The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29681798
PubMed Central
PMC5897735
DOI
10.3389/fnmol.2018.00113
Knihovny.cz E-zdroje
- Klíčová slova
- channel open probability, electrophysiology, glutamate receptor gating, molecular modeling, protein block alphabet, spontaneous activity,
- Publikační typ
- časopisecké články MeSH
N-methyl-D-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the central nervous system, underlie the induction of synaptic plasticity, and their malfunction is associated with human diseases. Native NMDARs are tetramers composed of two obligatory GluN1 subunits and various combinations of GluN2A-D or, more rarely, GluN3A-B subunits. Each subunit consists of an amino-terminal, ligand-binding, transmembrane and carboxyl-terminal domain. The ligand-binding and transmembrane domains are interconnected via polypeptide chains (linkers). Upon glutamate and glycine binding, these receptors undergo a series of conformational changes leading to the opening of the Ca2+-permeable ion channel. Here we report that different deletions and mutations of amino acids in the M3-S2 linkers of the GluN1 and GluN2B subunits lead to constitutively open channels. Irrespective of whether alterations were introduced in the GluN1 or the GluN2B subunit, application of glutamate or glycine promoted receptor channel activity; however, responses induced by the GluN1 agonist glycine were larger, on average, than those induced by glutamate. We observed the most prominent effect when residues GluN1(L657) and GluN2B(I655) were deleted or altered to glycine. In parallel, molecular modeling revealed that two interacting pairs of residues, the LILI motif (GluN1(L657) and GluN2B(I655)), form a functional unit with the TTTT ring (GluN1(T648) and GluN2B(T647)), described earlier to control NMDAR channel gating. These results provide new insight into the structural organization and functional interplay of the LILI and the TTTT ring during the course of NMDAR channel opening and closing.
Zobrazit více v PubMed
Amico-Ruvio S. A., Popescu G. K. (2010). Stationary gating of GluN1/GluN2B receptors in intact membrane patches. Biophys. J. 98, 1160–1169. 10.1016/j.bpj.2009.12.4276 PubMed DOI PMC
Barnoud J., Santuz H., Craveur P., Joseph A. P., Jallu V., De Brevern A. G., et al. . (2017). PBxplore: a tool to analyze local protein structure and deformability with Protein Blocks. PeerJ 5:e4013. 10.7717/peerj.4013 PubMed DOI PMC
Beck C., Wollmuth L. P., Seeburg P. H., Sakmann B., Kuner T. (1999). NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 22, 559–570. 10.1016/s0896-6273(00)80710-2 PubMed DOI
Bouvier G., Larsen R. S., Rodríguez-Moreno A., Paulsen O., Sjöström P. J. (2018). Towards resolving the presynaptic NMDA receptor debate. Curr. Opin. Neurobiol. 51, 1–7. 10.1016/j.conb.2017.12.020 PubMed DOI
Chang H. R., Kuo C. C. (2008). The activation gate and gating mechanism of the NMDA receptor. J. Neurosci. 28, 1546–1556. 10.1523/JNEUROSCI.3485-07.2008 PubMed DOI PMC
Chen P. E., Geballe M. T., Katz E., Erreger K., Livesey M. R., O’Toole K. K., et al. . (2008). Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. 586, 227–245. 10.1113/jphysiol.2007.143172 PubMed DOI PMC
Chen N., Luo T., Raymond L. A. (1999). Subtype-dependence of NMDA receptor channel open probability. J. Neurosci. 19, 6844–6854. PubMed PMC
Colquhoun D., Hawkes A. G. (1990). Stochastic properties of ion channel openings and bursts in a membrane patch that contains two channels: evidence concerning the number of channels present when a record containing only single openings is observed. Proc. R. Soc. Lond. B Biol. Sci. 240, 453–477. 10.1098/rspb.1990.0048 PubMed DOI
Craveur P., Joseph A. P., Esque J., Narwani T. J., Noël F., Shinada N., et al. . (2015). Protein flexibility in the light of structural alphabets. Front. Mol. Biosci. 2:20. 10.3389/fmolb.2015.00020 PubMed DOI PMC
Dai J., Zhou H. X. (2013). An NMDA receptor gating mechanism developed from MD simulations reveals molecular details underlying subunit-specific contributions. Biophys. J. 104, 2170–2181. 10.1016/j.bpj.2013.04.013 PubMed DOI PMC
de Brevern A. G., Etchebest C., Hazout S. (2000). Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins 41, 271–287. 10.1002/1097-0134(20001115)41:3<271::aid-prot10>3.0.co;2-z PubMed DOI
Dingledine R., Borges K., Bowie D., Traynelis S. F. (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61. PubMed
Dore K., Aow J., Malinow R. (2016). The emergence of NMDA receptor metabotropic function: insights from imaging. Front. Synaptic. Neurosci. 8:20. 10.3389/fnsyn.2016.00020 PubMed DOI PMC
Dore K., Stein I. S., Brock J. A., Castillo P. E., Zito K., Sjostrom P. J. (2017). Unconventional NMDA receptor signaling. J. Neurosci. 37, 10800–10807. 10.1523/JNEUROSCI.1825-17.2017 PubMed DOI PMC
Furukawa H., Singh S. K., Mancusso R., Gouaux E. (2005). Subunit arrangement and function in NMDA receptors. Nature 438, 185–192. 10.1038/nature04089 PubMed DOI
Hamdan F. F., Gauthier J., Araki Y., Lin D. T., Yoshizawa Y., Higashi K., et al. . (2011). Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am. J. Hum. Genet. 88, 306–316. 10.1016/j.ajhg.2011.02.001 PubMed DOI PMC
Hu C., Chen W., Myers S. J., Yuan H., Traynelis S. F. (2016). Human GRIN2B variants in neurodevelopmental disorders. J. Pharmacol. Sci. 132, 115–121. 10.1016/j.jphs.2016.10.002 PubMed DOI PMC
Jones K. S., VanDongen H. M., VanDongen A. M. (2002). The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J. Neurosci. 22, 2044–2053. PubMed PMC
Karakas E., Furukawa H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997. 10.1126/science.1251915 PubMed DOI PMC
Kashiwagi K., Masuko T., Nguyen C. D., Kuno T., Tanaka I., Igarashi K., et al. . (2002). Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol. Pharmacol. 61, 533–545. 10.1124/mol.61.3.533 PubMed DOI
Kazi R., Dai J., Sweeney C., Zhou H. X., Wollmuth L. P. (2014). Mechanical coupling maintains the fidelity of NMDA receptor-mediated currents. Nat. Neurosci. 17, 914–922. 10.1038/nn.3724 PubMed DOI PMC
Kemp J. A., Foster A. C., Leeson P. D., Priestley T., Tridgett R., Iversen L. L., et al. . (1988). 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc. Natl. Acad. Sci. U S A 85, 6547–6550. 10.1073/pnas.85.17.6547 PubMed DOI PMC
Kuryatov A., Laube B., Betz H., Kuhse J. (1994). Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12, 1291–1300. 10.1016/0896-6273(94)90445-6 PubMed DOI
Laube B., Hirai H., Sturgess M., Betz H., Kuhse J. (1997). Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18, 493–503. 10.1016/s0896-6273(00)81249-0 PubMed DOI
Lee C. H., Lü W., Michel J. C., Goehring A., Du J., Song X., et al. . (2014). NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197. 10.1038/nature13548 PubMed DOI PMC
Lynch M. A. (2004). Long-term potentiation and memory. Physiol. Rev. 84, 87–136. 10.1152/physrev.00014.2003 PubMed DOI
Mayer M. L., Vyklicky L., Jr., Clements J. (1989). Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338, 425–427. 10.1038/338425a0 PubMed DOI
Nabavi S., Kessels H. W., Alfonso S., Aow J., Fox R., Malinow R. (2013). Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc. Natl. Acad. Sci. U S A 110, 4027–4032. 10.1073/pnas.1219454110 PubMed DOI PMC
Nicolai C., Sachs F. (2013). Solving ion channel kinetics with the QuB software. Biophys. Rev. Lett. 8, 191–211. 10.1142/S1793048013300053 DOI
Niu X., Qian X., Magleby K. L. (2004). Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage- and Ca2+-activated potassium channel. Neuron 42, 745–756. 10.1016/j.neuron.2004.05.001 PubMed DOI
Popescu G., Auerbach A. (2003). Modal gating of NMDA receptors and the shape of their synaptic response. Nat. Neurosci. 6, 476–483. 10.1038/nn1044 PubMed DOI
Qin F., Auerbach A., Sachs F. (1997). Maximum likelihood estimation of aggregated Markov processes. Proc. Biol. Sci. 264, 375–383. 10.1098/rspb.1997.0054 PubMed DOI PMC
Sali A., Blundell T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815. 10.1006/jmbi.1993.1626 PubMed DOI
Sobolevsky A. I., Beck C., Wollmuth L. P. (2002). Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 33, 75–85. 10.1016/s0896-6273(01)00560-8 PubMed DOI
Sobolevsky A. I., Prodromou M. L., Yelshansky M. V., Wollmuth L. P. (2007). Subunit-specific contribution of pore-forming domains to NMDA receptor channel structure and gating. J. Gen. Physiol. 129, 509–525. 10.1085/jgp.200609718 PubMed DOI PMC
Sobolevsky A. I., Rosconi M. P., Gouaux E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756. 10.1038/nature08624 PubMed DOI PMC
Sobolevsky A. I., Yelshansky M. V., Wollmuth L. P. (2004). The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41, 367–378. 10.1016/s0896-6273(04)00008-x PubMed DOI
Tajima N., Karakas E., Grant T., Simorowski N., Diaz-Avalos R., Grigorieff N., et al. . (2016). Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534, 63–68. 10.1038/nature17679 PubMed DOI PMC
Traynelis S. F., Wollmuth L. P., McBain C. J., Menniti F. S., Vance K. M., Ogden K. K., et al. . (2010). Glutamate receptor ion channels: structure, regulation and function. Pharmacol. Rev. 62, 405–496. 10.1124/pr.109.002451 PubMed DOI PMC
Ulbrich M. H., Isacoff E. Y. (2008). Rules of engagement for NMDA receptor subunits. Proc. Natl. Acad. Sci. U S A 105, 14163–14168. 10.1073/pnas.0802075105 PubMed DOI PMC
Vyklicky V., Krausova B., Cerny J., Balik A., Zapotocky M., Novotny M., et al. . (2015). Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci. Rep. 5:10935. 10.1038/srep10935 PubMed DOI PMC
Vyklicky L., Jr., Krusek J., Edwards C. (1988). Differences in the pore sizes of the N-methyl-D-aspartate and kainate cation channels. Neurosci. Lett. 89, 313–318. 10.1016/0304-3940(88)90545-9 PubMed DOI
Xu M., Smothers C. T., Trudell J., Woodward J. J. (2012). Ethanol inhibition of constitutively open N-methyl-D-aspartate receptors. J. Pharmacol. Exp. Ther. 340, 218–226. 10.1124/jpet.111.187179 PubMed DOI PMC
Yao Y., Belcher J., Berger A. J., Mayer M. L., Lau A. Y. (2013). Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics. Structure 21, 1788–1799. 10.1016/j.str.2013.07.011 PubMed DOI PMC
Yuan H., Erreger K., Dravid S. M., Traynelis S. F. (2005). Conserved structural and functional control of N-methyl-D-aspartate receptor gating by transmembrane domain M3. J. Biol. Chem. 280, 29708–29716. 10.1074/jbc.M414215200 PubMed DOI
Yuan H., Low C. M., Moody O. A., Jenkins A., Traynelis S. F. (2015). Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol. Pharmacol. 88, 203–217. 10.1124/mol.115.097998 PubMed DOI PMC
Zhu S., Stein R. A., Yoshioka C., Lee C. H., Goehring A., Mchaourab H. S., et al. . (2016). Mechanism of NMDA receptor inhibition and activation. Cell 165, 704–714. 10.1016/j.cell.2016.03.028 PubMed DOI PMC
Characterization of Mice Carrying a Neurodevelopmental Disease-Associated GluN2B(L825V) Variant
Palmitoylation Controls NMDA Receptor Function and Steroid Sensitivity
Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor
Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission
NMDA Receptor Opening and Closing-Transitions of a Molecular Machine Revealed by Molecular Dynamics