Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32611707
PubMed Central
PMC7392504
DOI
10.1523/jneurosci.3010-19.2020
PII: JNEUROSCI.3010-19.2020
Knihovny.cz E-zdroje
- Klíčová slova
- glutamate receptors, neurosteroids, patch clamp, structure,
- MeSH
- alanin genetika MeSH
- buněčná membrána účinky léků MeSH
- cholesterol metabolismus MeSH
- elektrofyziologické jevy MeSH
- HEK293 buňky MeSH
- konformace proteinů MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metoda terčíkového zámku MeSH
- pregnenolon farmakologie MeSH
- receptory N-methyl-D-aspartátu účinky léků MeSH
- simulace molekulární dynamiky MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alanin MeSH
- cholesterol MeSH
- NMDA receptor A1 MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- pregnenolon MeSH
- pregnenolone sulfate MeSH Prohlížeč
- receptory N-methyl-D-aspartátu MeSH
N-methyl-D-aspartate receptor (NMDAR) hypofunction has been implicated in several neurodevelopmental disorders. NMDAR function can be augmented by positive allosteric modulators, including endogenous compounds, such as cholesterol and neurosteroid pregnenolone sulfate (PES). Here we report that PES accesses the receptor via the membrane, and its binding site is different from that of cholesterol. Alanine mutagenesis has identified residues that disrupt the steroid potentiating effect at the rat GluN1 (G638; I642) and GluN2B (W559; M562; Y823; M824) subunit. Molecular dynamics simulation indicates that, in the absence of PES, the GluN2B M1 helix residue W559 interacts with the M4 helix residue M824. In the presence of PES, the M1 and M4 helices of agonist-activated receptor rearrange, forming a tighter interaction with the GluN1 M3 helix residues G638 and I642. This stabilizes the open-state position of the GluN1 M3 helices. Together, our data identify a likely binding site for the NMDAR-positive allosteric modulator PES and describe a novel molecular mechanism by which NMDAR activity can be augmented.SIGNIFICANCE STATEMENT There is considerable interest in drugs that enhance NMDAR function and could compensate for receptor hypofunction associated with certain neuropsychiatric disorders. Positive allosteric modulators of NMDARs include an endogenous neurosteroid pregnenolone sulfate (PES), but the binding site of PES on the NMDAR and the molecular mechanism of potentiation are unknown. We use patch-clamp electrophysiology in combination with mutagenesis and in silico modeling to describe the interaction of PES with the NMDAR. Our data indicate that PES binds to the transmembrane domain of the receptor at a discrete group of residues at the GluN2B membrane helices M1 and M4 and the GluN1 helix M3, and that PES potentiates NMDAR function by stabilizing the open-state position of the GluN1 M3 helices.
3rd Faculty of Medicine Charles University Prague Prague 10 100 00 Czech Republic
Institute of Organic Chemistry and Biochemistry CAS Prague 2 166 10 Czech Republic
Zobrazit více v PubMed
Bicikova M, Hill M, Ripova D, Mohr P, Hampl R (2013) Determination of steroid metabolome as a possible tool for laboratory diagnosis of schizophrenia. J Steroid Biochem Mol Biol 133:77–83. 10.1016/j.jsbmb.2012.08.009 PubMed DOI
Borovska J, Vyklicky V, Stastna E, Kapras V, Slavikova B, Horak M, Chodounska H, Vyklicky L Jr (2012) Access of inhibitory neurosteroids to the NMDA receptor. Br J Pharmacol 166:1069–1083. 10.1111/j.1476-5381.2011.01816.x PubMed DOI PMC
Bowlby MR. (1993) Pregnenolone sulfate potentiation of N-methyl-D-aspartate receptor channels in hippocampal neurons. Mol Pharmacol 43:813–819. PubMed
Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, et al. (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. 10.1002/jcc.21287 PubMed DOI PMC
Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82. 10.1016/j.coph.2014.11.008 PubMed DOI
Cerny J, Bozikova P, Balik A, Marques SM, Vyklicky L (2019) NMDA receptor opening and closing: transitions of a molecular machine revealed by molecular dynamics. Biomolecules 9:546 10.3390/biom9100546 PubMed DOI PMC
Coyle JT. (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365–384. 10.1007/s10571-006-9062-8 PubMed DOI
Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61. PubMed
Dubrovsky BO. (2005) Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 29:169–192. 10.1016/j.pnpbp.2004.11.001 PubMed DOI
Fedele L, Newcombe J, Topf M, Gibb A, Harvey RJ, Smart TG (2018) Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Nat Commun 9:957. 10.1038/s41467-018-02927-4 PubMed DOI PMC
Flood JF, Morley JE, Roberts E (1992) Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci USA 89:1567–1571. 10.1073/pnas.89.5.1567 PubMed DOI PMC
Gibbs TT, Russek SJ, Farb DH (2006) Sulfated steroids as endogenous neuromodulators. Pharmacol Biochem Behav 84:555–567. 10.1016/j.pbb.2006.07.031 PubMed DOI
Hackos DH, Hanson JE (2017) Diverse modes of NMDA receptor positive allosteric modulation: mechanisms and consequences. Neuropharmacology 112:34–45. 10.1016/j.neuropharm.2016.07.037 PubMed DOI
Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10:943–954. 10.1016/0896-6273(93)90209-a PubMed DOI
Horak M, Vlcek K, Chodounska H, Vyklicky L Jr (2006) Subtype-dependence of N-methyl-D-aspartate receptor modulation by pregnenolone sulfate. Neuroscience 137:93–102. 10.1016/j.neuroscience.2005.08.058 PubMed DOI
Horak M, Vlcek K, Petrovic M, Chodounska H, Vyklicky L Jr (2004) Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. J Neurosci 24:10318–10325. 10.1523/JNEUROSCI.2099-04.2004 PubMed DOI PMC
Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF (2016) Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci 132:115–121. 10.1016/j.jphs.2016.10.002 PubMed DOI PMC
Huettner JE, Bean BP (1988) Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA 85:1307–1311. 10.1073/pnas.85.4.1307 PubMed DOI PMC
Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–717. 10.1016/j.neuron.2013.10.025 PubMed DOI PMC
Chen N, Luo T, Raymond LA (1999) Subtype-dependence of NMDA receptor channel open probability. J Neurosci 19:6844–6854. 10.1523/JNEUROSCI.19-16-06844.1999 PubMed DOI PMC
Jahr CE. (1992) High probability opening of NMDA receptor channels by L-glutamate. Science 255:470–472. 10.1126/science.1346477 PubMed DOI
Jang MK, Mierke DF, Russek SJ, Farb DH (2004) A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity. Proc Natl Acad Sci USA 101:8198–8203. 10.1073/pnas.0401838101 PubMed DOI PMC
Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. 10.1002/jcc.20945 PubMed DOI
Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344:992–997. 10.1126/science.1251915 PubMed DOI PMC
Kashiwagi K, Pahk AJ, Masuko T, Igarashi K, Williams K (1997) Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol Pharmacol 52:701–713. 10.1124/mol.52.4.701 PubMed DOI
Kashiwagi K, Masuko T, Nguyen CD, Kuno T, Tanaka I, Igarashi K, Williams K (2002) Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol Pharmacol 61:533–545. 10.1124/mol.61.3.533 PubMed DOI
Korinek M, Vyklicky V, Borovska J, Lichnerova K, Kaniakova M, Krausova B, Krusek J, Balik A, Smejkalova T, Horak M, Vyklicky L (2015) Cholesterol modulates open probability and desensitization of NMDA receptors. J Physiol 593:2279–2293. 10.1113/jphysiol.2014.288209 PubMed DOI PMC
Kostakis E, Jang MK, Russek SJ, Gibbs TT, Farb DH (2011) A steroid modulatory domain in NR2A collaborates with NR1 exon-5 to control NMDAR modulation by pregnenolone sulfate and protons. J Neurochem 119:486–496. 10.1111/j.1471-4159.2011.07442.x PubMed DOI PMC
Krausova B, Slavikova B, Nekardova M, Hubalkova P, Vyklicky V, Chodounska H, Vyklicky L, Kudova E (2018) Positive modulators of the N-Methyl-D-aspartate receptor: structure-activity relationship study of steroidal 3-hemiesters. J Med Chem 61:4505–4516. 10.1021/acs.jmedchem.8b00255 PubMed DOI
Ladislav M, Cerny J, Krusek J, Horak M, Balik A, Vyklicky L (2018) The LILI motif of M3-S2 linkers is a component of the NMDA receptor channel gate. Front Mol Neurosci 11:113. 10.3389/fnmol.2018.00113 PubMed DOI PMC
Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18:493–503. 10.1016/s0896-6273(00)81249-0 PubMed DOI
Lazaridis T. (2003) Effective energy function for proteins in lipid membranes. Proteins 52:176–192. 10.1002/prot.10410 PubMed DOI
Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511:191–197. 10.1038/nature13548 PubMed DOI PMC
Lemke JR, Geider K, Helbig KL, Heyne HO, Schütz H, Hentschel J, Courage C, Depienne C, Nava C, Heron D, Møller RS, Hjalgrim H, Lal D, Neubauer BA, Nürnberg P, Thiele H, Kurlemann G, Arnold GL, Bhambhani V, Bartholdi D, et al. (2016) Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy. Neurology 86:2171–2178. 10.1212/WNL.0000000000002740 PubMed DOI PMC
Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug; sernyl. Arch Neurol Psychiatry 81:363–369. 10.1001/archneurpsyc.1959.02340150095011 PubMed DOI
Lynch MA. (2004) Long-term potentiation and memory. Physiol Rev 84:87–136. 10.1152/physrev.00014.2003 PubMed DOI
Malayev A, Gibbs TT, Farb DH (2002) Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br J Pharmacol 135:901–909. 10.1038/sj.bjp.0704543 PubMed DOI PMC
Mathis C, Paul SM, Crawley JN (1994) The neurosteroid pregnenolone sulfate blocks NMDA antagonist-induced deficits in a passive avoidance memory task. Psychopharmacology (Berl) 116:201–206. 10.1007/BF02245063 PubMed DOI
McNaught AD, Wilkinson A (1997) IUPAC: Compendium of chemical terminology, Ed 2 The gold book. Oxford: Blackwell.
Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221. 10.1126/science.256.5060.1217 PubMed DOI
Park-Chung M, Wu FS, Farb DH (1994) 3 alpha-Hydroxy-5 beta-pregnan-20-one sulfate: a negative modulator of the NMDA-induced current in cultured neurons. Mol Pharmacol 46:146–150. PubMed
Paul SM, Doherty JJ, Robichaud AJ, Belfort GM, Chow BY, Hammond RS, Crawford DC, Linsenbardt AJ, Shu HJ, Izumi Y, Mennerick SJ, Zorumski CF (2013) The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci 33:17290–17300. 10.1523/JNEUROSCI.2619-13.2013 PubMed DOI PMC
Petrovic M, Sedlacek M, Horak M, Chodounska H, Vyklicky L Jr (2005) 20-oxo-5beta-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. J Neurosci 25:8439–8450. 10.1523/JNEUROSCI.1407-05.2005 PubMed DOI PMC
Platzer K, Yuan H, Schütz H, Winschel A, Chen W, Hu C, Kusumoto H, Heyne HO, Helbig KL, Tang S, Willing MC, Tinkle BT, Adams DJ, Depienne C, Keren B, Mignot C, Frengen E, Strømme P, Biskup S, Döcker D, et al. (2017) GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J Med Genet 54:460–470. 10.1136/jmedgenet-2016-104509 PubMed DOI PMC
Rambousek L, Bubenikova-Valesova V, Kacer P, Syslova K, Kenney J, Holubova K, Najmanova V, Zach P, Svoboda J, Stuchlik A, Chodounska H, Kapras V, Adamusova E, Borovska J, Vyklicky L, Vales K (2011) Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-D-aspartate receptor 3alpha5beta-pregnanolone glutamate. Neuropharmacology 61:61–68. 10.1016/j.neuropharm.2011.02.018 PubMed DOI
Shu HJ, Eisenman LN, Jinadasa D, Covey DF, Zorumski CF, Mennerick S (2004) Slow actions of neuroactive steroids at GABAA receptors. J Neurosci 24:6667–6675. 10.1523/JNEUROSCI.1399-04.2004 PubMed DOI PMC
Smothers CT, Woodward JJ (2009) Expression of glycine-activated diheteromeric NR1/NR3 receptors in human embryonic kidney 293 cells Is NR1 splice variant-dependent. J Pharmacol Exp Ther 331:975–984. 10.1124/jpet.109.158493 PubMed DOI PMC
Stastna E, Chodounska H, Pouzar V, Kapras V, Borovska J, Cais O, Vyklicky L Jr (2009) Synthesis of C3, C5, and C7 pregnane derivatives and their effect on NMDA receptor responses in cultured rat hippocampal neurons. Steroids 74:256–263. 10.1016/j.steroids.2008.11.011 PubMed DOI
Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15:6509–6520. PubMed PMC
Swanger SA, Chen W, Wells G, Burger PB, Tankovic A, Bhattacharya S, Strong KL, Hu C, Kusumoto H, Zhang J, Adams DR, Millichap JJ, Petrovski S, Traynelis SF, Yuan H (2016) Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 99:1261–1280. 10.1016/j.ajhg.2016.10.002 PubMed DOI PMC
Szejtli J. (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754. 10.1021/cr970022c PubMed DOI
Tamminga CA. (1998) Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 12:21–36. 10.1615/critrevneurobiol.v12.i1-2.20 PubMed DOI
UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. PubMed PMC
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R, Sibley D (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496. 10.1124/pr.109.002451 PubMed DOI PMC
Vyklicky V, Korinek M, Balik A, Smejkalova T, Krausova B, Vyklicky L (2016) Analysis of whole-cell NMDA receptor currents. In: Ionotropic glutamate receptor technologies, pp 205–219. New York: Springer.
Vyklicky V, Krausova B, Cerny J, Ladislav M, Smejkalova T, Kysilov B, Korinek M, Danacikova S, Horak M, Chodounska H, Kudova E, Vyklicky L (2018) Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front Mol Neurosci 11:110. 10.3389/fnmol.2018.00110 PubMed DOI PMC
Vyklicky V, Krausova B, Cerny J, Balik A, Zapotocky M, Novotny M, Lichnerova K, Smejkalova T, Kaniakova M, Korinek M, Petrovic M, Kacer P, Horak M, Chodounska H, Vyklicky L (2015) Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci Rep 5:10935. 10.1038/srep10935 PubMed DOI PMC
Wilding TJ, Lopez MN, Huettner JE (2016) Chimeric Glutamate Receptor Subunits Reveal the Transmembrane Domain Is Sufficient for NMDA Receptor Pore Properties but Some Positive Allosteric Modulators Require Additional Domains. J Neurosci 36:8815–8825. PubMed PMC
Weaver CE, Land MB, Purdy RH, Richards KG, Gibbs TT, Farb DH (2000) Geometry and charge determine pharmacological effects of steroids on N- methyl-D-aspartate receptor-induced Ca(2+) accumulation and cell death. J Pharmacol Exp Ther 293:747–754. PubMed
Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 47:6. PubMed
Wu FS, Gibbs TT, Farb DH (1991) Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 40:333–336. PubMed
Yaghoubi N, Malayev A, Russek SJ, Gibbs TT, Farb DH (1998) Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Res 803:153–160. 10.1016/s0006-8993(98)00644-1 PubMed DOI
Yancey PG, Rodrigueza WV, Kilsdonk EP, Stoudt GW, Johnson WJ, Phillips MC, Rothblat GH (1996) Cellular cholesterol efflux mediated by cyclodextrins: demonstration of kinetic pools and mechanism of efflux. J Biol Chem 271:16026–16034. 10.1074/jbc.271.27.16026 PubMed DOI
Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF (2015) Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharmacol 88:203–217. 10.1124/mol.115.097998 PubMed DOI PMC
Palmitoylation Controls NMDA Receptor Function and Steroid Sensitivity