Surface Expression, Function, and Pharmacology of Disease-Associated Mutations in the Membrane Domain of the Human GluN2B Subunit

. 2018 ; 11 () : 110. [epub] 20180406

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29681796

N-methyl-D-aspartate receptors (NMDARs), glutamate-gated ion channels, mediate signaling at the majority of excitatory synapses in the nervous system. Recent sequencing data for neurological and psychiatric patients have indicated numerous mutations in genes encoding for NMDAR subunits. Here, we present surface expression, functional, and pharmacological analysis of 11 de novo missense mutations of the human hGluN2B subunit (P553L; V558I; W607C; N615I; V618G; S628F; E657G; G820E; G820A; M824R; L825V) located in the pre-M1, M1, M2, M3, and M4 membrane regions. These variants were identified in patients with intellectual disability, developmental delay, epileptic symptomatology, and autism spectrum disorder. Immunofluorescence microscopy indicated that the ratio of surface-to-total NMDAR expression was reduced for hGluN1/hGluN2B(S628F) receptors and increased for for hGluN1/hGluN2B(G820E) receptors. Electrophysiological recordings revealed that agonist potency was altered in hGluN1/hGluN2B(W607C; N615I; and E657G) receptors and desensitization was increased in hGluN1/hGluN2B(V558I) receptors. The probability of channel opening of hGluN1/hGluN2B (V558I; W607C; V618G; and L825V) receptors was diminished ~10-fold when compared to non-mutated receptors. Finally, the sensitivity of mutant receptors to positive allosteric modulators of the steroid origin showed that glutamate responses induced in hGluN1/hGluN2B(V558I; W607C; V618G; and G820A) receptors were potentiated by 59-96% and 406-685% when recorded in the presence of 20-oxo-pregn-5-en-3β-yl sulfate (PE-S) and androst-5-en-3β-yl hemisuccinate (AND-hSuc), respectively. Surprisingly hGluN1/hGluN2B(L825V) receptors were strongly potentiated, by 197 and 1647%, respectively, by PE-S and AND-hSuc. Synaptic-like responses induced by brief glutamate application were also potentiated and the deactivation decelerated. Further, we have used homology modeling based on the available crystal structures of GluN1/GluN2B NMDA receptor followed by molecular dynamics simulations to try to relate the functional consequences of mutations to structural changes. Overall, these data suggest that de novo missense mutations of the hGluN2B subunit located in membrane domains lead to multiple defects that manifest by the NMDAR loss of function that can be rectified by steroids. Our results provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with hypofunction of the glutamatergic system.

Zobrazit více v PubMed

Abdrachmanova G., Teisinger J., Vyklicky L., Jr. (2002). Axotomy-induced changes in the properties of NMDA receptor channels in rat spinal cord motoneurons. J. Physiol. 538(Pt 1), 53–63. 10.1113/jphysiol.2001.012794 PubMed DOI PMC

Adams D. R., Yuan H., Holyoak T., Arajs K. H., Hakimi P., Markello T. C., et al. . (2014). Three rare diseases in one Sib pair: RAI1, PCK1, GRIN2B mutations associated with Smith-Magenis Syndrome, cytosolic PEPCK deficiency and NMDA receptor glutamate insensitivity. Mol. Genet. Metab. 113, 161–170. 10.1016/j.ymgme.2014.04.001 PubMed DOI PMC

Akazawa C., Shigemoto R., Bessho Y., Nakanishi S., Mizuno N. (1994). Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol. 347, 150–160. 10.1002/cne.903470112 PubMed DOI

Awadalla P., Gauthier J., Myers R. A., Casals F., Hamdan F. F., Griffing A. R., et al. . (2010). Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 87, 316–324. 10.1016/j.ajhg.2010.07.019 PubMed DOI PMC

Bowlby M. R. (1993). Pregnenolone sulfate potentiation of N-methyl-D-aspartate receptor channels in hippocampal neurons. Mol. Pharmacol. 43, 813–819. PubMed

Brooks B. R., Brooks C. L., III., Mackerell A. D., Jr., Nilsson L., Petrella R. J., Roux B., et al. . (2009). CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614. 10.1002/jcc.21287 PubMed DOI PMC

Burnashev N., Szepetowski P. (2015). NMDA receptor subunit mutations in neurodevelopmental disorders. Curr. Opin. Pharmacol. 20, 73–82. 10.1016/j.coph.2014.11.008 PubMed DOI

Cais O., Sedlacek M., Horak M., Dittert I., Vyklicky L., Jr. (2008). Temperature dependence of NR1/NR2B NMDA receptor channels. Neuroscience 151, 428–438. 10.1016/j.neuroscience.2007.11.002 PubMed DOI

Chen N., Luo T., Raymond L. A. (1999). Subtype-dependence of NMDA receptor channel open probability. J. Neurosci. 19, 6844–6854. PubMed PMC

Chen W., Shieh C., Swanger S. A., Tankovic A., Au M., McGuire M., et al. . (2017). GRIN1 mutation associated with intellectual disability alters NMDA receptor trafficking and function. J. Hum. Genet. 62, 589–597. 10.1038/jhg.2017.19 PubMed DOI PMC

Choi D. W. (1987). Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7, 369–379. PubMed PMC

Cohen S., Greenberg M. E. (2008). Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev. Cell Dev. Biol. 24, 183–209. 10.1146/annurev.cellbio.24.110707.175235 PubMed DOI PMC

Colquhoun D., Sakmann B. (1985). Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. Lond. 369, 501–557. 10.1113/jphysiol.1985.sp015912 PubMed DOI PMC

de Ligt J., Willemsen M. H., van Bon B. W., Kleefstra T., Yntema H. G., Kroes T., et al. . (2012). Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929. 10.1056/NEJMoa1206524 PubMed DOI

Dingledine R., Borges K., Bowie D., Traynelis S. F. (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61. PubMed

Furukawa H., Singh S. K., Mancusso R., Gouaux E. (2005). Subunit arrangement and function in NMDA receptors. Nature 438, 185–192. 10.1038/nature04089 PubMed DOI

Hall B. J., Ripley B., Ghosh A. (2007). NR2B signaling regulates the development of synaptic AMPA receptor current. J. Neurosci. 27, 13446–13456. 10.1523/JNEUROSCI.3793-07.2007 PubMed DOI PMC

Hamdan F. F., Srour M., Capo-Chichi J. M., Daoud H., Nassif C., Patry L., et al. (2014). De novo mutations in moderate or severe intellectual disability. PLoS Genet. 10:e1004772 10.1371/journal.pgen.1004772 PubMed DOI PMC

Hedegaard M., Hansen K. B., Andersen K. T., Brauner-Osborne H., Traynelis S. F. (2012). Molecular pharmacology of human NMDA receptors. Neurochem. Int. 61, 601–609. 10.1016/j.neuint.2011.11.016 PubMed DOI PMC

Horak M., Chang K., Wenthold R. J. (2008). Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor. J. Neurosci. 28, 3500–3509. 10.1523/JNEUROSCI.5239-07.2008 PubMed DOI PMC

Horak M., Vlcek K., Chodounska H., Vyklicky L., Jr. (2006). Subtype-dependence of N-methyl-d-aspartate receptor modulation by pregnenolone sulfate. Neuroscience 137, 93–102. 10.1016/j.neuroscience.2005.08.058 PubMed DOI

Horak M., Vlcek K., Petrovic M., Chodounska H., Vyklicky L., Jr. (2004). Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. J. Neurosci. 24, 10318–10325. 10.1523/JNEUROSCI.2099-04.2004 PubMed DOI PMC

Hu C., Chen W., Myers S. J., Yuan H., Traynelis S. F. (2016). Human GRIN2B variants in neurodevelopmental disorders. J. Pharmacol. Sci. 132, 115–121. 10.1016/j.jphs.2016.10.002 PubMed DOI PMC

Huettner J. E., Bean B. P. (1988). Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc. Natl. Acad. Sci. U.S.A. 85, 1307–1311. 10.1073/pnas.85.4.1307 PubMed DOI PMC

Huganir R. L., Nicoll R. A. (2013). AMPARs and synaptic plasticity: the last 25 years. Neuron 80, 704–717. 10.1016/j.neuron.2013.10.025 PubMed DOI PMC

Jahr C. E. (1992). High probability opening of NMDA receptor channels by L-glutamate. Science 255, 470–472. PubMed

Jo S., Kim T., Iyer V. G., Im W. (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865. 10.1002/jcc.20945 PubMed DOI

Kaniakova M., Krausova B., Vyklicky V., Korinek M., Lichnerova K., Vyklicky L., et al. . (2012). Key amino acid residues within the third membrane domains of NR1 and NR2 subunits contribute to the regulation of the surface delivery of N-methyl-D-aspartate receptors. J. Biol. Chem. 287, 26423–26434. 10.1074/jbc.M112.339085 PubMed DOI PMC

Karakas E., Furukawa H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997. 10.1126/science.1251915 PubMed DOI PMC

Kazi R., Dai J., Sweeney C., Zhou H. X., Wollmuth L. P. (2014). Mechanical coupling maintains the fidelity of NMDA receptor-mediated currents. Nat. Neurosci. 17, 914–922. 10.1038/nn.3724 PubMed DOI PMC

Korinek M., Kapras V., Vyklicky V., Adamusova E., Borovska J., Vales K., et al. . (2011). Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects. Steroids 76, 1409–1418. 10.1016/j.steroids.2011.09.002 PubMed DOI

Krausova B., Slavikova B., Nekardova M., Hubalkova P., Vyklicky V., Chodounska H., et al. (2018). Positive modulators of N-Methyl-D-aspartate receptor: structure-activity relationship study on steroidal 3-hemiesters. J. Med. Chem. PubMed

Krupp J. J., Vissel B., Heinemann S. F., Westbrook G. L. (1998). N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20, 317–327. 10.1016/S0896-6273(00)80459-6 PubMed DOI

Kuner T., Wollmuth L. P., Karlin A., Seeburg P. H., Sakmann B. (1996). Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17, 343–352. 10.1016/S0896-6273(00)80165-8 PubMed DOI

Kupper J., Ascher P., Neyton J. (1996). Probing the pore region of recombinant N-methyl-D-aspartate channels using external and internal magnesium block. Proc. Natl. Acad. Sci. U.S.A. 93, 8648–8653. 10.1073/pnas.93.16.8648 PubMed DOI PMC

Kutsuwada T., Sakimura K., Manabe T., Takayama C., Katakura N., Kushiya E., et al. . (1996). Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16, 333–344. 10.1016/S0896-6273(00)80051-3 PubMed DOI

Lazaridis T. (2003). Effective energy function for proteins in lipid membranes. Proteins 52, 176–192. 10.1002/prot.10410 PubMed DOI

Lee C. H., Lü W., Michel J. C., Goehring A., Du J., Song X., et al. . (2014). NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197. 10.1038/nature13548 PubMed DOI PMC

Lek M., Karczewski K. J., Minikel E. V., Samocha K. E., Banks E., Fennell T., et al. . (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291. 10.1038/nature19057 PubMed DOI PMC

Lelieveld S. H., Reijnders M. R., Pfundt R., Yntema H. G., Kamsteeg E. J., de Vries P., et al. . (2016). Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196. 10.1038/nn.4352 PubMed DOI

Lemke J. R., Hendrickx R., Geider K., Laube B., Schwake M., Harvey R. J., et al. . (2014). GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann. Neurol. 75, 147–154. 10.1002/ana.24073 PubMed DOI PMC

Lester R. A., Clements J. D., Westbrook G. L., Jahr C. E. (1990). Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567. PubMed

Lichnerova K., Kaniakova M., Skrenkova K., Vyklicky L., Horak M. (2014). Distinct regions within the GluN2C subunit regulate the surface delivery of NMDA receptors. Front. Cell. Neurosci. 8:375. 10.3389/fncel.2014.00375 PubMed DOI PMC

Lynch M. A. (2004). Long-term potentiation and memory. Physiol. Rev. 84, 87–136. 10.1152/physrev.00014.2003 PubMed DOI

Mcrae J. F., Clayton S., Fitzgerald T. W., Kaplanis J., Prigmore E., Rajan D., et al. (2017). Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438. 10.1038/nature21062 PubMed DOI PMC

Mendes P. (1993). GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci. 9, 563–571. 10.1093/bioinformatics/9.5.563 PubMed DOI

Mendes P. (1997). Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem. Sci. 22, 361–363. 10.1016/S0968-0004(97)01103-1 PubMed DOI

Mendes P., Kell D. (1998). Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14, 869–883. 10.1093/bioinformatics/14.10.869 PubMed DOI

Monyer H., Burnashev N., Laurie D. J., Sakmann B., Seeburg P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540. 10.1016/0896-6273(94)90210-0 PubMed DOI

Mullier B., Wolff C., Sands Z. A., Ghisdal P., Muglia P., Kaminski R. M., et al. . (2017). GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology 123, 322–331. 10.1016/j.neuropharm.2017.05.017 PubMed DOI

Ogden K. K., Chen W., Swanger S. A., McDaniel M. J., Fan L. Z., Hu C., et al. . (2017). Molecular mechanism of disease-associated mutations in the Pre-M1 Helix of NMDA receptors and potential rescue pharmacology. PLoS Genet. 13:e1006536. 10.1371/journal.pgen.1006536 PubMed DOI PMC

Ogden K. K., Traynelis S. F. (2013). Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors. Mol. Pharmacol. 83, 1045–1056. 10.1124/mol.113.085209 PubMed DOI PMC

Okabe S., Miwa A., Okado H. (1999). Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. 19, 7781–7792. PubMed PMC

Olney J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164, 719–721. PubMed

Parsons M. P., Raymond L. A. (2014). Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82, 279–293. 10.1016/j.neuron.2014.03.030 PubMed DOI

Platzer K., Yuan H., Schütz H., Winschel A., Chen W., Hu C., et al. . (2017). GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J. Med. Genet. 54, 460–470. 10.1136/jmedgenet-2016-104509 PubMed DOI PMC

Rosenmund C., Feltz A., Westbrook G. L. (1995). Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15, 2788–2795. PubMed PMC

Sali A., Blundell T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815. 10.1006/jmbi.1993.1626 PubMed DOI

Sobolevskii A. I., Khodorov B. I. (2002). Blocker studies of the functional architecture of the NMDA receptor channel. Neurosci. Behav. Physiol. 32, 157–171. 10.1023/A:1013927409034 PubMed DOI

Sobolevsky A. I., Rosconi M. P., Gouaux E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756. 10.1038/nature08624 PubMed DOI PMC

Sobolevsky A. I., Yelshansky M. V., Wollmuth L. P. (2004). The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41, 367–378. 10.1016/S0896-6273(04)00008-X PubMed DOI

Soto D., Altafaj X., Sindreu C., Bayes A. (2014). Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun. Integr. Biol. 7:e27887. 10.4161/cib.27887 PubMed DOI PMC

Standley S., Roche K. W., McCallum J., Sans N., Wenthold R. J. (2000). PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28, 887–898. 10.1016/S0896-6273(00)00161-6 PubMed DOI

Swanger S. A., Chen W., Wells G., Burger P. B., Tankovic A., Bhattacharya S., et al. . (2016). Mechanistic Insight into NMDA Receptor Dysregulation by Rare Variants in the GluN2A and GluN2B Agonist Binding Domains. Am. J. Hum. Genet. 99, 1261–1280. 10.1016/j.ajhg.2016.10.002 PubMed DOI PMC

Tarabeux J., Kebir O., Gauthier J., Hamdan F. F., Xiong L., Piton A., et al. . (2011). Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatr. 1:e55. 10.1038/tp.2011.52 PubMed DOI PMC

Thomas C. G., Krupp J. J., Bagley E. E., Bauzon R., Heinemann S. F., Vissel B., et al. . (2006). Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method. Mol. Pharmacol. 69, 1296–1303. 10.1124/mol.105.017350 PubMed DOI

Traynelis S. F., Wollmuth L. P., McBain C. J., Menniti F. S., Vance K. M., Ogden K. K., et al. . (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496. 10.1124/pr.109.002451 PubMed DOI PMC

Turecek R., Vlcek K., Petrovic M., Horak M., Vlachova V., Vyklicky L., Jr. (2004). Intracellular spermine decreases open probability ofN-methyl-d-aspartate receptor channels. Neuroscience 125, 879–887. 10.1016/j.neuroscience.2004.03.003 PubMed DOI

Villarroel A., Burnashev N., Sakmann B. (1995). Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophys. J. 68, 866–875. 10.1016/S0006-3495(95)80263-8 PubMed DOI PMC

Villarroel A., Regalado M. P., Lerma J. (1998). Glycine-independent NMDA receptor desensitization: localization of structural determinants. Neuron 20, 329–339. 10.1016/S0896-6273(00)80460-2 PubMed DOI

Vyklicky L., Jr., Krusek J., Edwards C. (1988). Differences in the pore sizes of the N-methyl-D-aspartate and kainate cation channels. Neurosci. Lett. 89, 313–318. 10.1016/0304-3940(88)90545-9 PubMed DOI

Vyklicky V., Korinek M., Balik A., Smejkalova T., Krausova B., Vyklicky L. (2016). Analysis of whole-cell NMDA receptor currents, in Ionotropic Glutamate Receptor Technologies. Neuromethods, Vol. 106, G. Popescu (New York, NY: Humana Press; ), 205–219.

Vyklicky V., Krausova B., Cerny J., Balik A., Zapotocky M., Novotny M., et al. . (2015). Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci. Rep. 5:10935. 10.1038/srep10935 PubMed DOI PMC

Webb B., Sali A. (2014). Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinformatics 47, Chapter 5: Unit-5.6 1–32. 10.1002/0471250953.bi0506s47 PubMed DOI

Weiss J. N. (1997). The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841. 10.1096/fasebj.11.11.9285481 PubMed DOI

Williams K., Pahk A. J., Kashiwagi K., Masuko T., Nguyen N. D., Igarashi K. (1998). The selectivity filter of the N-methyl-D-aspartate receptor: a tryptophan residue controls block and permeation of Mg2+. Mol. Pharmacol. 53, 933–941. PubMed

Wu F. S., Gibbs T. T., Farb D. H. (1991). Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D- aspartate receptor. Mol. Pharmacol. 40, 333–336. PubMed

Yavarna T., Al-Dewik N., Al-Mureikhi M., Ali R., Al-Mesaifri F., Mahmoud L., et al. . (2015). High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hum. Genet. 134, 967–980. 10.1007/s00439-015-1575-0 PubMed DOI

Yuan H., Hansen K. B., Zhang J., Pierson T. M., Markello T. C., Fajardo K. V., et al. . (2014). Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat. Commun. 5:3251. 10.1038/ncomms4251 PubMed DOI PMC

Zarei M. M., Dani J. A. (1995). Structural basis for explaining open-channel blockade of the NMDA receptor. J. Neurosci. 15, 1446–1454. PubMed PMC

Zhou Y., Morais-Cabral J. H., Kaufman A., MacKinnon R. (2001). Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414, 43–48. 10.1038/35102009 PubMed DOI

Zhu X., Petrovski S., Xie P., Ruzzo E. K., Lu Y. F., McSweeney K. M., et al. . (2015). Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet. Med. 17, 774–781. 10.1038/gim.2014.191 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Characterization of Mice Carrying a Neurodevelopmental Disease-Associated GluN2B(L825V) Variant

. 2024 Jul 31 ; 44 (31) : . [epub] 20240731

Disease-Associated Variants in GRIN1, GRIN2A and GRIN2B genes: Insights into NMDA Receptor Structure, Function, and Pathophysiology

. 2024 May 31 ; 73 (Suppl 1) : S413-S434. [epub] 20240531

Endogenous neurosteroids pregnanolone and pregnanolone sulfate potentiate presynaptic glutamate release through distinct mechanisms

. 2021 Oct ; 178 (19) : 3888-3904. [epub] 20210622

Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation

. 2021 May 11 ; 12 (1) : 2694. [epub] 20210511

The Extracellular Domains of GluN Subunits Play an Essential Role in Processing NMDA Receptors in the ER

. 2021 ; 15 () : 603715. [epub] 20210316

Pursuing the Complexity of Alzheimer's Disease: Discovery of Fluoren-9-Amines as Selective Butyrylcholinesterase Inhibitors and N-Methyl-d-Aspartate Receptor Antagonists

. 2020 Dec 22 ; 11 (1) : . [epub] 20201222

The pathogenic S688Y mutation in the ligand-binding domain of the GluN1 subunit regulates the properties of NMDA receptors

. 2020 Oct 29 ; 10 (1) : 18576. [epub] 20201029

Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor

. 2020 Jul 29 ; 40 (31) : 5922-5936. [epub] 20200701

Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission

. 2020 Jul 28 ; 10 (1) : 12651. [epub] 20200728

NMDA Receptor Opening and Closing-Transitions of a Molecular Machine Revealed by Molecular Dynamics

. 2019 Sep 28 ; 9 (10) : . [epub] 20190928

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...