The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25905493
PubMed Central
PMC4408093
DOI
10.1371/journal.pone.0124752
PII: PONE-D-14-41288
Knihovny.cz E-zdroje
- MeSH
- endofyty MeSH
- kořeny rostlin mikrobiologie MeSH
- mykorhiza fyziologie MeSH
- smrk mikrobiologie MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.--Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without specific structures necessary for mycorrhizal nutrient transport. A. macrosclerotiorum forms ectomycorrhiza with conifers but not with broadleaves and probably does not form common mycorrhizal networks between conifers with Ericaceae.
Zobrazit více v PubMed
Brundrett M. Understanding the roles of multifunctional mycorrhizal and endophytic fungi In: Schulz B, Boyle C, Sieber TN, editors. Microbial root endophytes. Soil Microbiology. Berlin: Springer; 2006. pp. 179–190.
Rodriguez R, White J. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182: 314–330. 10.1111/j.1469-8137.2009.02773.x PubMed DOI
Grünig C, Queloz V, Sieber T, Holdenrieder O. Dark septate endophytes (DSE) of the Phialocephala fortinii s. l.—Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany. 2008;86: 1355–1369.
Wang CJK, Wilcox HE. New species of ectendomycorrhizal and pseudomycorrhizal fungi: Phialophora finlandia, Chloridium pucisporum, and Phialocephala fortinii . Mycologia. 1985;77: 951–958.
Duó A, Bruggmann R, Zoller S, Bernt M, Grünig C. Mitochondrial genome evolution in species belonging to the Phialocephala fortinii s. l.—Acephala applanata species complex. BMC Genomics. 2012;13: 166 10.1186/1471-2164-13-166 PubMed DOI PMC
Jumpponen A, Trappe JM. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol. 1998;140: 295–310. PubMed
Addy H, Hambleton S, Currah R. Distribution and molecular characterization of the root endophyte Phialocephala fortinii along an environmental gradient in the boreal forest of Alberta. Mycol Res. 2000;104: 1213–1221.
Kohout P, Těšitelová T, Roy M, Vohník M, Jersáková J. A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol. 2013;6: 50–64.
Vohník M, Mrnka L, Lukešová T, Bruzone MC, Kouhout P, Fehrer J. The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis . Fungal Ecol. 2013;6: 281–292.
Bruzone MC, Fontenla SB, Vohník M. Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza. 2015;25: 25–40. 10.1007/s00572-014-0586-3 PubMed DOI
Kohout P, Sýkorová Z, Čtvrtlíková M, Rydlová J, Suda J, Vohník M, et al. Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol. 2012;80: 216–235. 10.1111/j.1574-6941.2011.01291.x PubMed DOI
Selosse M-A, Vohník M, Chauvet E. Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol. 2008;178: 3–7. 10.1111/j.1469-8137.2008.02390.x PubMed DOI
Klymiuk A, Taylor TN, Taylor EL, Krings M. Paleomycology of the Princeton Chert II. Dark-septate fungi in the aquatic angiosperm Eorhiza arnoldii indicate a diverse assemblage of root-colonizing fungi during the Eocene. Mycologia. 2013;105: 1100–1109. 10.3852/13-025 PubMed DOI
Newsham KK. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua . New Phytol. 1999;144: 517–524. PubMed
Vohník M, Albrechtová J, Vosátka M. The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C : N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis. 2005;40: 87–96.
Usuki F, Narisawa K. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia. 2007;99: 175–184. PubMed
Wu L, Lv Y, Meng Z, Chen J, Guo S. The promoting role of an isolate of dark-septate fungus on its host plant Saussurea involucrata Kar. et Kir. Mycorrhiza. 2010;20: 127–135. 10.1007/s00572-009-0268-8 PubMed DOI
Wilcox HE, Wang CJK. Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings. Can J For Res. 1987;17: 884–899.
Stoyke G, Currah R. Resynthesis in pure culture of a common subalpine fungus-root association using Phialocephala fortinii and Menziesia ferruginea (Ericaceae). Arct Alp Res. 1993;25: 189–193.
Tellenbach C, Grünig CR, Sieber TN. Negative effects on survival and performance of Norway spruce seedlings colonized by dark septate root endophytes are primarily isolate dependent. Environ Microbiol. 2011;13: 2508–2517. 10.1111/j.1462-2920.2011.02523.x PubMed DOI
Newsham K. A metaanalysis of plant responses to dark septate root endophytes. New Phytol. 2011;190: 783–793. 10.1111/j.1469-8137.2010.03611.x PubMed DOI
Mayerhofer MS, Kernaghan G, Harper KA. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza. 2013;23: 119–128. 10.1007/s00572-012-0456-9 PubMed DOI
Reininger V, Sieber TN. Mitigation of antagonistic effects on plant growth due to root co-colonization by dark septate endophytes and ectomycorrhiza. Environ Microbiol Rep. 2013;5: 892–898. 10.1111/1758-2229.12091 PubMed DOI
Vohník M, Sadowsky JJ, Lukešová T, Albrechtová J, Vosátka M. Inoculation with wood decomposing basidiomycete, but not with root symbiotic ascomycetes, positively affects growth of highbush blueberry (Ericaceae) grown in a pine litter substrate. Plant Soil. 2012;355: 341–352.
Schulz B, Boyle C. The endophytic continuum. Mycol Res. 2005;109: 661–686. PubMed
Zimmerman E, Peterson R. Effect of a dark septate fungal endophyte on seed germination and protocorm development in a terrestrial orchid. Symbiosis. 2007;43: 45–52.
Tellenbach C, Sieber TN. Do colonization by dark septate endophytes and elevated temperature affect pathogenicity of oomycetes? FEMS Microbiol Ecol. 2012;82: 157–168. 10.1111/j.1574-6941.2012.01415.x PubMed DOI
Peterson R, Wagg C, Pautler M. Associations between microfungal endophytes and roots: do structural features indicate function? Botany. 2008;86: 445–456.
Stoyke G, Currah RS. Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot. 1991;69: 347–352.
Vohník M, Lukančič S, Bahor E, Regvar M, Vosátka M, Vodnik D. Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates. Folia Geobot. 2003;38: 191–200.
Usuki F, Narisawa K. Formation of structures resembling ericoid mycorrhizas by the root endophytic fungus Heteroconium chaetospira within roots of Rhododendron obtusum var. kaempferi . Mycorrhiza. 2005;15: 61–64. PubMed
Münzenberger B, Bubner B, Wöllecke J. The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii . Mycorrhiza. 2009;19: 481–492. 10.1007/s00572-009-0239-0 PubMed DOI
Vohník M, Albrechtová J. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot. 2011;46: 373–386.
Grelet GA, Johnson D, Paterson E, Anderson IC, Alexander IJ. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol. 2009;182: 359–366. PubMed
Vohník M, Sadowsky JJ, Kohout P, Lhotáková Z, Nestby R, Kolařík M. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLOS ONE. 2012;7: e39524 10.1371/journal.pone.0039524 PubMed DOI PMC
Simard SW, Durall DM. Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot. 2004;82: 1140–65.
Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol. 2010;185: 543–553. 10.1111/j.1469-8137.2009.03069.x PubMed DOI
Grelet GA, Johnson D, Vrålstad T, Alexander IJ, Anderson IC. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol. 2010;188: 210–222. 10.1111/j.1469-8137.2010.03353.x PubMed DOI
Kjøller R, Olsrud M, Michelsen A. Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes. Fungal Ecol. 2010;3: 205–214.
Merrild MP, Ambus P, Rosendahl S, Jakobsen I. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytol. 2013;200: 229–240. 10.1111/nph.12351 PubMed DOI
Kohout P, Sýkorová Z, Bahram M, Hadincová V, Albrechtová J, Tedersoo L, et al. Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza. 2011;21: 403–412. 10.1007/s00572-010-0350-2 PubMed DOI
Molina R, Palmer JG. Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi In: Shenk NC. editor. Methods and principles of mycorrhizal research. Minnesota: American Phytopathological Society; 1982. pp. 115–129.
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25: 3389–3402. PubMed PMC
Větrovský T, Baldrián P. Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fert Soils. 2013;49: 1027–1037.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75: 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27: 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. ITSx: Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for use in environmental sequencing. Methods Ecol Evol. 2013;4: 914–919.
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods. 2013;10: 996–998. 10.1038/nmeth.2604 PubMed DOI
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT In: Posada D. editor. Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology. New Jersey: Humana Press; 2009. pp. 39–64. PubMed
Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;4: 9.
Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008;9: 212 10.1186/1471-2105-9-212 PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology. 2010;59: 307–321. 10.1093/sysbio/syq010 PubMed DOI
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. 2011;28: 2731–2739. 10.1093/molbev/msr121 PubMed DOI PMC
Melin E. On the mycorrhizas of Pinus silvestris L. and Picea abies Karst: a preliminary note. J Ecol. 1922;9: 254–257.
O'Dell TE, Massicotte HB, Trappe JM. Root colonization of Lupinus latifolius Agardh. and Pinus contorta Dougl. by Phialocephala fortinii Wang & Wilcox. New Phytol. 1993;124: 93–100.
Kaldorf M, Renker C, Fladung M, Buscot F. Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field. Mycorrhiza. 2004;14: 295–306. PubMed
Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R. Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res. 2004;108: 965–973. PubMed
Vohník M, Fendrych M, Albrechtová J, Vosátka M. Intracellular colonization of Rhododendron and Vaccinium roots by Cenococcum geophilum, Geomyces pannorum and Meliniomyces variabilis . Folia Microbiol. 2007;52: 407–414. PubMed
Richard C, Fortin JA, Fortin A. Protective effect of an ectomycorrhizal fungus against the root pathogen Mycelium radices atrovirens . Can J For Res. 1971;1: 246–251.
Hashimoto Y, Hyakumachi M. Effects of isolates of ectomycorrhizal fungi and endophytic Mycelium radicis atrovirens that were dominant in soil from disturbed sites on growth of Betula platyphylla var. japonica seedlings. Ecol Res. 2001;16: 117–125.
Reininger V, Sieber TN. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers. PLOS ONE. 2012;7: e42865 10.1371/journal.pone.0042865 PubMed DOI PMC
Ishida TA, Nordin A. No evidence that nitrogen enrichment affect fungal communities of Vaccinium roots in two contrasting boreal forest types. Soil Biol Biochem. 2010;42: 234–243.
Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, et al. Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol. 2011;191: 515–527. 10.1111/j.1469-8137.2011.03703.x PubMed DOI
Gorzelak MA, Hambleton S, Massicotte HB. Community structure of ericoid mycorrhizas and root-associated fungi of Vaccinium membranaceum across an elevation gradient in the Canadian Rocky Mountains. Fungal Ecol. 2012;5: 36–45.
Grünig CR, Duó A, Sieber TN. Population genetic analysis of Phialocephala fortinii s. l., and Acephala applanata in two undisturbed forests in Switzerland and evidence for new cryptic species. Fungal Genet Biol. 2006;43: 410–421. PubMed
Grünig C, Queloz V, Duò A, Sieber T. Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala . Mycol Res. 2009;113: 207–221. 10.1016/j.mycres.2008.10.005 PubMed DOI
Ahlich K, Sieber TN. The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol. 1996;132: 259–270.
Vrålstad T. Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol. 2004;164: 7–10. PubMed
Bougoure DS, Cairney JWG. Assemblages of ericoid mycorrhizal and other root-associated fungi from Epacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots. Environ Microbiol. 2005;7: 819–827. PubMed
Bougoure DS, Cairney JWG. Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods. Environ Microbiol. 2005;7: 1743–1754. PubMed
Allen TR, Millar T, Berch SM, Berbee ML. Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol. 2003;160: 255–272. PubMed
Zhang C, Yin LJ, Dai SL. Diversity of root-associated fungal endophytes in Rhododendron fortunei in subtropical forests of China. Mycorrhiza. 2009;19: 417–423. 10.1007/s00572-009-0246-1 PubMed DOI
Obase K, Matsuda Y. Culturable fungal endophytes in roots of Enkianthus campanulatus (Ericaceae). Mycorrhiza. 2014;24: 635–44. 10.1007/s00572-014-0584-5 PubMed DOI
Bougoure DS, Parkin PI, Cairney JWG, Alexander IJ, Anderson IC. Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol. 2007;16: 4624–4636. PubMed
Hazard C, Gosling P, Mitchell DT, Doohan FM, Bending GD. Diversity of fungi associated with hair roots of ericaceous plants is affected by land use. FEMS Microbiol Ecol. 2014;87: 586–600. PubMed
Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW. Extensive fungal diversity in plant roots. Science. 2002;295: 2051 PubMed
Villarreal-Ruiz L, Neri-Luna C, Anderson IC, Alexander IJ. In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis. 2012;56: 67–75.
Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F. Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res. 2004;108: 1003–1010. PubMed
Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol. 2007;174: 864–87. PubMed
Berch SM, Allen TR, Berbee ML. Molecular detection, community structure and phylogeny of ericoid mycorrhizal fungi. Plant Soil. 2002;244: 55–66.
Reininger V, Grünig C, Sieber TN. Host species and strain combination determine growth reduction of spruce and birch seedlings colonized by root associated dark septate endophytes. Environ Microbiol. 2012;14: 1064–1076. 10.1111/j.1462-2920.2011.02686.x PubMed DOI
Pearson V, Read DJ. Biology of mycorrhiza in Ericaceae 1. Isolation of endophyte and synthesis of mycorrhizas in aseptic culture. New Phytol. 1973;72: 371–379.
Disentangling drivers behind fungal diversity gradients along altitude and latitude
Microbiome specificity and fluxes between two distant plant taxa in Iberian forests
Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots
First record of Rhizoscyphus ericae in Southern Hemisphere's Ericaceae
Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales)