NMDA Receptor Opening and Closing-Transitions of a Molecular Machine Revealed by Molecular Dynamics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31569344
PubMed Central
PMC6843686
DOI
10.3390/biom9100546
PII: biom9100546
Knihovny.cz E-zdroje
- Klíčová slova
- NMDA receptor transition, glutamate receptor gating, molecular dynamics simulations, molecular modeling, open and closed state,
- MeSH
- krysa rodu Rattus MeSH
- receptory N-methyl-D-aspartátu chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory N-methyl-D-aspartátu MeSH
We report the first complete description of the molecular mechanisms behind the transition of the N-methyl-d-aspartate (NMDA) receptor from the state where the transmembrane domain (TMD) and the ion channel are in the open configuration to the relaxed unliganded state where the channel is closed. Using an aggregate of nearly 1 µs of unbiased all-atom implicit membrane and solvent molecular dynamics (MD) simulations we identified distinct structural states of the NMDA receptor and revealed functionally important residues (GluN1/Glu522, GluN1/Arg695, and GluN2B/Asp786). The role of the "clamshell" motion of the ligand binding domain (LBD) lobes in the structural transition is supplemented by the observed structural similarity at the level of protein domains during the structural transition, combined with the overall large rearrangement necessary for the opening and closing of the receptor. The activated and open states of the receptor are structurally similar to the liganded crystal structure, while in the unliganded receptor the extracellular domains perform rearrangements leading to a clockwise rotation of up to 45 degrees around the longitudinal axis of the receptor, which closes the ion channel. The ligand-induced rotation of extracellular domains transferred by LBD-TMD linkers to the membrane-anchored ion channel is responsible for the opening and closing of the transmembrane ion channel, revealing the properties of NMDA receptor as a finely tuned molecular machine.
Zobrazit více v PubMed
Watkins J.C., Evans R.H. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. PubMed DOI
Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor. Nature. 1991;354:31–37. doi: 10.1038/354031a0. PubMed DOI
Kutsuwada T., Kashiwabuchi N., Mori H., Sakimura K., Kushiya E., Araki K., Meguro H., Masaki H., Kumanishi T., Arakawa M., et al. Molecular diversity of the NMDA receptor channel. Nature. 1992;358:36–41. doi: 10.1038/358036a0. PubMed DOI
Meguro H., Mori H., Araki K., Kushiya E., Kutsuwada T., Yamazaki M., Kumanishi T., Arakawa M., Sakimura K., Mishina M. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cdnas. Nature. 1992;357:70–74. doi: 10.1038/357070a0. PubMed DOI
Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeburg P.H. Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science. 1992;256:1217–1221. doi: 10.1126/science.256.5060.1217. PubMed DOI
Sucher N.J., Akbarian S., Chi C.L., Leclerc C.L., Awobuluyi M., Deitcher D.L., Wu M.K., Yuan J.P., Jones E.G., Lipton S.A. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J. Neurosci. 1995;15:6509–6520. doi: 10.1523/JNEUROSCI.15-10-06509.1995. PubMed DOI PMC
Lynch M.A. Long-term potentiation and memory. Physiol. Rev. 2004;84:87–136. doi: 10.1152/physrev.00014.2003. PubMed DOI
Malenka R.C., Bear M.F. Ltp and ltd: An embarrassment of riches. Neuron. 2004;44:5–21. doi: 10.1016/j.neuron.2004.09.012. PubMed DOI
Bouvier G., Larsen R.S., Rodriguez-Moreno A., Paulsen O., Sjostrom P.J. Towards resolving the presynaptic NMDA receptor debate. Curr. Opin. Neurobiol. 2018;51:1–7. doi: 10.1016/j.conb.2017.12.020. PubMed DOI
Choi D.W. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 1987;7:369–379. doi: 10.1523/JNEUROSCI.07-02-00369.1987. PubMed DOI PMC
Dingledine R., Borges K., Bowie D., Traynelis S.F. The glutamate receptor ion channels. Pharmacol. Rev. 1999;51:7–61. PubMed
Tarabeux J., Kebir O., Gauthier J., Hamdan F.F., Xiong L., Piton A., Spiegelman D., Henrion E., Millet B., Team S.D., et al. Rare mutations in N-methyl-d-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry. 2011;1:e55. doi: 10.1038/tp.2011.52. PubMed DOI PMC
Soto D., Altafaj X., Sindreu C., Bayes A. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun. Integr. Biol. 2014;7:e27887. doi: 10.4161/cib.27887. PubMed DOI PMC
MacDermott A.B., Mayer M.L., Westbrook G.L., Smith S.J., Barker J.L. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature. 1986;321:519–522. doi: 10.1038/321519a0. PubMed DOI
Lester R.A., Jahr C.E. NMDA channel behavior depends on agonist affinity. J. Neurosci. 1992;12:635–643. doi: 10.1523/JNEUROSCI.12-02-00635.1992. PubMed DOI PMC
Iacobucci G.J., Popescu G.K. Kinetic models for activation and modulation of NMDA receptor subtypes. Curr. Opin. Physiol. 2018;2:114–122. doi: 10.1016/j.cophys.2018.02.002. PubMed DOI PMC
Johnson J.W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325:529–531. doi: 10.1038/325529a0. PubMed DOI
Benveniste M., Clements J., Vyklicky L., Jr., Mayer M.L. A kinetic analysis of the modulation of N-methyl-d-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J. Physiol. 1990;428:333–357. doi: 10.1113/jphysiol.1990.sp018215. PubMed DOI PMC
Rosenmund C., Westbrook G.L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron. 1993;10:805–814. doi: 10.1016/0896-6273(93)90197-Y. PubMed DOI
Vyklicky L., Jr. Calcium-mediated modulation of N-methyl-d-aspartate (NMDA) responses in cultured rat hippocampal neurones. J. Physiol. 1993;470:575–600. doi: 10.1113/jphysiol.1993.sp019876. PubMed DOI PMC
Popescu G., Robert A., Howe J.R., Auerbach A. Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature. 2004;430:790–793. doi: 10.1038/nature02775. PubMed DOI
Banke T.G., Traynelis S.F. Activation of NR1/NR2B NMDA receptors. Nat. Neurosci. 2003;6:144–152. doi: 10.1038/nn1000. PubMed DOI
Popescu G., Auerbach A. Modal gating of NMDA receptors and the shape of their synaptic response. Nat. Neurosci. 2003;6:476–483. doi: 10.1038/nn1044. PubMed DOI
Erreger K., Dravid S.M., Banke T.G., Wyllie D.J., Traynelis S.F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 2005;563:345–358. doi: 10.1113/jphysiol.2004.080028. PubMed DOI PMC
Amico-Ruvio S.A., Popescu G.K. Stationary gating of GluN1/GluN2B receptors in intact membrane patches. Biophys. J. 2010;98:1160–1169. doi: 10.1016/j.bpj.2009.12.4276. PubMed DOI PMC
Hansen K.B., Yi F., Perszyk R.E., Furukawa H., Wollmuth L.P., Gibb A.J., Traynelis S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018;150:1081–1105. doi: 10.1085/jgp.201812032. PubMed DOI PMC
Karakas E., Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344:992–997. doi: 10.1126/science.1251915. PubMed DOI PMC
Lee C.H., Lu W., Michel J.C., Goehring A., Du J., Song X., Gouaux E. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511:191–197. doi: 10.1038/nature13548. PubMed DOI PMC
Ladislav M., Cerny J., Krusek J., Horak M., Balik A., Vyklicky L. The lili motif of M3-S2 linkers is a component of the NMDA receptor channel gate. Front. Mol. Neurosci. 2018;11:113. doi: 10.3389/fnmol.2018.00113. PubMed DOI PMC
Yao Y., Belcher J., Berger A.J., Mayer M.L., Lau A.Y. Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics. Structure. 2013;21:1788–1799. doi: 10.1016/j.str.2013.07.011. PubMed DOI PMC
Dai J., Zhou H.X. Reduced curvature of ligand-binding domain free-energy surface underlies partial agonism at NMDA receptors. Structure. 2015;23:228–236. doi: 10.1016/j.str.2014.11.012. PubMed DOI PMC
Dai J., Zhou H.X. Semiclosed conformations of the ligand-binding domains of NMDA receptors during stationary gating. Biophys. J. 2016;111:1418–1428. doi: 10.1016/j.bpj.2016.08.010. PubMed DOI PMC
Dai J., Zhou H.X. An NMDA receptor gating mechanism developed from md simulations reveals molecular details underlying subunit-specific contributions. Biophys. J. 2013;104:2170–2181. doi: 10.1016/j.bpj.2013.04.013. PubMed DOI PMC
Vyklicky V., Krausova B., Cerny J., Balik A., Zapotocky M., Novotny M., Lichnerova K., Smejkalova T., Kaniakova M., Korinek M., et al. Block of NMDA receptor channels by endogenous neurosteroids: Implications for the agonist induced conformational states of the channel vestibule. Sci. Rep. 2015;5:10935. doi: 10.1038/srep10935. PubMed DOI PMC
Zheng W., Wen H., Iacobucci G.J., Popescu G.K. Probing the structural dynamics of the NMDA receptor activation by coarse-grained modeling. Biophys. J. 2017;112:2589–2601. doi: 10.1016/j.bpj.2017.04.043. PubMed DOI PMC
Pang X., Zhou H.X. Structural modeling for the open state of an NMDA receptor. J. Struct. Biol. 2017;200:369–375. doi: 10.1016/j.jsb.2017.07.005. PubMed DOI PMC
Palmai Z., Houenoussi K., Cohen-Kaminsky S., Tchertanov L. How does binding of agonist ligands control intrinsic molecular dynamics in human NMDA receptors? PLoS ONE. 2018;13:e0201234. doi: 10.1371/journal.pone.0201234. PubMed DOI PMC
Zhang J.B., Chang S., Xu P., Miao M., Wu H., Zhang Y., Zhang T., Wang H., Zhang J., Xie C., et al. Structural basis of the proton sensitivity of human GluN1-GluN2A NMDA receptors. Cell Rep. 2018;25:3582–3590. doi: 10.1016/j.celrep.2018.11.071. PubMed DOI
Omotuyi O.I., Ueda H. Molecular dynamics study-based mechanism of nefiracetam-induced NMDA receptor potentiation. Comput. Biol. Chem. 2015;55:14–22. doi: 10.1016/j.compbiolchem.2015.01.004. PubMed DOI
Song X., Jensen M.O., Jogini V., Stein R.A., Lee C.H., McHaourab H.S., Shaw D.E., Gouaux E. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature. 2018;556:515–519. doi: 10.1038/s41586-018-0039-9. PubMed DOI PMC
Sinitskiy A.V., Pande V.S. Simulated dynamics of glycans on ligand-binding domain of NMDA receptors reveals strong dynamic coupling between glycans and protein core. J. Chem. Theory Comput. 2017;13:5496–5505. doi: 10.1021/acs.jctc.7b00817. PubMed DOI
Sinitskiy A.V., Stanley N.H., Hackos D.H., Hanson J.E., Sellers B.D., Pande V.S. Computationally discovered potentiating role of glycans on NMDA receptors. Sci. Rep. 2017;7:44578. doi: 10.1038/srep44578. PubMed DOI PMC
Hu C., Chen W., Myers S.J., Yuan H., Traynelis S.F. Human GRIN2B variants in neurodevelopmental disorders. J. Pharmacol. Sci. 2016;132:115–121. doi: 10.1016/j.jphs.2016.10.002. PubMed DOI PMC
Swanger S.A., Chen W., Wells G., Burger P.B., Tankovic A., Bhattacharya S., Strong K.L., Hu C., Kusumoto H., Zhang J., et al. Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am. J. Hum. Genet. 2016;99:1261–1280. doi: 10.1016/j.ajhg.2016.10.002. PubMed DOI PMC
Vyklicky V., Krausova B., Cerny J., Ladislav M., Smejkalova T., Kysilov B., Korinek M., Danacikova S., Horak M., Chodounska H., et al. Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front. Mol. Neurosci. 2018;11:110. doi: 10.3389/fnmol.2018.00110. PubMed DOI PMC
The UniProt Consortium Uniprot: The universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–D169. doi: 10.1093/nar/gkw1099. PubMed DOI PMC
Webb B., Sali A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinform. 2016;54:5.6.1–5.6.37. doi: 10.1002/cpbi.3. PubMed DOI PMC
Lazaridis T. Effective energy function for proteins in lipid membranes. Proteins. 2003;52:176–192. doi: 10.1002/prot.10410. PubMed DOI
Jo S., Kim T., Iyer V.G., Im W. Charmm-gui: A web-based graphical user interface for charmm. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Brooks B.R., Brooks C.L., 3rd, Mackerell A.D., Jr., Nilsson L., Petrella R.J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., et al. Charmm: The biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614. doi: 10.1002/jcc.21287. PubMed DOI PMC
van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A.E., Berendsen H.J.C. Gromacs: Fast, flexible, and free. J. Comput. Chem. 2005;26:1701–1718. doi: 10.1002/jcc.20291. PubMed DOI
Schrodinger L.L.C. The PyMOL Molecular Graphics System. 2018. Version 2.2.
Humphrey W., Dalke A., Schulten K. Vmd: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Okonechnikov K., Golosova O., Fursov M., Team U. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Doerr S., Harvey M.J., Noe F., De Fabritiis G. HTMD: High-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 2016;12:1845–1852. doi: 10.1021/acs.jctc.6b00049. PubMed DOI
Scherer M.K., Trendelkamp-Schroer B., Paul F., Perez-Hernandez G., Hoffmann M., Plattner N., Wehmeyer C., Prinz J.H., Noe F. PyEMMA 2: A software package for estimation, validation, and analysis of markov models. J. Chem. Theory Comput. 2015;11:5525–5542. doi: 10.1021/acs.jctc.5b00743. PubMed DOI
Maki B.A., Aman T.K., Amico-Ruvio S.A., Kussius C.L., Popescu G.K. C-terminal domains of N-methyl-d-aspartic acid receptor modulate unitary channel conductance and gating. J. Biol. Chem. 2012;287:36071–36080. doi: 10.1074/jbc.M112.390013. PubMed DOI PMC
Lichnerova K., Kaniakova M., Park S.P., Skrenkova K., Wang Y.X., Petralia R.S., Suh Y.H., Horak M. Two N-glycosylation sites in the GluN1 subunit are essential for releasing N-methyl-d-aspartate (NMDA) receptors from the endoplasmic reticulum. J. Biol. Chem. 2015;290:18379–18390. doi: 10.1074/jbc.M115.656546. PubMed DOI PMC
Yu A., Lau A.Y. Glutamate and glycine binding to the NMDA receptor. Structure. 2018;26:1035–1043. doi: 10.1016/j.str.2018.05.004. PubMed DOI PMC
Esmenjaud J.B., Stroebel D., Chan K., Grand T., David M., Wollmuth L.P., Taly A., Paoletti P. An inter-dimer allosteric switch controls NMDA receptor activity. EMBO J. 2019;38 doi: 10.15252/embj.201899894. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Characterization of Mice Carrying a Neurodevelopmental Disease-Associated GluN2B(L825V) Variant
Palmitoylation Controls NMDA Receptor Function and Steroid Sensitivity
Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor