Disease-Associated Variants in GRIN1, GRIN2A and GRIN2B genes: Insights into NMDA Receptor Structure, Function, and Pathophysiology
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38836461
PubMed Central
PMC11412357
DOI
10.33549/physiolres.935346
PII: 935346
Knihovny.cz E-zdroje
- MeSH
- genetická predispozice k nemoci MeSH
- genetická variace MeSH
- lidé MeSH
- neurovývojové poruchy genetika MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- receptory N-methyl-D-aspartátu * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- GRIN1 protein, human MeSH Prohlížeč
- N-methyl D-aspartate receptor subtype 2A MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- proteiny nervové tkáně MeSH
- receptory N-methyl-D-aspartátu * MeSH
N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors critical for synaptic transmission and plasticity, and for the development of neural circuits. Rare or de-novo variants in GRIN genes encoding NMDAR subunits have been associated with neurodevelopmental disorders characterized by intellectual disability, developmental delay, autism, schizophrenia, or epilepsy. In recent years, some disease-associated variants in GRIN genes have been characterized using recombinant receptors expressed in non-neuronal cells, and a few variants have also been studied in neuronal preparations or animal models. Here we review the current literature on the functional evaluation of human disease-associated variants in GRIN1, GRIN2A and GRIN2B genes at all levels of analysis. Focusing on the impact of different patient variants at the level of receptor function, we discuss effects on receptor agonist and co-agonist affinity, channel open probability, and receptor cell surface expression. We consider how such receptor-level functional information may be used to classify variants as gain-of-function or loss-of-function, and discuss the limitations of this classification at the synaptic, cellular, or system level. Together this work by many laboratories worldwide yields valuable insights into NMDAR structure and function, and represents significant progress in the effort to understand and treat GRIN disorders. Keywords: NMDA receptor , GRIN genes, Genetic variants, Electrophysiology, Synapse, Animal models.
Zobrazit více v PubMed
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev. 2021;73:1469–658. doi: 10.1124/pharmrev.120.000131. PubMed DOI PMC
Korte M, Schmitz D. Cellular and system biology of memory: Timing, molecules, and beyond. Physiol Rev. 2016;96:647–93. doi: 10.1152/physrev.00010.2015. PubMed DOI
Benke TA, Park K, Krey I, Camp CR, Song R, Ramsey AJ, Yuan H, et al. Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology. 2021;199:108805. doi: 10.1016/j.neuropharm.2021.108805. PubMed DOI PMC
Hanson JE, Yuan H, Perszyk RE, Banke TG, Xing H, Tsai MC, Menniti FS, et al. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology. 2024;49:51–66. doi: 10.1038/s41386-023-01614-3. PubMed DOI PMC
Hansen KB, Ogden KK, Yuan H, Traynelis SF. Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron. 2014;81:1084–96. doi: 10.1016/j.neuron.2014.01.035. PubMed DOI PMC
Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA. Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: Single-Cell NMDA receptor subunit deletion in vivo. Neuron. 2011;71:1085–101. doi: 10.1016/j.neuron.2011.08.007. PubMed DOI PMC
Rauner C, Köhr G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem. 2011;286:7558–66. doi: 10.1074/jbc.M110.182600. PubMed DOI PMC
Tovar KR, McGinley MJ, Westbrook GL. Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci. 2013;33:9150–60. doi: 10.1523/JNEUROSCI.0829-13.2013. PubMed DOI PMC
Kellermayer B, Ferreira JS, Dupuis J, Levet F, Grillo-Bosch D, Bard L, Linarès-Loyez J, et al. Differential nanoscale topography and functional role of GluN2-NMDA receptor subtypes at glutamatergic synapses. Neuron. 2018;100:106–119.e7. doi: 10.1016/j.neuron.2018.09.012. PubMed DOI
Stroebel D, Carvalho S, Grand T, Zhu S, Paoletti P. Controlling NMDA receptor subunit composition using ectopic retention signals. J Neurosci. 2014;34:16630–6. doi: 10.1523/JNEUROSCI.2736-14.2014. PubMed DOI PMC
Lü W, Du J, Goehring A, Gouaux E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science. 2017:355. doi: 10.1126/science.aal3729. PubMed DOI PMC
Zhou C, Tajima N. Structural insights into NMDA receptor pharmacology. Biochem Soc Trans. 2023;51:1713–31. doi: 10.1042/BST20230122. PubMed DOI PMC
Cerny J, Bozikova P, Balik A, Marques SM, Vyklicky L. NMDA Receptor opening and closing-transitions of a molecular machine revealed by molecular dynamics. Biomolecules. 2019:9. doi: 10.3390/biom9100546. PubMed DOI PMC
Durham RJ, Paudyal N, Carrillo E, Bhatia NK, Maclean DM, Berka V, Dolino DM, et al. Conformational spread and dynamics in allostery of NMDA receptors. Proc Natl Acad Sci U S A. 2020;117:3839–47. doi: 10.1073/pnas.1910950117. PubMed DOI PMC
Vyklicky V, Stanley C, Habrian C, Isacoff EY. Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation. Nat Commun. 2021:12. doi: 10.1038/s41467-021-23024-z. PubMed DOI PMC
Mony L, Paoletti P. Mechanisms of NMDA receptor regulation. Curr Opin Neurobiol. 2023;83:102815. doi: 10.1016/j.conb.2023.102815. PubMed DOI
Jalali-Yazdi F, Chowdhury S, Yoshioka C, Gouaux E. Mechanisms for zinc and proton inhibition of the GluN1/GluN2A NMDA receptor. Cell. 2018;175:1520–1532.e15. doi: 10.1016/j.cell.2018.10.043. PubMed DOI PMC
Vyklicky V, Krausova B, Cerny J, Balik A, Zapotocky M, Novotny M, Lichnerova K, et al. Block of NMDA receptor channels by endogenous neurosteroids: Implications for the agonist induced conformational states of the channel vestibule. Sci Rep. 2015;5:1–15. doi: 10.1038/srep10935. PubMed DOI PMC
Vyklicky V, Smejkalova T, Krausova B, Balik A, Korinek M, Borovska J, Horak M, et al. Preferential inhibition of tonically over phasically activated nmda receptors by pregnane derivatives. J Neurosci. 2016;36:2161–75. doi: 10.1523/JNEUROSCI.3181-15.2016. PubMed DOI PMC
Krausova BH, Kysilov B, Cerny J, Vyklicky V, Smejkalova T, Ladislav M, Balik A, et al. Site of action of brain neurosteroid pregnenolone sulfate at the N-methyl-D-aspartate receptor. J Neurosci. 2020;40:5922–36. doi: 10.1523/JNEUROSCI.3010-19.2020. PubMed DOI PMC
Hubalkova P, Ladislav M, Vyklicky V, Smejkalova T, Krausova BH, Kysilov B, Krusek J, et al. Palmitoylation controls nmda receptor function and steroid sensitivity. J Neurosci. 2021;41:2119–34. doi: 10.1523/JNEUROSCI.2654-20.2021. PubMed DOI PMC
Kysilov B, Kuchtiak V, Hrcka Krausova B, Balik A, Korinek M, Fili K, Dobrovolski M, et al. Disease-associated nonsense and frame-shift variants resulting in the truncation of the GluN2A or GluN2B C-terminal domain decrease NMDAR surface expression and reduce potentiating effects of neurosteroids. Cell Mol Life Sci. 2024;81:36. doi: 10.1007/s00018-023-05062-6. PubMed DOI PMC
Korinek M, Vyklicky V, Borovska J, Lichnerova K, Kaniakova M, Krausova B, et al. Cholesterol modulates open probability and desensitization of NMDA receptors. J Physiol. 2015;593:2279–93. doi: 10.1113/jphysiol.2014.288209. PubMed DOI PMC
Korinek M, Gonzalez-Gonzalez IM, Smejkalova T, Hajdukovic D, Skrenkova K, Krusek J, Horak M, et al. Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission. Sci Rep. 2020;10:1–18. doi: 10.1038/s41598-020-69454-5. PubMed DOI PMC
Iacobucci GJ, Popescu GK. Ca2+-Dependent Inactivation of GluN2A and GluN2B NMDA Receptors Occurs by a Common Kinetic Mechanism. Biophys J. 2020;118:798. doi: 10.1016/j.bpj.2019.07.057. PubMed DOI PMC
Bhatia NK, Carrillo E, Durham RJ, Berka V, Jayaraman V. Allosteric Changes in the NMDA Receptor Associated with Calcium-Dependent Inactivation. Biophys J. 2020;119:2349. doi: 10.1016/j.bpj.2020.08.045. PubMed DOI PMC
Warnet XL, Bakke Krog H, Sevillano-Quispe OG, Poulsen H, Kjaergaard M. The C-terminal domains of the NMDA receptor: How intrinsically disordered tails affect signalling, plasticity and disease. Eur J Neurosci. 2021;54:6713–39. doi: 10.1111/ejn.14842. PubMed DOI
Platzer K, Yuan H, Schütz H, Winschel A, Chen W, Hu C, Kusumoto H, et al. GRIN2B encephalopathy: Novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J Med Genet. 2017;54:460–70. doi: 10.1136/jmedgenet-2016-104509. PubMed DOI PMC
Strehlow V, Heyne HO, Vlaskamp DRM, Marwick KFM, Rudolf G, De Bellescize J, Biskup S, et al. GRIN2A -related disorders: Genotype and functional consequence predict phenotype. Brain. 2019;142:80–92. doi: 10.1093/brain/awy304. PubMed DOI PMC
Lemke JR, Hendrickx R, Geider K, Laube B, Schwake M, Harvey RJ, James V, et al. GRIN2B mutations in west syndrome and intellectual disability with focal epilepsy. Ann Neurol. 2014;75:147–54. doi: 10.1002/ana.24073. PubMed DOI PMC
Hirschfeldova K, Cerny J, Bozikova P, Kuchtiak V, Rausch T, Benes V, Spaniel F, et al. Evidence for the association between the intronic haplotypes of ionotropic glutamate receptors and first-episode schizophrenia. J Pers Med. 2021:11. doi: 10.3390/jpm11121250. PubMed DOI PMC
Amin JB, Moody GR, Wollmuth LP. From bedside-to-bench: What disease-associated variants are teaching us about the NMDA receptor. J Physiol. 2021;599:397–416. doi: 10.1113/JP278705. PubMed DOI PMC
Xu Y, Song R, Perszyk RE, Chen W, Kim S, Park KL, Allen JP, et al. De novo GRIN variants in M3 helix associated with neurological disorders control channel gating of NMDA receptor. Cell Mol Life Sci. 2024;81(1):153. doi: 10.1007/s00018-023-05069-z. (Added in proof. PubMed DOI PMC
Yuan H, Hansen KB, Zhang J, Mark Pierson T, Markello TC, Fajardo KVF, Holloman CM, et al. Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun. 2014:5. doi: 10.1038/ncomms4251. PubMed DOI PMC
Swanger SA, Chen W, Wells G, Burger PB, Tankovic A, Bhattacharya S, Strong KL, et al. Mechanistic insight into nmda receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet. 2016;99:1261. doi: 10.1016/j.ajhg.2016.10.002. PubMed DOI PMC
Serraz B, Grand T, Paoletti P. Altered zinc sensitivity of NMDA receptors harboring clinically-relevant mutations. Neuropharmacology. 2016;109:196–204. doi: 10.1016/j.neuropharm.2016.06.008. PubMed DOI
Chen W, Tankovic A, Burger PB, Kusumoto H, Traynelis SF, Yuan H. Functional evaluation of a de novo GRIN2A mutation identified in a patient with profound global developmental delay and refractory epilepsy. Mol Pharmacol. 2017;91:317–30. doi: 10.1124/mol.116.106781. PubMed DOI PMC
Ogden KK, Chen W, Swanger SA, McDaniel MJ, Fan LZ, Hu C, Tankovic A, et al. Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology. PLoS Genetics. 2017;13:1–35. doi: 10.1371/journal.pgen.1006536. PubMed DOI PMC
Amin JB, Leng X, Gochman A, Zhou HX, Wollmuth LP. A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca2+ permeability. Nat Commun. 2018:9. doi: 10.1038/s41467-018-06145-w. PubMed DOI PMC
Gao K, Tankovic A, Zhang Y, Kusumoto H, Zhang J, Chen W, Xiangwei W, et al. A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. PLoS One. 2017;12:1–20. doi: 10.1371/journal.pone.0170818. PubMed DOI PMC
Li J, Zhang J, Tang W, Mizu RK, Kusumoto H, XiangWei W, Xu Y, et al. De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases. Hum Mutat. 2019;40:2393–413. doi: 10.1002/humu.23895. PubMed DOI PMC
Addis L, Virdee JK, Vidler LR, Collier DA, Pal DK, Ursu D. Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency-molecular profiling and functional rescue. Sci Rep. 2017;7:1–14. doi: 10.1038/s41598-017-00115-w. PubMed DOI PMC
Vyklicky V, Krausova B, Cerny J, Ladislav M, Smejkalova T, Kysilov B, Korinek M, et al. Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front Mol Neurosci. 2018;11:1–20. doi: 10.3389/fnmol.2018.00110. PubMed DOI PMC
Santos-gómez A, Miguez-cabello F, Juliá-palacios N, García-navas D, Soto-insuga V, García-peñas JJ, Fuentes P, et al. Paradigmatic de novo grin1 variants recapitulate pathophysiological mechanisms underlying grin1-related disorder clinical spectrum. Int J Mol Sci. 2021;22:1–19. doi: 10.3390/ijms222312656. PubMed DOI PMC
Myers SJ, Yuan H, Perszyk RE, Zhang J, Kim S, Nocilla KA, Allen JP, et al. Classification of missense variants in the N-methyl-d-aspartate receptor GRIN gene family as gain- or loss-of-function. Hum Mol Genet. 2023;32:2857–71. doi: 10.1093/hmg/ddad104. PubMed DOI PMC
Xie L, McDaniel MJ, Perszyk RE, Kim S, Cappuccio G, Shapiro KA, Muñoz-Cabello B, et al. Functional effects of disease-associated variants reveal that the S1-M1 linker of the NMDA receptor critically controls channel opening. Cell Mol Life Sci. 2023;80:1–19. doi: 10.1007/s00018-023-04705-y. PubMed DOI PMC
Moody G, Musco A, Bennett J, Wollmuth LP. An integrated approach to evaluate the functional effects of disease-associated NMDA receptor variants. Neuropharmacology. 2023;240:109703. doi: 10.1016/j.neuropharm.2023.109703. PubMed DOI
Han W, Yuan H, Allen JP, Kim S, Shaulsky GH, Perszyk RE, Traynelis SF, et al. Opportunities for Precision Treatment of GRIN2A and GRIN2B Gain-of-Function Variants in Triheteromeric N-Methyl-D-Aspartate Receptors. J Pharmacol Exp Ther. 2022;381:54–66. doi: 10.1124/jpet.121.001000. PubMed DOI PMC
Song R, Zhang J, Perszyk RE, Camp CR, Tang W, Kannan V, Li J, et al. Differential responses of disease-related GRIN variants located in pore-forming M2 domain of N-methyl-D-aspartate receptor to FDA-approved inhibitors. J Neurochem. 2023:1–14. doi: 10.1111/jnc.15942. PubMed DOI PMC
Tang W, Liu D, Traynelis SF, Yuan H. Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders. Neuropharmacology. 2020;177:108247. doi: 10.1016/j.neuropharm.2020.108247. PubMed DOI PMC
Kysilov B, Hrcka Krausova B, Vyklicky V, Smejkalova T, Korinek M, Horak M, Chodounska H, et al. Pregnane-based steroids are novel positive NMDA receptor modulators that may compensate for the effect of loss-of-function disease-associated GRIN mutations. Br J Pharmacol. 2022;179:3970–90. doi: 10.1111/bph.15841. PubMed DOI
Fedele L, Newcombe J, Topf M, Gibb A, Harvey RJ, Smart TG. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Nat Commun. 2018:9. doi: 10.1038/s41467-018-02927-4. PubMed DOI PMC
Kellner S, Abbasi A, Carmi I, Heinrich R, Garin-Shkolnik T, Hershkovitz T, Giladi M, et al. Two de novo GluN2B mutations affect multiple NMDAR-functions and instigate severe pediatric encephalopathy. Elife. 2021:10. doi: 10.7554/eLife.67555. PubMed DOI PMC
Kolcheva M, Kortus S, Krausova BH, Barackova P, Misiachna A, Danacikova S, Kaniakova M, et al. Specific pathogenic mutations in the M3 domain of the GluN1 subunit regulate the surface delivery and pharmacological sensitivity of NMDA receptors. Neuropharmacology. 2021;189:108528. doi: 10.1016/j.neuropharm.2021.108528. PubMed DOI
Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, Golas G, et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol. 2014;1:190–8. doi: 10.1002/acn3.39. PubMed DOI PMC
Soto D, Olivella M, Grau C, Armstrong J, Alcon C, Gasull X, Santos-Gómez A, et al. L-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy. Sci Signal. 2019;12:1–16. doi: 10.1126/scisignal.aaw0936. PubMed DOI
Xu Y, Song R, Chen W, Strong K, Shrey D, Gedela S, Traynelis SF, et al. Recurrent seizure-related GRIN1 variant: Molecular mechanism and targeted therapy. Ann Clin Transl Neurol. 2021;8:1480–94. doi: 10.1002/acn3.51406. PubMed DOI PMC
Lewis SA, Shetty S, Gamble S, Heim J, Zhao N, Stitt G, Pankratz M, et al. Intrathecal magnesium delivery for Mg++-insensitive NMDA receptor activity due to GRIN1 mutation. Orphanet J Rare Dis. 2023;18:1–5. doi: 10.1186/s13023-023-02756-9. PubMed DOI PMC
den Hollander B, Veenvliet ARJ, Rothuizen-Lindenschot M, van Essen P, Peters G, Santos-Gómez A, Olivella M, et al. Evidence for effect of L-serine, a novel therapy for GRIN2B-related neurodevelopmental disorder. Mol Genet Metab. 2023:138. doi: 10.1016/j.ymgme.2023.107523. PubMed DOI
Lester RAJ, Jahr CE. NMDA channel behavior depends on agonist affinity. J Neurosci. 1992;12:635–43. doi: 10.1523/JNEUROSCI.12-02-00635.1992. PubMed DOI PMC
Benske TM, Mu TW, Wang YJ. Protein quality control of N-methyl-D-aspartate receptors. Front Cell Neurosci. 2022;16:1–25. doi: 10.3389/fncel.2022.907560. PubMed DOI PMC
Skrenkova K, Jman Song, Kortus S, Kolcheva M, Netolicky J, Hemelikova K, Kaniakova M, et al. The pathogenic S688Y mutation in the ligand-binding domain of the GluN1 subunit regulates the properties of NMDA receptors. Sci Rep. 2020;10:1–15. doi: 10.1038/s41598-020-75646-w. PubMed DOI PMC
Liu S, Zhou L, Yuan H, Vieira M, Sanz-Clemente A, Badger JD, Lu W, et al. A rare variant identified within the GluN2B C-terminus in a patient with autism affects NMDA receptor surface expression and spine density. J Neurosci. 2017;37:4093–102. doi: 10.1523/JNEUROSCI.0827-16.2017. PubMed DOI PMC
Wang X, Mei D, Gou L, Zhao S, Gao C, Guo J, Luo S, et al. Functional evaluation of a novel GRIN2B missense variant associated with epilepsy and intellectual disability. Neuroscience. 2023;526:107–20. doi: 10.1016/j.neuroscience.2023.06.018. PubMed DOI
Mayer ML, Vyklicky L, Clements J. Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nat. 1989;338:425–7. doi: 10.1038/338425a0. PubMed DOI
Clements JD, Lester RAJ, Tong G, Jahr CE, Westbrook GL. The time course of glutamate in the synaptic cleft. Science. 1992;258:1498–501. doi: 10.1126/science.1359647. PubMed DOI
Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci U S A. 1998;95:15730–4. doi: 10.1073/pnas.95.26.15730. PubMed DOI PMC
Stroebel D, Mony L, Paoletti P. Glycine agonism in ionotropic glutamate receptors. Neuropharmacology. 2021;193:108631. doi: 10.1016/j.neuropharm.2021.108631. PubMed DOI
Jahr CE. High probability opening of NMDA receptor channels by L-glutamate. Science. 1992;255:470–2. doi: 10.1126/science.1346477. PubMed DOI
Marwick KFM, Hansen KB, Skehel PA, Hardingham GE, Wyllie DJA. Functional assessment of triheteromeric NMDA receptors containing a human variant associated with epilepsy. J Physiol. 2019;597:1691–704. doi: 10.1113/JP277292. PubMed DOI PMC
Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. 2007;8:413–26. doi: 10.1038/nrn2153. PubMed DOI
Kolcheva M, Ladislav M, Netolicky J, Kortus S, Rehakova K, Krausova BH, Hemelikova K, et al. The pathogenic N650K variant in the GluN1 subunit regulates the trafficking, conductance, and pharmacological properties of NMDA receptors. Neuropharmacology. 2023;222:109297. doi: 10.1016/j.neuropharm.2022.109297. PubMed DOI
Wang CC, Held RG, Chang SC, Yang L, Delpire E, Ghosh A, Hall B, et al. A critical role for gluN2B-containing NMDA receptors in cortical development and function. Neuron. 2011;72:789–805. doi: 10.1016/j.neuron.2011.09.023. PubMed DOI
Liu XR, Xu XX, Lin SM, Fan CY, Ye TT, Tang B, Shi YW, et al. GRIN2A Variants Associated With Idiopathic Generalized Epilepsies. Front Mol Neurosci. 2021;14:1–15. doi: 10.3389/fnmol.2021.720984. PubMed DOI PMC
Li QQ, Chen J, Hu P, Jia M, Sun JH, Feng HY, Qiao FC, et al. Enhancing GluN2A-type NMDA receptors impairs long-term synaptic plasticity and learning and memory. Mol Psychiatry. 2022;27:3468–78. doi: 10.1038/s41380-022-01579-7. PubMed DOI
Mota Vieira M, Nguyen TA, Wu K, Badger JD, Collins BM, Anggono V, Lu W, et al. An Epilepsy-Associated GRIN2A Rare Variant Disrupts CaMKIIα Phosphorylation of GluN2A and NMDA Receptor Trafficking. Cell Rep. 2020;32:108104. doi: 10.1016/j.celrep.2020.108104. PubMed DOI PMC
Santos-Gómez A, Miguez-Cabello F, Garciá-Recio A, Locubiche-Serra S, Garciá-Diáz R, Soto-Insuga V, Guerrero-López R, et al. Disease-associated GRIN protein truncating variants trigger NMDA receptor loss-of-function. Hum Mol Genet. 2020;29:3859–71. doi: 10.1093/hmg/ddaa220. PubMed DOI
El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, Kikhi K, et al. Genetic compensation triggered by mutant mRNA degradation Europe PMC Funders Group. Nature. 2019;568:193–7. doi: 10.1038/s41586-019-1064-z. PubMed DOI PMC
Lee PJ, Yang S, Sun Y, Guo JU. Regulation of nonsense-mediated mRNA decay in neural development and disease. J Mol Cell Biol. 2021;13:269–81. doi: 10.1093/jmcb/mjab022. PubMed DOI PMC
Sceniak MP, Fedder KN, Wang Q, Droubi S, Babcock K, Patwardhan S, Wright-Zornes J, et al. An autism-associated mutation in GluN2B prevents NMDA receptor trafficking and interferes with dendrite growth. J Cell Sci. 2019;132:1–14. doi: 10.1242/jcs.232892. PubMed DOI
Sabo SL, Lahr JM, Offer M, Weekes ALA, Sceniak MP. GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms. Front Synaptic Neurosci. 2023;14:1–17. doi: 10.3389/fnsyn.2022.1090865. PubMed DOI PMC
Elmasri M, Hunter DW, Winchester G, Bates EE, Aziz W, Van Der Does DM, Karachaliou E, et al. Common synaptic phenotypes arising from diverse mutations in the human NMDA receptor subunit GluN2A. Commun Biol. 2022;5:1–17. doi: 10.1038/s42003-022-03115-3. PubMed DOI PMC
Elmasri M, Lotti JS, Aziz W, Steele OG, Karachaliou E, Sakimura K, Hansen KB, et al. Synaptic Dysfunction by Mutations in GRIN2B: Influence of Triheteromeric NMDA Receptors on Gain-Of-Function and Loss-Of-Function Mutant Classification. Brain Sci. 2022:12. doi: 10.3390/brainsci12060789. PubMed DOI PMC
Forrest D, Yuzaki M, Soares HD, Ng L, Luk DC, Sheng M, Stewart CL, et al. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron. 1994;13:325–38. doi: 10.1016/0896-6273(94)90350-6. PubMed DOI
Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit. Nat. 1995;373:151–5. doi: 10.1038/373151a0. PubMed DOI
Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, et al. Impairment of Suckling Response, Trigeminal Neuronal Pattern Formation, and Hippocampal LTD in NMDA Receptor ε2 Subunit Mutant Mice. Neuron. 1996;16:333–44. doi: 10.1016/S0896-6273(00)80051-3. PubMed DOI
Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby O, et al. Importance of the Intracellular Domain of NR2 Subunits for NMDA Receptor Function In Vivo. Cell. 1998;92:279–89. doi: 10.1016/S0092-8674(00)80921-6. PubMed DOI
Herzog LE, Wang L, Yu E, Choi S, Farsi Z, Song BJ, Pan JQ, et al. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients. Transl Psychiatry. 2023:13. doi: 10.1038/s41398-023-02393-7. PubMed DOI PMC
Camp CR, Vlachos A, Klöckner C, Krey I, Banke TG, Shariatzadeh N, Ruggiero SM, et al. Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons. Commun Biol. 2023:6. doi: 10.1038/s42003-023-05298-9. PubMed DOI PMC
Farsi Z, Nicolella A, Simmons SK, Aryal S, Shepard N, Brenner K, Lin S, et al. Brain-region-specific changes in neurons and glia and dysregulation of dopamine signaling in Grin2a mutant mice. Neuron. 2023;111:3378–3396.e9. doi: 10.1016/j.neuron.2023.08.004. PubMed DOI
Shin W, Kim K, Serraz B, Cho YS, Kim D, Kang M, Lee EJ, et al. Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice. PLoS Biol. 2020;18:1–28. doi: 10.1371/journal.pbio.3000717. PubMed DOI PMC
Zoodsma JD, Keegan EJ, Moody GR, Bhandiwad AA, Napoli AJ, Burgess HA, Wollmuth LP, et al. Disruption of grin2B, an ASD-associated gene, produces social deficits in zebrafish. Mol Autism. 2022;13:1–17. doi: 10.1186/s13229-022-00516-3. PubMed DOI PMC
Zoodsma JD, Chan K, Bhandiwad AA, Golann DR, Liu G, Syed SA, Napoli AJ, et al. A Model to Study NMDA Receptors in Early Nervous System Development. J Neurosci. 2020;40:3631–45. doi: 10.1523/JNEUROSCI.3025-19.2020. PubMed DOI PMC
Furuse T, Wada Y, Hattori K, Yamada I, Kushida T, Shibukawa Y, Masuya H, et al. Phenotypic characterization of a new Grin1 mutant mouse generated by ENU mutagenesis. Eur J Neurosci. 2010;31:1281–91. doi: 10.1111/j.1460-9568.2010.07164.x. PubMed DOI
Lemke JR, Geider K, Helbig KL, Heyne HO, Schütz H, Hentschel J, Courage C, et al. Delineating the GRIN1 phenotypic spectrum: A distinct genetic NMDA receptor encephalopathy. Neurology. 2016;86:2171–8. doi: 10.1212/WNL.0000000000002740. PubMed DOI PMC
Amador A, Bostick CD, Olson H, Peters J, Camp CR, Krizay D, Chen W, et al. Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice. Brain. 2020;143:2039. doi: 10.1093/brain/awaa147. PubMed DOI PMC
Zhao T, Zhong R, Zhang X, Li G, Zhou C, Fang S, Ding Y, et al. Efavirenz restored NMDA receptor dysfunction and inhibited epileptic seizures in GluN2A/Grin2a mutant mice. Front Neurosci. 2023:17. doi: 10.3389/fnins.2023.1086462. PubMed DOI PMC
Candelas Serra M, Kuchtiak V, Kubik-Zahorodna A, Kysilov B, Fili K, Abramova V, Dobrovolski M, et al. Characterization of mice carrying a neurodevelopmental disease-associated GluN2B(L825V) variant. J Neurosci. doi: 10.1523/JNEUROSCI.2291-23.2024. accepted. PubMed DOI PMC
Ragnarsson L, Zhang Z, Das SS, Tran P, Andersson Å, des Portes V, Desmettre Altuzarra C, et al. GRIN1 variants associated with neurodevelopmental disorders reveal channel gating pathomechanisms. Epilepsia. 2023;1:0–3. doi: 10.1111/epi.17776. PubMed DOI PMC
Kalbaugh TL, VanDongen HMA, VanDongen AMJ. Ligand-binding residues integrate affinity and efficacy in the NMDA receptor. Mol Pharmacol. 2004;66:209–19. doi: 10.1124/mol.66.2.209. PubMed DOI
Zhang J, Tang W, Bhatia NK, Xu Y, Paudyal N, Liu D, Kim S, et al. A de novo GRIN1 variant associated with myoclonus and developmental delay: from molecular mechanism to rescue pharmacology. Front Genet. 2021;12:1–16. doi: 10.3389/fgene.2021.694312. PubMed DOI PMC
Hamdan FF, Gauthier J, Araki Y, Lin DT, Yoshizawa Y, Higashi K, Park AR, et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet. 2011;88:306–16. https://doi.org/10.1016/j.ajhg.2011.02.001, https://doi.org/10.1016/j.ajhg.2011.03.011. PubMed DOI PMC
Chen W, Shieh C, Swanger SA, Tankovic A, Au M, McGuire M, Tagliati M, et al. GRIN1 mutation associated with intellectual disability alters NMDA receptor trafficking and function. J Hum Genet. 2017;62:589–97. doi: 10.1038/jhg.2017.19. PubMed DOI PMC
Fry AE, Fawcett KA, Zelnik N, Yuan H, Thompson BAN, Shemer-Meiri L, Cushion TD, et al. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain. 2018;141:698–712. doi: 10.1093/brain/awx358. PubMed DOI PMC
Shepard N, Baez-Nieto D, Iqbal S, Kurganov E, Budnik N, Campbell AJ, Pan JQ, et al. Differential functional consequences of GRIN2A mutations associated with schizophrenia and neurodevelopmental disorders. Sci Rep. 2024;14:2798. doi: 10.1038/s41598-024-53102-3. PubMed DOI PMC
Sibarov DA, Bruneau N, Antonov SM, Szepetowski P, Burnashev N, Giniatullin R. Functional properties of human NMDA receptors associated with epilepsy-related mutations of GluN2A subunit. Front Cell Neurosci. 2017;11:1–10. doi: 10.3389/fncel.2017.00155. PubMed DOI PMC
Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, Salmi M, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45:1061–6. doi: 10.1038/ng.2726. PubMed DOI
Xu XX, Liu XR, Fan CY, Lai JX, Shi YW, Yang W, Su T, et al. Functional Investigation of a GRIN2A Variant Associated with Rolandic Epilepsy. Neurosci Bull. 2018;34:237–46. doi: 10.1007/s12264-017-0182-6. PubMed DOI PMC
Tang W, Beckley JT, Zhang J, Song R, Xu Y, Kim S, Quirk MC, et al. Novel neuroactive steroids as positive allosteric modulators of NMDA receptors: mechanism, site of action, and rescue pharmacology on GRIN variants associated with neurological conditions. Cell Mol Life Sci. 2023:80. doi: 10.1007/s00018-022-04667-7. PubMed DOI PMC
Carvill GL, Regan BM, Yendle SC, O’Roak BJ, Lozovaya N, Bruneau N, Burnashev N, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013;45:1073–6. doi: 10.1038/ng.2727. PubMed DOI PMC
Iacobucci GJ, Liu B, Wen H, Sincox B, Zheng W, Popescu GK. Complex functional phenotypes of NMDA receptor disease variants. Mol Psychiatry. 2022;27:5113–23. doi: 10.1038/s41380-022-01774-6. PubMed DOI PMC
Marwick KFM, Parker P, Skehel P, Hardingham G, Wyllie DJA. Functional assessment of the NMDA receptor variant GluN2AR586K. Wellcome Open Res. 2017;2:1–16. https://doi.org/10.12688/wellcomeopenres.10985.1, https://doi.org/10.12688/wellcomeopenres.10985.2. PubMed DOI PMC
Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I, Milh M, et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet. 2010;42:1021–6. doi: 10.1038/ng.677. PubMed DOI
Marwick KFM, Skehel PA, Hardingham GE, Wyllie DJA. The human NMDA receptor GluN2AN615K variant influences channel blocker potency. Pharmacol Res Perspect. 2019;7:1–7. doi: 10.1002/prp2.495. PubMed DOI PMC
Chen X, Keramidas A, Harvey RJ, Lynch JW. Effects of GluN2A and GluN2B gain-of-function epilepsy mutations on synaptic currents mediated by diheteromeric and triheteromeric NMDA receptors. Neurobiol Dis. 2020;140:104850. doi: 10.1016/j.nbd.2020.104850. PubMed DOI
Bertocchi I, Eltokhi A, Rozov A, Chi VN, Jensen V, Bus T, Pawlak V, et al. Voltage-independent GluN2A-type NMDA receptor Ca2+ signaling promotes audiogenic seizures, attentional and cognitive deficits in mice. Commun Biol. 2021;4:1–21. https://doi.org/10.1038/s42003-021-01717-x, https://doi.org/10.1038/s42003-020-01538-4. PubMed DOI PMC
Fernández-Marmiesse A, Kusumoto H, Rekarte S, Roca I, Zhang J, Myers SJ, Traynelis SF, et al. A novel missense mutation in GRIN2A causes a non-epileptic neurodevelopmental disorder. Mov Disord. 2018;33:992. doi: 10.1002/mds.27315. PubMed DOI PMC
Vieira MM, Peng S, Won S, Hong E, Inati SK, Thurm A, Thiam AH, et al. A Frameshift Variant of GluN2A Identified in an Epilepsy Patient Results in NMDA Receptor Mistargeting. J Neurosci. 2024;44:JN-RM-0557-23. doi: 10.1523/JNEUROSCI.0557-23.2023. PubMed DOI PMC
Yong XLH, Zhang L, Yang L, Chen X, Tan JZA, Yu X, Chandra M, et al. Regulation of NMDA receptor trafficking and gating by activity-dependent CaMKIIα phosphorylation of the GluN2A subunit. Cell Rep. 2021;36:109338. doi: 10.1016/j.celrep.2021.109338. PubMed DOI PMC
Adams DR, Yuan H, Holyoak T, Arajs KH, Hakimi P, Markello TC, Wolfe LA, et al. Three rare diseases in one Sib pair: RAI1, PCK1, GRIN2B mutations associated with Smith-Magenis Syndrome, cytosolic PEPCK deficiency and NMDA receptor glutamate insensitivity. Mol Genet Metab. 2014;113:161–70. doi: 10.1016/j.ymgme.2014.04.001. PubMed DOI PMC
Wells G, Yuan H, McDaniel MJ, Kusumoto H, Snyder JP, Liotta DC, Traynelis SF, et al. The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening. Proteins Struct Funct Bioinforma. 2018;86:1265–76. doi: 10.1002/prot.25595. PubMed DOI PMC
Bell S, Maussion G, Jefri M, Peng H, Theroux JF, Silveira H, Soubannier V, et al. Disruption of GRIN2B Impairs Differentiation in Human Neurons. Stem Cell Reports. 2018;11:183–96. doi: 10.1016/j.stemcr.2018.05.018. PubMed DOI PMC
Mullier B, Wolff C, Sands ZA, Ghisdal P, Muglia P, Kaminski RM, André VM, et al. GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology. 2017;123:322–31. doi: 10.1016/j.neuropharm.2017.05.017. PubMed DOI
Bahry JA, Fedder-Semmes KN, Sceniak MP, Sabo SL. An Autism-Associated de novo Mutation in GluN2B Destabilizes Growing Dendrites by Promoting Retraction and Pruning. Front Cell Neurosci. 2021;15:1–11. doi: 10.3389/fncel.2021.692232. PubMed DOI PMC