Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation

. 2021 May 11 ; 12 (1) : 2694. [epub] 20210511

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33976221

Grantová podpora
R01 GM117051 NIGMS NIH HHS - United States

Odkazy

PubMed 33976221
PubMed Central PMC8113580
DOI 10.1038/s41467-021-23024-z
PII: 10.1038/s41467-021-23024-z
Knihovny.cz E-zdroje

N-Methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors essential for synaptic plasticity and memory. Receptor activation involves glycine- and glutamate-stabilized closure of the GluN1 and GluN2 subunit ligand binding domains that is allosterically regulated by the amino-terminal domain (ATD). Using single molecule fluorescence resonance energy transfer (smFRET) to monitor subunit rearrangements in real-time, we observe a stable ATD inter-dimer distance in the Apo state and test the effects of agonists and antagonists. We find that GluN1 and GluN2 have distinct gating functions. Glutamate binding to GluN2 subunits elicits two identical, sequential steps of ATD dimer separation. Glycine binding to GluN1 has no detectable effect, but unlocks the receptor for activation so that glycine and glutamate together drive an altered activation trajectory that is consistent with ATD dimer separation and rotation. We find that protons exert allosteric inhibition by suppressing the glutamate-driven ATD separation steps, and that greater ATD separation translates into greater rotation and higher open probability.

Zobrazit více v PubMed

Hayashi T. Effects of sodium glutamate on the nervous system. Keio J. Med. 1954;3:183–192. doi: 10.2302/kjm.3.183. DOI

Traynelis SF, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 2010;62:405–496. doi: 10.1124/pr.109.002451. PubMed DOI PMC

Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. PubMed DOI

MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature. 1986;321:519–522. doi: 10.1038/321519a0. PubMed DOI

Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984;309:261–263. doi: 10.1038/309261a0. PubMed DOI

Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307:462–465. doi: 10.1038/307462a0. PubMed DOI

Lisman J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl Acad. Sci. USA. 1989;86:9574–9578. doi: 10.1073/pnas.86.23.9574. PubMed DOI PMC

Lynch MA. Long-term potentiation and memory. Physiol. Rev. 2004;84:87–136. doi: 10.1152/physrev.00014.2003. PubMed DOI

Seeburg PH, et al. The NMDA receptor channel: molecular design of a coincidence detector. Recent Prog. Horm. Res. 1995;50:19–34. PubMed

Lakhan, S. E., Caro, M. & Hadzimichalis, N. NMDA receptor activity in neuropsychiatric disorders. Front. Psychiatry4, 52 (2013). PubMed PMC

Zhou Q, Sheng M. NMDA receptors in nervous system diseases. Neuropharmacology. 2013;74:69–75. doi: 10.1016/j.neuropharm.2013.03.030. PubMed DOI

Li L, Hanahan D. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell. 2013;153:86–100. doi: 10.1016/j.cell.2013.02.051. PubMed DOI

North WG, Gao G, Memoli VA, Pang RH, Lynch L. Breast cancer expresses functional NMDA receptors. Breast Cancer Res. Treat. 2010;122:307–314. doi: 10.1007/s10549-009-0556-1. PubMed DOI PMC

Zeng Q, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature. 2019;573:526–531. doi: 10.1038/s41586-019-1576-6. PubMed DOI PMC

Meguro H, et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992;357:70–74. doi: 10.1038/357070a0. PubMed DOI

Monyer H, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992;256:1217–1221. doi: 10.1126/science.256.5060.1217. PubMed DOI

Ulbrich MH, Isacoff EY. Subunit counting in membrane-bound proteins. Nat. Methods. 2007;4:319–321. doi: 10.1038/nmeth1024. PubMed DOI PMC

Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013;14:383–400. doi: 10.1038/nrn3504. PubMed DOI

Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344:992–997. doi: 10.1126/science.1251915. PubMed DOI PMC

Lee C-H, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511:191–197. doi: 10.1038/nature13548. PubMed DOI PMC

Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325:529–531. doi: 10.1038/325529a0. PubMed DOI

Benveniste M, Clements J, Vyklický L, Mayer ML. A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J. Physiol. 1990;428:333–357. doi: 10.1113/jphysiol.1990.sp018215. PubMed DOI PMC

Mothet J-P, et al. D-Serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA. 2000;97:4926–4931. doi: 10.1073/pnas.97.9.4926. PubMed DOI PMC

Karakas E, Simorowski N, Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 2011;475:249–253. doi: 10.1038/nature10180. PubMed DOI PMC

Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 2009;29:12045–12058. doi: 10.1523/JNEUROSCI.1365-09.2009. PubMed DOI PMC

Gielen M, Retchless BS, Mony L, Johnson JW, Paoletti P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 2009;459:703–707. doi: 10.1038/nature07993. PubMed DOI PMC

Hansen KB, et al. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018;150:1081–1105. doi: 10.1085/jgp.201812032. PubMed DOI PMC

Zhang J-B, et al. Structural basis of the proton sensitivity of human GluN1-GluN2A NMDA receptors. Cell Rep. 2018;25:3582–3590. doi: 10.1016/j.celrep.2018.11.071. PubMed DOI

Zhu S, Paoletti P. Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr. Opin. Pharmacol. 2015;20:14–23. doi: 10.1016/j.coph.2014.10.009. PubMed DOI

Jalali-Yazdi F, Chowdhury S, Yoshioka C, Gouaux E. Mechanisms for Zinc and proton inhibition of the GluN1/GluN2A NMDA receptor. Cell. 2018;175:1520–1532. doi: 10.1016/j.cell.2018.10.043. PubMed DOI PMC

Tajima N, et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature. 2016;534:63–68. doi: 10.1038/nature17679. PubMed DOI PMC

Esmenjaud, J. et al. An inter‐dimer allosteric switch controls NMDA receptor activity. EMBO J.38, e99894 (2019). PubMed PMC

Zhu S, et al. Mechanism of NMDA receptor inhibition and activation. Cell. 2016;165:704–714. doi: 10.1016/j.cell.2016.03.028. PubMed DOI PMC

Lü, W., Du, J., Goehring, A. & Gouaux, E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science355, eaal3729 (2017). PubMed PMC

Regan MC, et al. Structural mechanism of functional modulation by gene splicing in NMDA receptors. Neuron. 2018;98:521–529. doi: 10.1016/j.neuron.2018.03.034. PubMed DOI PMC

Zheng W, Wen H, Iacobucci GJ, Popescu GK. Probing the structural dynamics of the NMDA receptor activation by coarse-grained modeling. Biophys. J. 2017;112:2589–2601. doi: 10.1016/j.bpj.2017.04.043. PubMed DOI PMC

Chou T-H, Tajima N, Romero-Hernandez A, Furukawa H. Structural basis of functional transitions in mammalian NMDA receptors. Cell. 2020;182:357–371.e13. doi: 10.1016/j.cell.2020.05.052. PubMed DOI PMC

Sinitskiy AV, Pande VS. Computer simulations predict high structural heterogeneity of functional state of NMDA receptors. Biophys. J. 2018;115:841–852. doi: 10.1016/j.bpj.2018.06.023. PubMed DOI PMC

Černý J, Božíková P, Balík A, Marques SM, Vyklický L. NMDA receptor opening and closing—transitions of a molecular machine revealed by molecular dynamics. Biomolecules. 2019;9:546. doi: 10.3390/biom9100546. PubMed DOI PMC

Palmai Z, Houenoussi K, Cohen-Kaminsky S, Tchertanov L. How does binding of agonist ligands control intrinsic molecular dynamics in human NMDA receptors? PLoS ONE. 2018;13:e0201234. doi: 10.1371/journal.pone.0201234. PubMed DOI PMC

Pang X, Zhou H-X. Structural modeling for the open state of an NMDA receptor. J. Struct. Biol. 2017;200:369–375. doi: 10.1016/j.jsb.2017.07.005. PubMed DOI PMC

Mayer ML. The challenge of interpreting glutamate-receptor ion-channel structures. Biophys. J. 2017;113:2143–2151. doi: 10.1016/j.bpj.2017.07.028. PubMed DOI PMC

Wang JX, Furukawa H. Dissecting diverse functions of NMDA receptors by structural biology. Curr. Opin. Struct. Biol. 2019;54:34–42. doi: 10.1016/j.sbi.2018.12.009. PubMed DOI PMC

Iacobucci GJ, et al. Cross-subunit interactions that stabilize open states mediate gating in NMDA receptors. Proc. Natl Acad. Sci. USA. 2021;118:e2007511118. doi: 10.1073/pnas.2007511118. PubMed DOI PMC

Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nat. Methods. 2008;5:507–516. doi: 10.1038/nmeth.1208. PubMed DOI PMC

Litwin DB, Carrillo E, Shaikh SA, Berka V, Jayaraman V. The structural arrangement at intersubunit interfaces in homomeric kainate receptors. Sci. Rep. 2019;9:6969. doi: 10.1038/s41598-019-43360-x. PubMed DOI PMC

Litwin DB, Paudyal N, Carrillo E, Berka V, Jayaraman V. The structural arrangement and dynamics of the heteromeric GluK2/GluK5 kainate receptor as determined by smFRET. Biochim. Biophys. Acta - Biomembr. 2020;1862:183001. doi: 10.1016/j.bbamem.2019.05.023. PubMed DOI PMC

Dolino DM, et al. The structure–energy landscape of NMDA receptor gating. Nat. Chem. Biol. 2017;13:1232–1238. doi: 10.1038/nchembio.2487. PubMed DOI PMC

Durham RJ, et al. Conformational spread and dynamics in allostery of NMDA receptors. Proc. Natl Acad. Sci. USA. 2020;117:3839–3847. doi: 10.1073/pnas.1910950117. PubMed DOI PMC

Vafabakhsh R, Levitz J, Isacoff EY. Conformational dynamics of a class C G-protein-coupled receptor. Nature. 2015;524:497–501. doi: 10.1038/nature14679. PubMed DOI PMC

Sasmal DK, Lu HP. Single-molecule patch-clamp FRET microscopy studies of nmda receptor ion channel dynamics in living cells: revealing the multiple conformational states associated with a channel at its electrical off state. J. Am. Chem. Soc. 2014;136:12998–13005. doi: 10.1021/ja506231j. PubMed DOI PMC

Song X, et al. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature. 2018;556:515–519. doi: 10.1038/s41586-018-0039-9. PubMed DOI PMC

Keppler A, et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 2003;21:86–89. doi: 10.1038/nbt765. PubMed DOI

Jain A, et al. Probing cellular protein complexes using single-molecule pull-down. Nature. 2011;473:484–488. doi: 10.1038/nature10016. PubMed DOI PMC

Vyklicky, V. et al. Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front. Mol. Neurosci.11, 110 (2018). PubMed PMC

Kuryatov A, Laube B, Betz H, Kuhse J. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron. 1994;12:1291–1300. doi: 10.1016/0896-6273(94)90445-6. PubMed DOI

Amico-Ruvio SA, Popescu GK. Stationary gating of GluN1/GluN2B receptors in intact membrane patches. Biophys. J. 2010;98:1160–1169. doi: 10.1016/j.bpj.2009.12.4276. PubMed DOI PMC

Popescu G, Auerbach A. Modal gating of NMDA receptors and the shape of their synaptic response. Nat. Neurosci. 2003;6:476–483. doi: 10.1038/nn1044. PubMed DOI

Bert Sakmann Erwin Neher, Single-Channel Recording. 10.1007/978-1-4419-1229-9 (Springer US, 1995).

Cummings KA, Popescu GK. Glycine-dependent activation of NMDA receptors. J. Gen. Physiol. 2015;145:513–527. doi: 10.1085/jgp.201411302. PubMed DOI PMC

McNamara D, et al. 5,7-Dichlorokynurenic acid, a potent and selective competitive antagonist of the glycine site on NMDA receptors. Neurosci. Lett. 1990;120:17–20. doi: 10.1016/0304-3940(90)90157-5. PubMed DOI

Traynelis SF, Cull-Candy SG. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature. 1990;345:347–350. doi: 10.1038/345347a0. PubMed DOI

Vyklický L, Vlachová V, Krůsek J. The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J. Physiol. 1990;430:497–517. doi: 10.1113/jphysiol.1990.sp018304. PubMed DOI PMC

Chesler M. Regulation and modulation of pH in the brain. Physiol. Rev. 2003;83:1183–1221. doi: 10.1152/physrev.00010.2003. PubMed DOI

Hansen KB, Furukawa H, Traynelis SF. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol. Pharmacol. 2010;78:535–549. doi: 10.1124/mol.110.067157. PubMed DOI PMC

Grand T, Abi Gerges S, David M, Diana MA, Paoletti P. Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat. Commun. 2018;9:4769. doi: 10.1038/s41467-018-07236-4. PubMed DOI PMC

Smothers CT, Woodward JJ. Expression of glycine-activated diheteromeric NR1/NR3 receptors in human embryonic kidney 293 cells Is NR1 splice variant-dependent. J. Pharmacol. Exp. Ther. 2009;331:975–984. doi: 10.1124/jpet.109.158493. PubMed DOI PMC

Juette MF, et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods. 2016;13:341–344. doi: 10.1038/nmeth.3769. PubMed DOI PMC

Kleckner N, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241:835–837. doi: 10.1126/science.2841759. PubMed DOI

Lerma J, Zukin RS, Bennett MV. Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses. Proc. Natl Acad. Sci. USA. 1990;87:2354–2358. doi: 10.1073/pnas.87.6.2354. PubMed DOI PMC

Hansen KB, et al. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis. Mol. Pharmacol. 2005;68:1510–1523. doi: 10.1124/mol.105.014795. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...