The Extracellular Domains of GluN Subunits Play an Essential Role in Processing NMDA Receptors in the ER

. 2021 ; 15 () : 603715. [epub] 20210316

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33796003

N-methyl-D-aspartate receptors (NMDARs) belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian central nervous system (CNS). Functional NMDARs consist of heterotetramers comprised of GluN1, GluN2A-D, and/or GluN3A-B subunits, each of which contains four membrane domains (M1 through M4), an intracellular C-terminal domain, a large extracellular N-terminal domain composed of the amino-terminal domain and the S1 segment of the ligand-binding domain (LBD), and an extracellular loop between M3 and M4, which contains the S2 segment of the LBD. Both the number and type of NMDARs expressed at the cell surface are regulated at several levels, including their translation and posttranslational maturation in the endoplasmic reticulum (ER), intracellular trafficking via the Golgi apparatus, lateral diffusion in the plasma membrane, and internalization and degradation. This review focuses on the roles played by the extracellular regions of GluN subunits in ER processing. Specifically, we discuss the presence of ER retention signals, the integrity of the LBD, and critical N-glycosylated sites and disulfide bridges within the NMDAR subunits, each of these steps must pass quality control in the ER in order to ensure that only correctly assembled NMDARs are released from the ER for subsequent processing and trafficking to the surface. Finally, we discuss the effect of pathogenic missense mutations within the extracellular domains of GluN subunits with respect to ER processing of NMDARs.

Zobrazit více v PubMed

Addis L., Virdee J. K., Vidler L. R., Collier D. A., Pal D. K., Ursu D. (2017). Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency - molecular profiling and functional rescue. Sci. Rep. 7:66. PubMed PMC

Ali Khan H., Mutus B. (2014). Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Front. Chem. 2:70. 10.3389/fchem.2014.00070 PubMed DOI PMC

Andreu C. I., Woehlbier U., Torres M., Hetz C. (2012). Protein disulfide isomerases in neurodegeneration: from disease mechanisms to biomedical applications. FEBS Lett. 586 2826–2834. 10.1016/j.febslet.2012.07.023 PubMed DOI

Anson L. C., Chen P. E., Wyllie D. J., Colquhoun D., Schoepfer R. (1998). Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J. Neurosci. 18 581–589. 10.1523/jneurosci.18-02-00581.1998 PubMed DOI PMC

Armstrong N., Gouaux E. (2000). Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28 165–181. 10.1016/s0896-6273(00)00094-5 PubMed DOI

Atlason P. T., Garside M. L., Meddows E., Whiting P., Mcilhinney R. A. (2007). N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J. Biol. Chem. 282 25299–25307. 10.1074/jbc.m702778200 PubMed DOI

Berger S. J., Carter J. C., Lowry O. H. (1977). The distribution of glycine, GABA, glutamate and aspartate in rabbit spinal cord, cerebellum and hippocampus. J. Neurochem. 28 149–158. 10.1111/j.1471-4159.1977.tb07720.x PubMed DOI

Bulleid N. J., Ellgaard L. (2011). Multiple ways to make disulfides. Trends Biochem. Sci. 36 485–492. 10.1016/j.tibs.2011.05.004 PubMed DOI

Chazot P. L., Cik M., Stephenson F. A. (1995). An investigation into the role of N-glycosylation in the functional expression of a recombinant heteromeric NMDA receptor. Mol. Membr. Biol. 12 331–337. 10.3109/09687689509072435 PubMed DOI

Chazot P. L., Stephenson F. A. (1997). Biochemical evidence for the existence of a pool of unassembled C2 exon-containing NR1 subunits of the mammalian forebrain NMDA receptor. J. Neurochem. 68 507–516. 10.1046/j.1471-4159.1997.68020507.x PubMed DOI

Chen P. E., Geballe M. T., Katz E., Erreger K., Livesey M. R., O’toole K. K., et al. (2008). Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. 586 227–245. 10.1113/jphysiol.2007.143172 PubMed DOI PMC

Chen P. E., Geballe M. T., Stansfeld P. J., Johnston A. R., Yuan H., Jacob A. L., et al. (2005). Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Mol. Pharmacol. 67 1470–1484. 10.1124/mol.104.008185 PubMed DOI

Chen W., Shieh C., Swanger S. A., Tankovic A., Au M., Mcguire M., et al. (2017). GRIN1 mutation associated with intellectual disability alters NMDA receptor trafficking and function. J. Hum. Genet. 62 589–597. 10.1038/jhg.2017.19 PubMed DOI PMC

Choi Y., Chen H. V., Lipton S. A. (2001). Three pairs of cysteine residues mediate both redox and zn2+ modulation of the nmda receptor. J. Neurosci. 21 392–400. 10.1523/jneurosci.21-02-00392.2001 PubMed DOI PMC

Coleman S. K., Moykkynen T., Hinkkuri S., Vaahtera L., Korpi E. R., Pentikainen O. T., et al. (2010). Ligand-binding domain determines endoplasmic reticulum exit of AMPA receptors. J. Biol. Chem. 285 36032–36039. 10.1074/jbc.m110.156943 PubMed DOI PMC

Coleman S. K., Moykkynen T., Jouppila A., Koskelainen S., Rivera C., Korpi E. R., et al. (2009). Agonist occupancy is essential for forward trafficking of AMPA receptors. J. Neurosci. 29 303–312. 10.1523/jneurosci.3953-08.2009 PubMed DOI PMC

Cooper A. J., Jeitner T. M. (2016). Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules 6:16. 10.3390/biom6020016 PubMed DOI PMC

Curtis D. R., Watkins J. C. (1963). Acidic amino acids with strong excitatory actions on mammalian neurones. J. Physiol. 166 1–14. 10.1113/jphysiol.1963.sp007087 PubMed DOI PMC

Dravid S. M., Burger P. B., Prakash A., Geballe M. T., Yadav R., Le P., et al. (2010). Structural determinants of D-cycloserine efficacy at the NR1/NR2C NMDA receptors. J. Neurosci. 30 2741–2754. 10.1523/jneurosci.5390-09.2010 PubMed DOI PMC

Erreger K., Geballe M. T., Kristensen A., Chen P. E., Hansen K. B., Lee C. J., et al. (2007). Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors. Mol. Pharmacol. 72 907–920. PubMed

Everts I., Villmann C., Hollmann M. (1997). N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. Mol. Pharmacol. 52 861–873. 10.1124/mol.52.5.861 PubMed DOI

Farina A. N., Blain K. Y., Maruo T., Kwiatkowski W., Choe S., Nakagawa T. (2011). Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors. J. Neurosci. 31 3565–3579. 10.1523/jneurosci.6041-10.2011 PubMed DOI PMC

Feige M. J., Hendershot L. M. (2011). Disulfide bonds in ER protein folding and homeostasis. Curr. Opin. Cell Biol. 23 167–175. 10.1016/j.ceb.2010.10.012 PubMed DOI PMC

Felder C. B., Graul R. C., Lee A. Y., Merkle H. P., Sadee W. (1999). The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci. 1:E2. PubMed PMC

Fleck M. W. (2006). Glutamate receptors and endoplasmic reticulum quality control: looking beneath the surface. Neuroscientist 12 232–244. 10.1177/1073858405283828 PubMed DOI

Freeze H. H. (2006). Genetic defects in the human glycome. Nat. Rev. Genet. 7 537–551. 10.1038/nrg1894 PubMed DOI

Furukawa H., Gouaux E. (2003). Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 22 2873–2885. 10.1093/emboj/cdg303 PubMed DOI PMC

Furukawa H., Singh S. K., Mancusso R., Gouaux E. (2005). Subunit arrangement and function in NMDA receptors. Nature 438 185–192. 10.1038/nature04089 PubMed DOI

Garcia-Recio A., Santos-Gomez A., Soto D., Julia-Palacios N., Garcia-Cazorla A., Altafaj X., et al. (2020). GRIN database: a unified and manually curated repertoire of GRIN variants. Hum. Mutat. [Online ahead of print] 10.1002/humu.24141 PubMed DOI

Gielen M., Siegler Retchless B., Mony L., Johnson J. W., Paoletti P. (2009). Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459 703–707. 10.1038/nature07993 PubMed DOI PMC

Grand T., Abi Gerges S., David M., Diana M. A., Paoletti P. (2018). Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat. Commun. 9:4769. PubMed PMC

Groc L., Heine M., Cognet L., Brickley K., Stephenson F. A., Lounis B., et al. (2004). Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat. Neurosci. 7 695–696. 10.1038/nn1270 PubMed DOI

Groc L., Heine M., Cousins S. L., Stephenson F. A., Lounis B., Cognet L., et al. (2006). NMDA receptor surface mobility depends on NR2A-2B subunits. Proc. Natl. Acad. Sci. U.S.A. 103 18769–18774. 10.1073/pnas.0605238103 PubMed DOI PMC

Gu Y., Huganir R. L. (2016). Identification of the SNARE complex mediating the exocytosis of NMDA receptors. Proc. Natl. Acad. Sci. U.S.A. 113 12280–12285. 10.1073/pnas.1614042113 PubMed DOI PMC

Hansen K. B., Clausen R. P., Bjerrum E. J., Bechmann C., Greenwood J. R., Christensen C., et al. (2005). Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis. Mol. Pharmacol. 68 1510–1523. 10.1124/mol.105.014795 PubMed DOI

Hansen K. B., Furukawa H., Traynelis S. F. (2010). Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol. Pharmacol. 78 535–549. 10.1124/mol.110.067157 PubMed DOI PMC

Hansen K. B., Yi F., Perszyk R. E., Furukawa H., Wollmuth L. P., Gibb A. J., et al. (2018). Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150 1081–1105. PubMed PMC

Hanus C., Geptin H., Tushev G., Garg S., Alvarez-Castelao B., Sambandan S., et al. (2016). Unconventional secretory processing diversifies neuronal ion channel properties. Elife 5:e20609. PubMed PMC

Hawkins L. M., Prybylowski K., Chang K., Moussan C., Stephenson F. A., Wenthold R. J. (2004). Export from the endoplasmic reticulum of assembled N-methyl-d-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit. J. Biol. Chem. 279 28903–28910. 10.1074/jbc.m402599200 PubMed DOI

Hemelikova K., Kolcheva M., Skrenkova K., Kaniakova M., Horak M. (2019). Lectins modulate the functional properties of GluN1/GluN3-containing NMDA receptors. Neuropharmacology 157:107671. 10.1016/j.neuropharm.2019.107671 PubMed DOI

Horak M., Chang K., Wenthold R. J. (2008). Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor. J. Neurosci. 28 3500–3509. 10.1523/jneurosci.5239-07.2008 PubMed DOI PMC

Horak M., Petralia R. S., Kaniakova M., Sans N. (2014). ER to synapse trafficking of NMDA receptors. Front. Cell Neurosci. 8:394. 10.3389/fncel.2014.00394 PubMed DOI PMC

Horak M., Wenthold R. J. (2009). Different roles of C-terminal cassettes in the trafficking of full-length NR1 subunits to the cell surface. J. Biol. Chem. 284 9683–9691. 10.1074/jbc.m807050200 PubMed DOI PMC

Hu C., Chen W., Myers S. J., Yuan H., Traynelis S. F. (2016). Human GRIN2B variants in neurodevelopmental disorders. J. Pharmacol. Sci. 132 115–121. 10.1016/j.jphs.2016.10.002 PubMed DOI PMC

Huh K. H., Wenthold R. J. (1999). Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. J. Biol. Chem. 274 151–157. 10.1074/jbc.274.1.151 PubMed DOI

Inanobe A., Furukawa H., Gouaux E. (2005). Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47 71–84. 10.1016/j.neuron.2005.05.022 PubMed DOI

Jalali-Yazdi F., Chowdhury S., Yoshioka C., Gouaux E. (2018). Mechanisms for zinc and proton inhibition of the GluN1/GluN2A NMDA receptor. Cell 175:e1515. PubMed PMC

Jespersen A., Tajima N., Fernandez-Cuervo G., Garnier-Amblard E. C., Furukawa H. (2014). Structural insights into competitive antagonism in NMDA receptors. Neuron 81 366–378. 10.1016/j.neuron.2013.11.033 PubMed DOI PMC

Jeyifous O., Waites C. L., Specht C. G., Fujisawa S., Schubert M., Lin E. I., et al. (2009). SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat. Neurosci. 12 1011–1019. 10.1038/nn.2362 PubMed DOI PMC

Johnson J. W., Ascher P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325 529–531. 10.1038/325529a0 PubMed DOI

Kalbaugh T. L., Vandongen H. M., Vandongen A. M. (2004). Ligand-binding residues integrate affinity and efficacy in the NMDA receptor. Mol. Pharmacol. 66 209–219. 10.1124/mol.66.2.209 PubMed DOI

Kaniakova M., Lichnerova K., Skrenkova K., Vyklicky L., Horak M. (2016). Biochemical and electrophysiological characterization of N-glycans on NMDA receptor subunits. J. Neurochem. 138 546–556. 10.1111/jnc.13679 PubMed DOI

Karagas N. E., Venkatachalam K. (2019). Roles for the endoplasmic reticulum in regulation of neuronal calcium homeostasis. Cells 8:1232. 10.3390/cells8101232 PubMed DOI PMC

Karakas E., Furukawa H. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344 992–997. 10.1126/science.1251915 PubMed DOI PMC

Karakas E., Simorowski N., Furukawa H. (2009). Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J. 28 3910–3920. 10.1038/emboj.2009.338 PubMed DOI PMC

Kenny A. V., Cousins S. L., Pinho L., Stephenson F. A. (2009). The integrity of the glycine co-agonist binding site of N-methyl-D-aspartate receptors is a functional quality control checkpoint for cell surface delivery. J. Biol. Chem. 284 324–333. 10.1074/jbc.m804023200 PubMed DOI

Kinarsky L., Feng B., Skifter D. A., Morley R. M., Sherman S., Jane D. E., et al. (2005). Identification of subunit- and antagonist-specific amino acid residues in the N-Methyl-D-aspartate receptor glutamate-binding pocket. J. Pharmacol. Exp. Ther. 313 1066–1074. 10.1124/jpet.104.082990 PubMed DOI

Kuryatov A., Laube B., Betz H., Kuhse J. (1994). Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12 1291–1300. 10.1016/0896-6273(94)90445-6 PubMed DOI

Kvist T., Greenwood J. R., Hansen K. B., Traynelis S. F., Brauner-Osborne H. (2013). Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Neuropharmacology 75 324–336. 10.1016/j.neuropharm.2013.08.003 PubMed DOI PMC

Lau C. G., Zukin R. S. (2007). NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8 413–426. 10.1038/nrn2153 PubMed DOI

Laube B., Hirai H., Sturgess M., Betz H., Kuhse J. (1997). Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18 493–503. 10.1016/s0896-6273(00)81249-0 PubMed DOI

Laube B., Kuryatov A., Kuhse J., Betz H. (1993). Glycine-glutamate interactions at the NMDA receptor: role of cysteine residues. FEBS Lett. 335 331–334. 10.1016/0014-5793(93)80412-n PubMed DOI

Laube B., Schemm R., Betz H. (2004). Molecular determinants of ligand discrimination in the glutamate-binding pocket of the NMDA receptor. Neuropharmacology 47 994–1007. 10.1016/j.neuropharm.2004.07.041 PubMed DOI

Lavezzari G., Mccallum J., Dewey C. M., Roche K. W. (2004). Subunit-specific regulation of NMDA receptor endocytosis. J. Neurosci. 24 6383–6391. 10.1523/jneurosci.1890-04.2004 PubMed DOI PMC

Lichnerova K., Kaniakova M., Park S. P., Skrenkova K., Wang Y. X., Petralia R. S., et al. (2015). Two N-glycosylation sites in the GluN1 subunit are essential for releasing N-methyl-d-aspartate (NMDA) receptors from the endoplasmic reticulum. J. Biol. Chem. 290 18379–18390. 10.1074/jbc.m115.656546 PubMed DOI PMC

Lichnerova K., Kaniakova M., Skrenkova K., Vyklicky L., Horak M. (2014). Distinct regions within the GluN2C subunit regulate the surface delivery of NMDA receptors. Front. Cell Neurosci. 8:375. 10.3389/fncel.2014.00375 PubMed DOI PMC

Lipton S. A., Choi Y. B., Takahashi H., Zhang D., Li W., Godzik A., et al. (2002). Cysteine regulation of protein function–as exemplified by NMDA-receptor modulation. Trends Neurosci. 25 474–480. 10.1016/s0166-2236(02)02245-2 PubMed DOI

Liu S., Zhou L., Yuan H., Vieira M., Sanz-Clemente A., Badger J. D., 2nd, et al. (2017). A rare variant identified within the GluN2B C-Terminus in a patient with autism affects NMDA receptor surface expression and spine density. J. Neurosci. 37 4093–4102. 10.1523/jneurosci.0827-16.2017 PubMed DOI PMC

Maier W., Schemm R., Grewer C., Laube B. (2007). Disruption of interdomain interactions in the glutamate binding pocket affects differentially agonist affinity and efficacy of N-methyl-D-aspartate receptor activation. J. Biol. Chem. 282 1863–1872. 10.1074/jbc.m608156200 PubMed DOI

Matsuda K., Fletcher M., Kamiya Y., Yuzaki M. (2003). Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J. Neurosci. 23 10064–10073. 10.1523/jneurosci.23-31-10064.2003 PubMed DOI PMC

Meddows E., Le Bourdelles B., Grimwood S., Wafford K., Sandhu S., Whiting P., et al. (2001). Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors. J. Biol. Chem. 276 18795–18803. 10.1074/jbc.m101382200 PubMed DOI

Mesic I., Madry C., Geider K., Bernhard M., Betz H., Laube B. (2016). The N-terminal domain of the GluN3A subunit determines the efficacy of glycine-activated NMDA receptors. Neuropharmacology 105 133–141. 10.1016/j.neuropharm.2016.01.014 PubMed DOI

Moremen K. W., Tiemeyer M., Nairn A. V. (2012). Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13 448–462. 10.1038/nrm3383 PubMed DOI PMC

Mossuto M. F. (2013). Disulfide bonding in neurodegenerative misfolding diseases. Int. J. Cell Biol. 2013:318319. PubMed PMC

Mothet J. P., Le Bail M., Billard J. M. (2015). Time and space profiling of NMDA receptor co-agonist functions. J. Neurochem. 135 210–225. 10.1111/jnc.13204 PubMed DOI

Mu Y., Otsuka T., Horton A. C., Scott D. B., Ehlers M. D. (2003). Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40 581–594. 10.1016/s0896-6273(03)00676-7 PubMed DOI

Munshi S., Dahl R. (2016). Cytoprotective small molecule modulators of endoplasmic reticulum stress. Bioorg Med. Chem. 24 2382–2388. 10.1016/j.bmc.2016.03.045 PubMed DOI

Nong Y., Huang Y. Q., Ju W., Kalia L. V., Ahmadian G., Wang Y. T., et al. (2003). Glycine binding primes NMDA receptor internalization. Nature 422 302–307. 10.1038/nature01497 PubMed DOI

Ogden K. K., Chen W., Swanger S. A., Mcdaniel M. J., Fan L. Z., Hu C., et al. (2017). Molecular mechanism of disease-associated mutations in the Pre-M1 Helix of NMDA receptors and potential rescue pharmacology. PLoS Genet. 13:e1006536. 10.1371/journal.pgen.1006536 PubMed DOI PMC

Oka O. B., Bulleid N. J. (2013). Forming disulfides in the endoplasmic reticulum. Biochim. Biophys. Acta 1833 2425–2429. 10.1016/j.bbamcr.2013.02.007 PubMed DOI

Okabe S., Miwa A., Okado H. (1999). Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. 19 7781–7792. 10.1523/jneurosci.19-18-07781.1999 PubMed DOI PMC

Okumura M., Kadokura H., Inaba K. (2015). Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum. Free. Radic. Biol. Med. 83 314–322. 10.1016/j.freeradbiomed.2015.02.010 PubMed DOI

Paoletti P. (2011). Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 33 1351–1365. 10.1111/j.1460-9568.2011.07628.x PubMed DOI

Paoletti P., Ascher P., Neyton J. (1997). High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17 5711–5725. 10.1523/jneurosci.17-15-05711.1997 PubMed DOI PMC

Paoletti P., Bellone C., Zhou Q. (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14 383–400. 10.1038/nrn3504 PubMed DOI

Papadakis M., Hawkins L. M., Stephenson F. A. (2004). Appropriate NR1-NR1 disulfide-linked homodimer formation is requisite for efficient expression of functional, cell surface N-methyl-D-aspartate NR1/NR2 receptors. J. Biol. Chem. 279 14703–14712. 10.1074/jbc.m313446200 PubMed DOI

Penn A. C., Williams S. R., Greger I. H. (2008). Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum. EMBO J. 27 3056–3068. 10.1038/emboj.2008.222 PubMed DOI PMC

Perez-Otano I., Larsen R. S., Wesseling J. F. (2016). Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat. Rev. Neurosci. 17 623–635. 10.1038/nrn.2016.92 PubMed DOI

Perez-Otano I., Schulteis C. T., Contractor A., Lipton S. A., Trimmer J. S., Sucher N. J., et al. (2001). Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J. Neurosci. 21 1228–1237. 10.1523/jneurosci.21-04-01228.2001 PubMed DOI PMC

Perri E. R., Thomas C. J., Parakh S., Spencer D. M., Atkin J. D. (2015). The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Front. Cell Dev. Biol. 3:80. 10.3389/fcell.2015.00080 PubMed DOI PMC

Petralia R. S., Al-Hallaq R. A., Wenthold R. J. (2009). “Trafficking and Targeting of NMDA Receptors,” in Biology of the NMDA Receptor, ed. Van Dongen A. M. (Boca Raton, FL: CRC Press/Taylor & Francis: ), 149–200. 10.1201/9781420044157.ch8 PubMed DOI

Qiu S., Hua Y. L., Yang F., Chen Y. Z., Luo J. H. (2005). Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer. J. Biol. Chem. 280 24923–24930. 10.1074/jbc.m413915200 PubMed DOI

Qiu S., Zhang X. M., Cao J. Y., Yang W., Yan Y. G., Shan L., et al. (2009). An endoplasmic reticulum retention signal located in the extracellular amino-terminal domain of the NR2A subunit of N-Methyl-D-aspartate receptors. J. Biol. Chem. 284 20285–20298. 10.1074/jbc.m109.004960 PubMed DOI PMC

Rachline J., Perin-Dureau F., Le Goff A., Neyton J., Paoletti P. (2005). The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J. Neurosci. 25 308–317. 10.1523/jneurosci.3967-04.2005 PubMed DOI PMC

Ramirez O. A., Couve A. (2011). The endoplasmic reticulum and protein trafficking in dendrites and axons. Trends Cell. Biol. 21 219–227. 10.1016/j.tcb.2010.12.003 PubMed DOI

Regan M. C., Romero-Hernandez A., Furukawa H. (2015). A structural biology perspective on NMDA receptor pharmacology and function. Curr. Opin. Struct. Biol. 33 68–75. 10.1016/j.sbi.2015.07.012 PubMed DOI PMC

Roche K. W., Standley S., Mccallum J., Ly C., Ehlers M. D., Wenthold R. J. (2001). Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4 794–802. 10.1038/90498 PubMed DOI

Romero-Hernandez A., Simorowski N., Karakas E., Furukawa H. (2016). Molecular basis for subtype specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino-terminal domain. Neuron 92 1324–1336. 10.1016/j.neuron.2016.11.006 PubMed DOI PMC

Sans N., Prybylowski K., Petralia R. S., Chang K., Wang Y. X., Racca C., et al. (2003). NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat. Cell Biol. 5 520–530. 10.1038/ncb990 PubMed DOI

Sato Y., Inaba K. (2012). Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. FEBS J. 279 2262–2271. 10.1111/j.1742-4658.2012.08593.x PubMed DOI

Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 671–675. 10.1038/nmeth.2089 PubMed DOI PMC

Scholefield C. L., Atlason P. T., Jane D. E., Molnar E. (2019). Assembly and trafficking of homomeric and heteromeric kainate receptors with impaired ligand binding sites. Neurochem. Res. 44 585–599. 10.1007/s11064-018-2654-0 PubMed DOI PMC

Schorge S., Colquhoun D. (2003). Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J. Neurosci. 23 1151–1158. 10.1523/jneurosci.23-04-01151.2003 PubMed DOI PMC

Schuler T., Mesic I., Madry C., Bartholomaus I., Laube B. (2008). Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J. Biol. Chem. 283 37–46. 10.1074/jbc.m703539200 PubMed DOI

Scott D. B., Blanpied T. A., Swanson G. T., Zhang C., Ehlers M. D. (2001). An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J. Neurosci. 21 3063–3072. 10.1523/jneurosci.21-09-03063.2001 PubMed DOI PMC

Scott D. B., Michailidis I., Mu Y., Logothetis D., Ehlers M. D. (2004). Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J. Neurosci. 24 7096–7109. 10.1523/jneurosci.0780-04.2004 PubMed DOI PMC

Serraz B., Grand T., Paoletti P. (2016). Altered zinc sensitivity of NMDA receptors harboring clinically-relevant mutations. Neuropharmacology 109 196–204. 10.1016/j.neuropharm.2016.06.008 PubMed DOI

She K., Ferreira J. S., Carvalho A. L., Craig A. M. (2012). Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-D-aspartate (NMDA) receptors. J. Biol. Chem. 287 27432–27445. 10.1074/jbc.m112.345108 PubMed DOI PMC

Sinitskiy A. V., Stanley N. H., Hackos D. H., Hanson J. E., Sellers B. D., Pande V. S. (2017). Computationally discovered potentiating role of glycans on NMDA receptors. Sci. Rep. 7:44578. PubMed PMC

Skrenkova K., Hemelikova K., Kolcheva M., Kortus S., Kaniakova M., Krausova B., et al. (2019). Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors. Sci. Rep. 9:12303. PubMed PMC

Skrenkova K., Lee S., Lichnerova K., Kaniakova M., Hansikova H., Zapotocky M., et al. (2018). N-Glycosylation regulates the trafficking and surface mobility of GluN3A-Containing NMDA receptors. Front. Mol. Neurosci. 11:188. 10.3389/fnmol.2018.00188 PubMed DOI PMC

Skrenkova K., Song J. M., Kortus S., Kolcheva M., Netolicky J., Hemelikova K., et al. (2020). The pathogenic S688Y mutation in the ligand-binding domain of the GluN1 subunit regulates the properties of NMDA receptors. Sci. Rep. 10:18576. PubMed PMC

Standley S., Baudry M. (2000). The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking. Cell Mol. Life Sci. 57 1508–1516. 10.1007/pl00000635 PubMed DOI PMC

Standley S., Roche K. W., Mccallum J., Sans N., Wenthold R. J. (2000). PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28 887–898. 10.1016/s0896-6273(00)00161-6 PubMed DOI

Stroebel D., Casado M., Paoletti P. (2018). Triheteromeric NMDA receptors: from structure to synaptic physiology. Curr. Opin. Physiol. 2 1–12. PubMed PMC

Stroebel D., Paoletti P. (2020). Architecture and function of NMDA receptors: an evolutionary perspective. J. Physiol. [Online ahead of print] 10.1113/JP279028 PubMed DOI

Strong K. L., Jing Y., Prosser A. R., Traynelis S. F., Liotta D. C. (2014). NMDA receptor modulators: an updated patent review (2013-2014). Exp. Opin. Ther. Pat. 24 1349–1366. 10.1517/13543776.2014.972938 PubMed DOI PMC

Sullivan J. M., Traynelis S. F., Chen H. S., Escobar W., Heinemann S. F., Lipton S. A. (1994). Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13 929–936. 10.1016/0896-6273(94)90258-5 PubMed DOI

Swanger S. A., Chen W., Wells G., Burger P. B., Tankovic A., Bhattacharya S., et al. (2016). Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am. J. Hum. Genet. 99 1261–1280. 10.1016/j.ajhg.2016.10.002 PubMed DOI PMC

Tovar K. R., Westbrook G. L. (2002). Mobile NMDA receptors at hippocampal synapses. Neuron 34 255–264. 10.1016/s0896-6273(02)00658-x PubMed DOI

Traynelis S. F., Wollmuth L. P., Mcbain C. J., Menniti F. S., Vance K. M., Ogden K. K., et al. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62 405–496. PubMed PMC

Vagin O., Kraut J. A., Sachs G. (2009). Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am. J. Physiol. Renal. Physiol. 296 F459–F469. PubMed PMC

Vandenberghe W., Bredt D. S. (2004). Early events in glutamate receptor trafficking. Curr. Opin. Cell Biol. 16 134–139. 10.1016/j.ceb.2004.01.003 PubMed DOI

Vieira M., Yong X. L. H., Roche K. W., Anggono V. (2020). Regulation of NMDA glutamate receptor functions by the GluN2 subunits. J. Neurochem. 154 121–143. 10.1111/jnc.14970 PubMed DOI PMC

Vyklicky V., Krausova B., Cerny J., Ladislav M., Smejkalova T., Kysilov B., et al. (2018). Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front. Mol. Neurosci. 11:110. 10.3389/fnmol.2018.00110 PubMed DOI PMC

Watkins J. C. (2000). L-glutamate as a central neurotransmitter: looking back. Biochem. Soc. Trans. 28 297–310. 10.1042/0300-5127:0280297 PubMed DOI

Wells G., Yuan H., Mcdaniel M. J., Kusumoto H., Snyder J. P., Liotta D. C., et al. (2018). The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening. Proteins 86 1265–1276. 10.1002/prot.25595 PubMed DOI PMC

Wenthold R. J., Sans N., Standley S., Prybylowski K., Petralia R. S. (2003). Early events in the trafficking of N-methyl-D-aspartate (n.d.) receptors. Biochem. Soc. Trans. 31 885–888. 10.1042/bst0310885 PubMed DOI

Williams K., Chao J., Kashiwagi K., Masuko T., Igarashi K. (1996). Activation of N-methyl-D-aspartate receptors by glycine: role of an aspartate residue in the M3-M4 loop of the NR1 subunit. Mol. Pharmacol. 50 701–708. PubMed

Xu C., Ng D. T. (2015). Glycosylation-directed quality control of protein folding. Nat. Rev. Mol. Cell Biol. 16 742–752. 10.1038/nrm4073 PubMed DOI

Yao Y., Harrison C. B., Freddolino P. L., Schulten K., Mayer M. L. (2008). Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J. 27 2158–2170. 10.1038/emboj.2008.140 PubMed DOI PMC

Yao Y., Mayer M. L. (2006). Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J. Neurosci. 26 4559–4566. 10.1523/jneurosci.0560-06.2006 PubMed DOI PMC

Yuan H., Hansen K. B., Vance K. M., Ogden K. K., Traynelis S. F. (2009). Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 29 12045–12058. 10.1523/jneurosci.1365-09.2009 PubMed DOI PMC

Zhang X. M., Lv X. Y., Tang Y., Zhu L. J., Luo J. H. (2013). Cysteine residues 87 and 320 in the amino terminal domain of NMDA receptor GluN2A govern its homodimerization but do not influence GluN2A/GluN1 heteromeric assembly. Neurosci. Bull. 29 671–684. 10.1007/s12264-013-1335-x PubMed DOI PMC

Zhou X., Li G., Kaplan A., Gaschler M. M., Zhang X., Hou Z., et al. (2018). Small molecule modulator of protein disulfide isomerase attenuates mutant huntingtin toxicity and inhibits endoplasmic reticulum stress in a mouse model of Huntington’s disease. Hum. Mol. Genet. 27 1545–1555. 10.1093/hmg/ddy061 PubMed DOI PMC

Zhu S., Stein R. A., Yoshioka C., Lee C. H., Goehring A., Mchaourab H. S., et al. (2016). Mechanism of NMDA receptor inhibition and activation. Cell 165 704–714. 10.1016/j.cell.2016.03.028 PubMed DOI PMC

Zielinska D. F., Gnad F., Wisniewski J. R., Mann M. (2010). Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141 897–907. 10.1016/j.cell.2010.04.012 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...