfungi associated with the mycorrhizal mantle and adjacent microhabitats within the rhizosphere of black spruce. Canadian Journal of Botany. 1989;67:1085–1095.
Svrček M. Über zwei neue Discomyzetengattungen. Sydowia. 1986;39:219–223.
Swofford D.L. Sinauer; Sunderland, Massachusetts: 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0 Beta.
Tamura K., Stecher G., Peterson D. MEGA6: molecular evolutionary genetics analysis version 6.06. Molecular Biology and Evolution. 2013;30:2725–2729. PubMed PMC
Turnau K., Henriques F.S., Anielska T. Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing. Environmental and Experimental Botany. 2007;61:117–123.
Timling I., Dahlberg A., Walker D.A. Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic. Ecosphere. 2012;3:111.
Untereiner W.A., Naveau F.A., Bachewich J. Evolutionary relationships of Hyphodiscus hymeniophilus (anamorph Catenulifera rhodogena) inferred from beta-tubulin and nuclear ribosomal DNA sequences. Canadian Journal of Botany. 2006;84:243–253.
Upson R., Read D.J., Newsham K.K. Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antarctic. New Phytologist. 2007;176:460–471. PubMed
Vijaykrishna D., Mostert L., Jeewon R. Pleurostomophora, an anamorph of Pleurostoma (Calosphaeriales), a new anamorph genus morphologically similar to Phialophora. Studies in Mycology. 2004;50:387–396.
Villarreal-Ruiz L., Anderson I.C., Alexander I.J. The interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytologist. 2004;164:183–192. PubMed
Vohník M., Fendrych M., Albrechtová J. Intracellular colonization of Rhododendron and Vaccinium roots by Cenococcum geophilum, Geomyces pannorum and Meliniomyces variabilis. Folia Microbiologica. 2007;52:407–414. PubMed
Vohník M., Fendrych M., Kolařík M. The ascomycete Meliniomyces variabilis isolated from a sporocarp of Hydnotrya tulasnei (Pezizales) intracellularly colonises roots of ecto- and ericoid mycorrhizal host plants. Czech Mycology. 2007;59:215–226.
Vohník M., Mrnka L., Lukešová T. The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecology. 2013;6:281–292.
Vohník M., Pánek M., Fehrer J. Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales) Mycorrhiza. 2016;26:831–846. PubMed
Vohník M., Sadowsky J.J., Kohout P. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS One. 2012;7 PubMed PMC
Vrålstad T. The Faculty of Mathematics and Natural Sciences, University of Oslo; Norway: 2001. Molecular ecology of root-associated mycorrhizal and non-mycorrhizal ascomycetes. Ph.D. dissertation.
Vrålstad T., Fossheim T., Schumacher T. Piceirhiza bicolorata – the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytologist. 2000;145:549–563. PubMed
Vrålstad T., Schumacher T., Taylor A. Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytologist. 2002;153:143–152.
Vylgalis R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology. 1990;172:4238–4246. PubMed PMC
Wang Z., Binder M., Hibbett D.S. Life history and systematics of the aquatic discomycete Mitrula (Helotiales, Ascomycota) based on cultural, morphological, and molecular studies. American Journal of Botany. 2005;92:1565–1574. PubMed
Wang C.J.K., Wilcox H.E. New species of ectendomycorrhizal and pseudomycorrhizal fungi: Phialophora finlandica, Chloridium paucisporum, and Phialocephala fortinii. Mycologia. 1985;77:951–958.
Wilcox H.E., Ganmore-Neumann R., Wang C.J.K. Characteristics of two fungi producing ectendomycorrhizae in Pinus resinosa. Canadian Journal of Botany. 1974;52:2279–2282.
Williams A.F., Chambers S.M., Davies P.W. Molecular investigation of sterile root-associated fungi from Epacris microphylla R. Br. (Ericaceae) and other epacrids at alpine, subalpine and coastal heathland sites. Australasian Mycologist. 2004;23:94‒104.
Yamaguchi K., Tsurumi Y., Suzuki R. Trichoderma matsushimae and T. aeroaquaticum: two aero-aquatic species with Pseudaegerita-like propagules. Mycologia. 2012;104:1109‒1120. PubMed
Zhang Y.-H., Zhuang W.-Y. Phylogenetic relationships of some members in the genus Hymenoscyphus (Ascomycetes, Helotiales) Nova Hedwigia. 2004;78:475–484.
Zoller S., Scheidegger C., Sperisen C. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming Ascomycetes. Lichenologist. 1999;31:511–516.