... protein kinases -- Sulfuryl transfers: action of protein sulfotransferases and aryl sulfatases -- Modifications ... ... oxidation-reduction -- Protein methylation -- Protein N-acetylation -- Protein lipidation -- Proteolytic posttranslational ... ... modification of proteins -- Ubiquitin and ubiquitin-like protein tags -- Protein glycosylation -- ADP ... ... ribosylation of proteins from NAD as donor -- Posttranslational hydroxylation of proteins -- Protein ...
xxi, 490 s. : il., tab. ; 27 cm
- MeSH
- Protein Processing, Post-Translational MeSH
- Proteins metabolism MeSH
- Publication type
- Monograph MeSH
- Conspectus
- Biochemie. Molekulární biologie. Biofyzika
- NML Fields
- biologie
- biochemie
Oxidative stress in humans is related to various pathophysiological processes, which can manifest in numerous diseases including cancer, cardiovascular diseases, and Alzheimer's disease. On the atomistic level, oxidative stress causes posttranslational modifications, thus inducing structural and functional changes into the proteins structure. This study focuses on fibrinogen, a blood plasma protein that is frequently targeted by reagents causing posttranslational modifications in proteins. Fibrinogen was in vitro modified by three reagents, namely sodium hypochlorite, malondialdehyde, and 3-morpholinosydnonimine that mimic the oxidative stress in diseases. Newly induced posttranslational modifications were detected via mass spectrometry. Electron microscopy was used to visualize changes in the fibrin networks, which highlight the extent of disturbances in fibrinogen behavior after exposure to reagents. We used molecular dynamics simulations to observe the impact of selected posttranslational modifications on the fibrinogen structure at the atomistic level. In total, 154 posttranslational modifications were identified, 84 of them were in fibrinogen treated with hypochlorite, 51 resulted from a reaction of fibrinogen with malondialdehyde, and 19 were caused by 3-morpholinosydnonimine. Our data reveal that the stronger reagents induce more posttranslational modifications in the fibrinogen structure than the weaker ones, and they extensively alter the architecture of the fibrin network. Molecular dynamics simulations revealed that the effect of posttranslational modifications on fibrinogen secondary structure varies from negligible alternations to serious disruptions. Among the serious disruptions is the oxidation of γR375 resulting in the release of Ca2+ ion that is necessary for appropriate fibrin fiber formation. Folding of amino acids γE72-γN77 into a short α-helix is a result of oxidation of γP76 to glutamic acid. The study describes behaviour of fibrinogen coiled-coil connecter in the vicinity of plasmin and hementin cleavage sites.
The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Here, we present the first case of fibrinogen variant FGG c.8G>A. We investigated the behaviour of this mutated fibrinogen in blood coagulation using fibrin polymerization, fibrinolysis, fibrinopeptides release measurement, mass spectrometry (MS), and scanning electron microscopy (SEM). The case was identified by routine coagulation testing of a 34-year-old man diagnosed with thrombosis. Initial genetic analysis revealed a heterozygous mutation in exon 1 of the FGG gene encoding gamma chain signal peptide. Fibrin polymerization by thrombin and reptilase showed the normal formation of the fibrin clot. However, maximal absorbance within polymerization was lower and fibrinolysis had a longer degradation phase than healthy control. SEM revealed a significant difference in clot structure of the patient, and interestingly, MS detected several posttranslational oxidations of fibrinogen. The data suggest that the mutation FGG c.8G>A with the combination of the effect of posttranslational modifications causes a novel case of hypofibrinogenemia associated with thrombosis.
- MeSH
- Afibrinogenemia * complications genetics MeSH
- Adult MeSH
- Fibrin metabolism MeSH
- Fibrinogen genetics metabolism MeSH
- Fibrinogens, Abnormal * genetics metabolism MeSH
- Hemostatics * MeSH
- Humans MeSH
- Oxidative Stress MeSH
- Protein Processing, Post-Translational MeSH
- Thrombosis * complications genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Death receptor 6 (DR6/TNFRSF21) is a death domain-containing receptor of the TNFR superfamily with an apparent regulatory function in hematopoietic and neuronal cells. In this study we document that DR6 is an extensively posttranslationally modified transmembrane protein and that N- and O-glycosylations of amino acids in its extracellular part are mainly responsible for its approximately 40 kDa mobility shift in SDS polyacrylamide gels. Site-directed mutagenesis confirmed that all six extracellular asparagines are N-glycosylated and that the Ser/Thr/Pro cluster in the "stalk" domain juxtaposed to the cysteine-rich domains (CRDs) is a major site for the likely mucine-type of O-glycosylation. Deletion of the entire linker region between CRDs and the transmembrane domain, spanning over 130 amino acids, severely compromises the plasma membrane localization of DR6 and leads to its intracellular retention. Biosynthetic labeling with radiolabeled palmitate and side-directed mutagenesis also revealed that the membrane-proximal Cys368 in the intracellular part of DR6 is, similarly as cysteines in Fas/CD95 or DR4 ICPs, S-palmitoylated. However, palmitoylation of Cys368 is apparently not required for DR6 targeting into Brij-98 insoluble lipid rafts. In contrast, we show that N-glycosylation of the extracellular part might participate in directing DR6 into these membrane microdomains.
- MeSH
- Cell Line MeSH
- Glycosylation MeSH
- HeLa Cells MeSH
- HL-60 Cells MeSH
- Jurkat Cells MeSH
- Humans MeSH
- Lipoylation MeSH
- Membrane Microdomains metabolism MeSH
- Molecular Weight MeSH
- Mutagenesis, Site-Directed MeSH
- Cell Line, Tumor MeSH
- Protein Processing, Post-Translational MeSH
- Protein Isoforms physiology genetics chemistry MeSH
- Receptors, Tumor Necrosis Factor genetics chemistry metabolism MeSH
- Recombinant Proteins genetics chemistry metabolism MeSH
- Sequence Deletion MeSH
- Protein Structure, Tertiary MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Non-enzymatic posttranslational modifications of bovine serum albumin (BSA) by various oxo-compounds (glucose, ribose, glyoxal and glutardialdehyde) have been investigated using high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). Both of these methods used mass spectrometric (MS) detection. Three enzymes (trypsin, pepsin, proteinase K) were used to digest glycated BSA. The extent of modification depended on the selected oxo-compound. Reactivity increased progressively from glucose to glutardialdehyde (glucose
- MeSH
- Electrophoresis, Capillary methods MeSH
- Mass Spectrometry methods MeSH
- Protein Processing, Post-Translational MeSH
- Serum Albumin, Bovine chemistry MeSH
- Cattle MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Animals MeSH
- Check Tag
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.
- MeSH
- Alternaria * MeSH
- Arabidopsis drug effects metabolism MeSH
- Cytokinins metabolism MeSH
- Photosynthesis drug effects MeSH
- Abscisic Acid metabolism MeSH
- Protein Processing, Post-Translational drug effects MeSH
- Arabidopsis Proteins metabolism MeSH
- Proteome MeSH
- Volatile Organic Compounds pharmacology MeSH
- Thioredoxin-Disulfide Reductase metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Infection with hepatitis B virus (HBV) often leads to development of chronic liver disease. In fact, 10% of infected adults and almost 90% of infected infants develop chronic hepatitis B associated with severe liver diseases, including acute liver failure, liver cirrhosis or hepatocellular carcinoma. At present there is no effective cure for chronic hepatitis B. The current treatment of chronically infected patients is long-term, expensive and relies on treatment with nucleos(t)ide analogs in combination with immune therapies, that frequently lead to adverse side effects. Recently, the National Institute of Health proposed strategic plan for Trans-NIH research to cure hepatitis B. The key priority is better understanding of HBV life cycle and its interactions with host cell. Due to the fact that HBV is a small double stranded DNA virus encoding only a limited number of proteins, HBV replication widely relies on host cell pathways and proteins. As demonstrated by numerous reports, HBV core protein (HBc) which is the main component of viral nucleocapsid, plays multiple roles in HBV life cycle and is engaged in many protein interaction networks of the host cell. Several recent studies have shown that HBV proteins can be modified by different types of posttranslational modifications (PTMs) that affect their protein-protein interactions, subcellular localization and function. In this review, we discuss diverse PTMs of HBc and their role in regulation of HBc function in the context of HBV replication and pathogenesis.
- MeSH
- Phosphorylation MeSH
- Humans MeSH
- Protein Processing, Post-Translational MeSH
- Protein-Arginine N-Methyltransferases MeSH
- Viral Core Proteins genetics MeSH
- Ubiquitination MeSH
- Hepatitis B virus * genetics pathogenicity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
BACKGROUND: Leucine-rich alpha-2-glycoprotein (LRG) has been repeatedly proposed as a potential plasma biomarker for myelodysplastic syndrome (MDS). OBJECTIVE: The goal of our work was to establish the total LRG plasma level and LRG posttranslational modifications (PTMs) as a suitable MDS biomarker. METHODS: The total plasma LRG concentration was determined with ELISA, whilst the LRG-specific PTMs and their locations, were established using mass spectrometry and public mass spectrometry data re-analysis. Homology modelling and sequence analysis were used to establish the potential impact of PTMs on LRG functions via their impact on the LRG structure. RESULTS: While the results showed that the total LRG plasma concentration is not a suitable MDS marker, alterations within two LRG sites correlated with MDS diagnosis (p= 0.0011). Sequence analysis and the homology model suggest the influence of PTMs within the two LRG sites on the function of this protein. CONCLUSIONS: We report the presence of LRG proteoforms that correlate with diagnosis in the plasma of MDS patients. The combination of mass spectrometry, re-analysis of publicly available data, and homology modelling, represents an approach that can be used for any protein to predict clinically relevant protein sites for biomarker research despite the character of the PTMs being unknown.