Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM117051
NIGMS NIH HHS - United States
PubMed
33976221
PubMed Central
PMC8113580
DOI
10.1038/s41467-021-23024-z
PII: 10.1038/s41467-021-23024-z
Knihovny.cz E-zdroje
- MeSH
- alosterická regulace MeSH
- glycin chemie metabolismus MeSH
- HEK293 buňky MeSH
- kinetika MeSH
- konfokální mikroskopie MeSH
- konformace proteinů * MeSH
- kyselina glutamová chemie metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- multimerizace proteinu * MeSH
- receptory N-methyl-D-aspartátu chemie genetika metabolismus MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glycin MeSH
- kyselina glutamová MeSH
- N-methyl D-aspartate receptor subtype 2A MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- receptory N-methyl-D-aspartátu MeSH
N-Methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors essential for synaptic plasticity and memory. Receptor activation involves glycine- and glutamate-stabilized closure of the GluN1 and GluN2 subunit ligand binding domains that is allosterically regulated by the amino-terminal domain (ATD). Using single molecule fluorescence resonance energy transfer (smFRET) to monitor subunit rearrangements in real-time, we observe a stable ATD inter-dimer distance in the Apo state and test the effects of agonists and antagonists. We find that GluN1 and GluN2 have distinct gating functions. Glutamate binding to GluN2 subunits elicits two identical, sequential steps of ATD dimer separation. Glycine binding to GluN1 has no detectable effect, but unlocks the receptor for activation so that glycine and glutamate together drive an altered activation trajectory that is consistent with ATD dimer separation and rotation. We find that protons exert allosteric inhibition by suppressing the glutamate-driven ATD separation steps, and that greater ATD separation translates into greater rotation and higher open probability.
Biophysics Graduate Program University of California Berkeley CA USA
Department of Molecular and Cell Biology University of California Berkeley CA USA
Helen Wills Neuroscience Institute University of California Berkeley CA USA
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Hayashi T. Effects of sodium glutamate on the nervous system. Keio J. Med. 1954;3:183–192. doi: 10.2302/kjm.3.183. DOI
Traynelis SF, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 2010;62:405–496. doi: 10.1124/pr.109.002451. PubMed DOI PMC
Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. PubMed DOI
MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature. 1986;321:519–522. doi: 10.1038/321519a0. PubMed DOI
Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984;309:261–263. doi: 10.1038/309261a0. PubMed DOI
Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307:462–465. doi: 10.1038/307462a0. PubMed DOI
Lisman J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl Acad. Sci. USA. 1989;86:9574–9578. doi: 10.1073/pnas.86.23.9574. PubMed DOI PMC
Lynch MA. Long-term potentiation and memory. Physiol. Rev. 2004;84:87–136. doi: 10.1152/physrev.00014.2003. PubMed DOI
Seeburg PH, et al. The NMDA receptor channel: molecular design of a coincidence detector. Recent Prog. Horm. Res. 1995;50:19–34. PubMed
Lakhan, S. E., Caro, M. & Hadzimichalis, N. NMDA receptor activity in neuropsychiatric disorders. Front. Psychiatry4, 52 (2013). PubMed PMC
Zhou Q, Sheng M. NMDA receptors in nervous system diseases. Neuropharmacology. 2013;74:69–75. doi: 10.1016/j.neuropharm.2013.03.030. PubMed DOI
Li L, Hanahan D. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell. 2013;153:86–100. doi: 10.1016/j.cell.2013.02.051. PubMed DOI
North WG, Gao G, Memoli VA, Pang RH, Lynch L. Breast cancer expresses functional NMDA receptors. Breast Cancer Res. Treat. 2010;122:307–314. doi: 10.1007/s10549-009-0556-1. PubMed DOI PMC
Zeng Q, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature. 2019;573:526–531. doi: 10.1038/s41586-019-1576-6. PubMed DOI PMC
Meguro H, et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992;357:70–74. doi: 10.1038/357070a0. PubMed DOI
Monyer H, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992;256:1217–1221. doi: 10.1126/science.256.5060.1217. PubMed DOI
Ulbrich MH, Isacoff EY. Subunit counting in membrane-bound proteins. Nat. Methods. 2007;4:319–321. doi: 10.1038/nmeth1024. PubMed DOI PMC
Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013;14:383–400. doi: 10.1038/nrn3504. PubMed DOI
Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344:992–997. doi: 10.1126/science.1251915. PubMed DOI PMC
Lee C-H, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511:191–197. doi: 10.1038/nature13548. PubMed DOI PMC
Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325:529–531. doi: 10.1038/325529a0. PubMed DOI
Benveniste M, Clements J, Vyklický L, Mayer ML. A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J. Physiol. 1990;428:333–357. doi: 10.1113/jphysiol.1990.sp018215. PubMed DOI PMC
Mothet J-P, et al. D-Serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA. 2000;97:4926–4931. doi: 10.1073/pnas.97.9.4926. PubMed DOI PMC
Karakas E, Simorowski N, Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 2011;475:249–253. doi: 10.1038/nature10180. PubMed DOI PMC
Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 2009;29:12045–12058. doi: 10.1523/JNEUROSCI.1365-09.2009. PubMed DOI PMC
Gielen M, Retchless BS, Mony L, Johnson JW, Paoletti P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 2009;459:703–707. doi: 10.1038/nature07993. PubMed DOI PMC
Hansen KB, et al. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018;150:1081–1105. doi: 10.1085/jgp.201812032. PubMed DOI PMC
Zhang J-B, et al. Structural basis of the proton sensitivity of human GluN1-GluN2A NMDA receptors. Cell Rep. 2018;25:3582–3590. doi: 10.1016/j.celrep.2018.11.071. PubMed DOI
Zhu S, Paoletti P. Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr. Opin. Pharmacol. 2015;20:14–23. doi: 10.1016/j.coph.2014.10.009. PubMed DOI
Jalali-Yazdi F, Chowdhury S, Yoshioka C, Gouaux E. Mechanisms for Zinc and proton inhibition of the GluN1/GluN2A NMDA receptor. Cell. 2018;175:1520–1532. doi: 10.1016/j.cell.2018.10.043. PubMed DOI PMC
Tajima N, et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature. 2016;534:63–68. doi: 10.1038/nature17679. PubMed DOI PMC
Esmenjaud, J. et al. An inter‐dimer allosteric switch controls NMDA receptor activity. EMBO J.38, e99894 (2019). PubMed PMC
Zhu S, et al. Mechanism of NMDA receptor inhibition and activation. Cell. 2016;165:704–714. doi: 10.1016/j.cell.2016.03.028. PubMed DOI PMC
Lü, W., Du, J., Goehring, A. & Gouaux, E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science355, eaal3729 (2017). PubMed PMC
Regan MC, et al. Structural mechanism of functional modulation by gene splicing in NMDA receptors. Neuron. 2018;98:521–529. doi: 10.1016/j.neuron.2018.03.034. PubMed DOI PMC
Zheng W, Wen H, Iacobucci GJ, Popescu GK. Probing the structural dynamics of the NMDA receptor activation by coarse-grained modeling. Biophys. J. 2017;112:2589–2601. doi: 10.1016/j.bpj.2017.04.043. PubMed DOI PMC
Chou T-H, Tajima N, Romero-Hernandez A, Furukawa H. Structural basis of functional transitions in mammalian NMDA receptors. Cell. 2020;182:357–371.e13. doi: 10.1016/j.cell.2020.05.052. PubMed DOI PMC
Sinitskiy AV, Pande VS. Computer simulations predict high structural heterogeneity of functional state of NMDA receptors. Biophys. J. 2018;115:841–852. doi: 10.1016/j.bpj.2018.06.023. PubMed DOI PMC
Černý J, Božíková P, Balík A, Marques SM, Vyklický L. NMDA receptor opening and closing—transitions of a molecular machine revealed by molecular dynamics. Biomolecules. 2019;9:546. doi: 10.3390/biom9100546. PubMed DOI PMC
Palmai Z, Houenoussi K, Cohen-Kaminsky S, Tchertanov L. How does binding of agonist ligands control intrinsic molecular dynamics in human NMDA receptors? PLoS ONE. 2018;13:e0201234. doi: 10.1371/journal.pone.0201234. PubMed DOI PMC
Pang X, Zhou H-X. Structural modeling for the open state of an NMDA receptor. J. Struct. Biol. 2017;200:369–375. doi: 10.1016/j.jsb.2017.07.005. PubMed DOI PMC
Mayer ML. The challenge of interpreting glutamate-receptor ion-channel structures. Biophys. J. 2017;113:2143–2151. doi: 10.1016/j.bpj.2017.07.028. PubMed DOI PMC
Wang JX, Furukawa H. Dissecting diverse functions of NMDA receptors by structural biology. Curr. Opin. Struct. Biol. 2019;54:34–42. doi: 10.1016/j.sbi.2018.12.009. PubMed DOI PMC
Iacobucci GJ, et al. Cross-subunit interactions that stabilize open states mediate gating in NMDA receptors. Proc. Natl Acad. Sci. USA. 2021;118:e2007511118. doi: 10.1073/pnas.2007511118. PubMed DOI PMC
Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nat. Methods. 2008;5:507–516. doi: 10.1038/nmeth.1208. PubMed DOI PMC
Litwin DB, Carrillo E, Shaikh SA, Berka V, Jayaraman V. The structural arrangement at intersubunit interfaces in homomeric kainate receptors. Sci. Rep. 2019;9:6969. doi: 10.1038/s41598-019-43360-x. PubMed DOI PMC
Litwin DB, Paudyal N, Carrillo E, Berka V, Jayaraman V. The structural arrangement and dynamics of the heteromeric GluK2/GluK5 kainate receptor as determined by smFRET. Biochim. Biophys. Acta - Biomembr. 2020;1862:183001. doi: 10.1016/j.bbamem.2019.05.023. PubMed DOI PMC
Dolino DM, et al. The structure–energy landscape of NMDA receptor gating. Nat. Chem. Biol. 2017;13:1232–1238. doi: 10.1038/nchembio.2487. PubMed DOI PMC
Durham RJ, et al. Conformational spread and dynamics in allostery of NMDA receptors. Proc. Natl Acad. Sci. USA. 2020;117:3839–3847. doi: 10.1073/pnas.1910950117. PubMed DOI PMC
Vafabakhsh R, Levitz J, Isacoff EY. Conformational dynamics of a class C G-protein-coupled receptor. Nature. 2015;524:497–501. doi: 10.1038/nature14679. PubMed DOI PMC
Sasmal DK, Lu HP. Single-molecule patch-clamp FRET microscopy studies of nmda receptor ion channel dynamics in living cells: revealing the multiple conformational states associated with a channel at its electrical off state. J. Am. Chem. Soc. 2014;136:12998–13005. doi: 10.1021/ja506231j. PubMed DOI PMC
Song X, et al. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature. 2018;556:515–519. doi: 10.1038/s41586-018-0039-9. PubMed DOI PMC
Keppler A, et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 2003;21:86–89. doi: 10.1038/nbt765. PubMed DOI
Jain A, et al. Probing cellular protein complexes using single-molecule pull-down. Nature. 2011;473:484–488. doi: 10.1038/nature10016. PubMed DOI PMC
Vyklicky, V. et al. Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front. Mol. Neurosci.11, 110 (2018). PubMed PMC
Kuryatov A, Laube B, Betz H, Kuhse J. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron. 1994;12:1291–1300. doi: 10.1016/0896-6273(94)90445-6. PubMed DOI
Amico-Ruvio SA, Popescu GK. Stationary gating of GluN1/GluN2B receptors in intact membrane patches. Biophys. J. 2010;98:1160–1169. doi: 10.1016/j.bpj.2009.12.4276. PubMed DOI PMC
Popescu G, Auerbach A. Modal gating of NMDA receptors and the shape of their synaptic response. Nat. Neurosci. 2003;6:476–483. doi: 10.1038/nn1044. PubMed DOI
Bert Sakmann Erwin Neher, Single-Channel Recording. 10.1007/978-1-4419-1229-9 (Springer US, 1995).
Cummings KA, Popescu GK. Glycine-dependent activation of NMDA receptors. J. Gen. Physiol. 2015;145:513–527. doi: 10.1085/jgp.201411302. PubMed DOI PMC
McNamara D, et al. 5,7-Dichlorokynurenic acid, a potent and selective competitive antagonist of the glycine site on NMDA receptors. Neurosci. Lett. 1990;120:17–20. doi: 10.1016/0304-3940(90)90157-5. PubMed DOI
Traynelis SF, Cull-Candy SG. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature. 1990;345:347–350. doi: 10.1038/345347a0. PubMed DOI
Vyklický L, Vlachová V, Krůsek J. The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J. Physiol. 1990;430:497–517. doi: 10.1113/jphysiol.1990.sp018304. PubMed DOI PMC
Chesler M. Regulation and modulation of pH in the brain. Physiol. Rev. 2003;83:1183–1221. doi: 10.1152/physrev.00010.2003. PubMed DOI
Hansen KB, Furukawa H, Traynelis SF. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol. Pharmacol. 2010;78:535–549. doi: 10.1124/mol.110.067157. PubMed DOI PMC
Grand T, Abi Gerges S, David M, Diana MA, Paoletti P. Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat. Commun. 2018;9:4769. doi: 10.1038/s41467-018-07236-4. PubMed DOI PMC
Smothers CT, Woodward JJ. Expression of glycine-activated diheteromeric NR1/NR3 receptors in human embryonic kidney 293 cells Is NR1 splice variant-dependent. J. Pharmacol. Exp. Ther. 2009;331:975–984. doi: 10.1124/jpet.109.158493. PubMed DOI PMC
Juette MF, et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods. 2016;13:341–344. doi: 10.1038/nmeth.3769. PubMed DOI PMC
Kleckner N, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241:835–837. doi: 10.1126/science.2841759. PubMed DOI
Lerma J, Zukin RS, Bennett MV. Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses. Proc. Natl Acad. Sci. USA. 1990;87:2354–2358. doi: 10.1073/pnas.87.6.2354. PubMed DOI PMC
Hansen KB, et al. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis. Mol. Pharmacol. 2005;68:1510–1523. doi: 10.1124/mol.105.014795. PubMed DOI
Conformational basis of subtype-specific allosteric control of NMDA receptor gating