The pathogenic S688Y mutation in the ligand-binding domain of the GluN1 subunit regulates the properties of NMDA receptors
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33122756
PubMed Central
PMC7596085
DOI
10.1038/s41598-020-75646-w
PII: 10.1038/s41598-020-75646-w
Knihovny.cz E-zdroje
- MeSH
- glycin farmakologie MeSH
- glycinové látky farmakologie MeSH
- HEK293 buňky MeSH
- hipokampus cytologie účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- mutace * MeSH
- neurony cytologie účinky léků metabolismus MeSH
- potkani Wistar MeSH
- proteinové domény MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- receptory N-methyl-D-aspartátu genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glycin MeSH
- glycinové látky MeSH
- GRIN1 protein, human MeSH Prohlížeč
- ligandy MeSH
- NMDA receptor A1 MeSH Prohlížeč
- proteiny nervové tkáně MeSH
- receptory N-methyl-D-aspartátu MeSH
Although numerous pathogenic mutations have been identified in various subunits of N-methyl-D-aspartate receptors (NMDARs), ionotropic glutamate receptors that are central to glutamatergic neurotransmission, the functional effects of these mutations are often unknown. Here, we combined in silico modelling with microscopy, biochemistry, and electrophysiology in cultured HEK293 cells and hippocampal neurons to examine how the pathogenic missense mutation S688Y in the GluN1 NMDAR subunit affects receptor function and trafficking. We found that the S688Y mutation significantly increases the EC50 of both glycine and D-serine in GluN1/GluN2A and GluN1/GluN2B receptors, and significantly slows desensitisation of GluN1/GluN3A receptors. Moreover, the S688Y mutation reduces the surface expression of GluN3A-containing NMDARs in cultured hippocampal neurons, but does not affect the trafficking of GluN2-containing receptors. Finally, we found that the S688Y mutation reduces Ca2+ influx through NMDARs and reduces NMDA-induced excitotoxicity in cultured hippocampal neurons. These findings provide key insights into the molecular mechanisms that underlie the regulation of NMDAR subtypes containing pathogenic mutations.
Zobrazit více v PubMed
Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013;14:383–400. doi: 10.1038/nrn3504. PubMed DOI
Sanz-Clemente A, Gray JA, Ogilvie KA, Nicoll RA, Roche KW. Activated CaMKII couples GluN2B and casein kinase 2 to control synaptic NMDA receptors. Cell Rep. 2013;3:607–614. doi: 10.1016/j.celrep.2013.02.011. PubMed DOI PMC
Traynelis SF, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 2010;62:405–496. doi: 10.1124/pr.109.002451. PubMed DOI PMC
Sanz-Clemente A, Nicoll RA, Roche KW. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist. 2012 doi: 10.1177/1073858411435129. PubMed DOI PMC
Vieira M, Yong XLH, Roche KW, Anggono V. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. J. Neurochem. 2020 doi: 10.1111/jnc.14970. PubMed DOI PMC
Rauner C, Kohr G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem. 2011;286:7558–7566. doi: 10.1074/jbc.M110.182600. PubMed DOI PMC
Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ. NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J. Neurosci. 2007;27:8334–8343. doi: 10.1523/JNEUROSCI.2155-07.2007. PubMed DOI PMC
Stroebel D, Carvalho S, Grand T, Zhu S, Paoletti P. Controlling NMDA receptor subunit composition using ectopic retention signals. J. Neurosci. 2014;34:16630–16636. doi: 10.1523/JNEUROSCI.2736-14.2014. PubMed DOI PMC
Hansen KB, Ogden KK, Yuan H, Traynelis SF. Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron. 2014;81:1084–1096. doi: 10.1016/j.neuron.2014.01.035. PubMed DOI PMC
Perez-Otano I, et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci. 2001;21:1228–1237. doi: 10.1523/JNEUROSCI.21-04-01228.2001. PubMed DOI PMC
Sasaki YF, et al. Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J. Neurophysiol. 2002;87:2052–2063. doi: 10.1152/jn.00531.2001. PubMed DOI
Perez-Otano I, Larsen RS, Wesseling JF. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat. Rev. Neurosci. 2016;17:623–635. doi: 10.1038/nrn.2016.92. PubMed DOI
Grand T, Abi Gerges S, David M, Diana MA, Paoletti P. Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat. Commun. 2018;9:4769. doi: 10.1038/s41467-018-07236-4. PubMed DOI PMC
Pina-Crespo JC, et al. Excitatory glycine responses of CNS myelin mediated by NR1/NR3 "NMDA" receptor subunits. J. Neurosci. 2010;30:11501–11505. doi: 10.1523/JNEUROSCI.1593-10.2010. PubMed DOI PMC
Otsu Y, et al. Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula. Science. 2019;366:250–254. doi: 10.1126/science.aax1522. PubMed DOI PMC
Chatterton JE, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 2002;415:793–798. doi: 10.1038/nature715. PubMed DOI
Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241:835–837. doi: 10.1126/science.2841759. PubMed DOI
Clements JD, Westbrook GL. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron. 1991;7:605–613. doi: 10.1016/0896-6273(91)90373-8. PubMed DOI
Patneau DK, Mayer ML. Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J. Neurosci. 1990;10:2385–2399. doi: 10.1523/JNEUROSCI.10-07-02385.1990. PubMed DOI PMC
Awobuluyi M, et al. Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl-D-aspartate receptors. Mol. Pharmacol. 2007;71:112–122. doi: 10.1124/mol.106.030700. PubMed DOI
Kvist T, Greenwood JR, Hansen KB, Traynelis SF, Brauner-Osborne H. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Neuropharmacology. 2013;75:324–336. doi: 10.1016/j.neuropharm.2013.08.003. PubMed DOI PMC
Madry C, et al. Principal role of NR3 subunits in NR1/NR3 excitatory glycine receptor function. Biochem. Biophys. Res. Commun. 2007;354:102–108. doi: 10.1016/j.bbrc.2006.12.153. PubMed DOI
Kehoe LA, Bernardinelli Y, Muller D. GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast. 2013;2013:145387. doi: 10.1155/2013/145387. PubMed DOI PMC
Petralia RS, Al-Hallaq RA, Wenthold RJ. Trafficking and targeting of NMDA receptors. Biol. NMDA Recep. 2009;1:149–200. PubMed
Horak M, Petralia RS, Kaniakova M, Sans N. ER to synapse trafficking of NMDA receptors. Front. Cell Neurosci. 2014;8:394. doi: 10.3389/fncel.2014.00394. PubMed DOI PMC
Hansen KB, Furukawa H, Traynelis SF. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol. Pharmacol. 2010;78:535–549. doi: 10.1124/mol.110.067157. PubMed DOI PMC
Skrenkova K, et al. Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors. Sci. Rep. 2019;9:12303. doi: 10.1038/s41598-019-48845-3. PubMed DOI PMC
Hawkins LM, et al. Export from the endoplasmic reticulum of assembled N-methyl-d-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit. J. Biol. Chem. 2004;279:28903–28910. doi: 10.1074/jbc.M402599200. PubMed DOI
She K, Ferreira JS, Carvalho AL, Craig AM. Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-D-aspartate (NMDA) receptors. J. Biol. Chem. 2012;287:27432–27445. doi: 10.1074/jbc.M112.345108. PubMed DOI PMC
Ferreira JS, et al. Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses. Elife. 2017 doi: 10.7554/eLife.25492. PubMed DOI PMC
Nong Y, et al. Glycine binding primes NMDA receptor internalization. Nature. 2003;422:302–307. doi: 10.1038/nature01497. PubMed DOI
Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat. Rev. Neurosci. 2016;17:125–134. doi: 10.1038/nrn.2015.19. PubMed DOI
Chen W, et al. Functional evaluation of a de novo GRIN2A mutation identified in a patient with profound global developmental delay and refractory epilepsy. Mol. Pharmacol. 2017;91:317–330. doi: 10.1124/mol.116.106781. PubMed DOI PMC
Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF. Human GRIN2B variants in neurodevelopmental disorders. J. Pharmacol. Sci. 2016;132:115–121. doi: 10.1016/j.jphs.2016.10.002. PubMed DOI PMC
Li D, et al. GRIN2D recurrent de novo dominant mutation causes a severe epileptic encephalopathy treatable with nmda receptor channel blockers. Am. J. Hum. Genet. 2016;99:802–816. doi: 10.1016/j.ajhg.2016.07.013. PubMed DOI PMC
Tarabeux J, et al. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry. 2011;1:e55. doi: 10.1038/tp.2011.52. PubMed DOI PMC
Shen YC, et al. Exomic sequencing of the ionotropic glutamate receptor N-methyl-D-aspartate 3A gene (GRIN3A) reveals no association with schizophrenia. Schizophr. Res. 2009;114:25–32. doi: 10.1016/j.schres.2009.07.005. PubMed DOI
Strehlow V, et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain. 2019;142:80–92. doi: 10.1093/brain/awy304. PubMed DOI PMC
Amin JB, Leng X, Gochman A, Zhou HX, Wollmuth LP. A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca(2+) permeability. Nat. Commun. 2018;9:3748. doi: 10.1038/s41467-018-06145-w. PubMed DOI PMC
Swanger SA, et al. Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am. J. Hum. Genet. 2016;99:1261–1280. doi: 10.1016/j.ajhg.2016.10.002. PubMed DOI PMC
Platzer K, et al. GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J. Med. Genet. 2017;54:460–470. doi: 10.1136/jmedgenet-2016-104509. PubMed DOI PMC
Hornig T, et al. GRIN3B missense mutation as an inherited risk factor for schizophrenia: whole-exome sequencing in a family with a familiar history of psychotic disorders. Genet Res (Camb) 2017;99:e1. doi: 10.1017/S0016672316000148. PubMed DOI PMC
Zehavi Y, et al. De novo GRIN1 mutations: an emerging cause of severe early infantile encephalopathy. Eur. J. Med. Genet. 2017;60:317–320. doi: 10.1016/j.ejmg.2017.04.001. PubMed DOI
Lemke JR, et al. Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy. Neurology. 2016;86:2171–2178. doi: 10.1212/WNL.0000000000002740. PubMed DOI PMC
Redin C, et al. Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing. J. Med. Genet. 2014;51:724–736. doi: 10.1136/jmedgenet-2014-102554. PubMed DOI PMC
Ohba C, et al. GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders. Epilepsia. 2015;56:841–848. doi: 10.1111/epi.12987. PubMed DOI
Fry AE, et al. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain. 2018;141:698–712. doi: 10.1093/brain/awx358. PubMed DOI PMC
Hamdan FF, et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am. J. Hum. Genet. 2011;88:306–316. doi: 10.1016/j.ajhg.2011.02.001. PubMed DOI PMC
Hackos DH, et al. Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron. 2016;89:983–999. doi: 10.1016/j.neuron.2016.01.016. PubMed DOI
Armstrong N, Gouaux E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron. 2000;28:165–181. doi: 10.1016/s0896-6273(00)00094-5. PubMed DOI
Chen W, et al. GRIN1 mutation associated with intellectual disability alters NMDA receptor trafficking and function. J. Hum. Genet. 2017;62:589–597. doi: 10.1038/jhg.2017.19. PubMed DOI PMC
Prybylowski K, et al. Relationship between availability of NMDA receptor subunits and their expression at the synapse. J. Neurosci. 2002;22:8902–8910. doi: 10.1523/JNEUROSCI.22-20-08902.2002. PubMed DOI PMC
Lichnerova K, et al. Two N-glycosylation sites in the GluN1 subunit are essential for releasing N-methyl-d-aspartate (NMDA) receptors from the endoplasmic reticulum. J. Biol. Chem. 2015;290:18379–18390. doi: 10.1074/jbc.M115.656546. PubMed DOI PMC
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 2010;11:682–696. doi: 10.1038/nrn2911. PubMed DOI PMC
McQueen J, et al. Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of Dapk1. Elife. 2017 doi: 10.7554/eLife.17161. PubMed DOI PMC
Nicoll RA. A brief history of long-term potentiation. Neuron. 2017;93:281–290. doi: 10.1016/j.neuron.2016.12.015. PubMed DOI
Morris RG. NMDA receptors and memory encoding. Neuropharmacology. 2013;74:32–40. doi: 10.1016/j.neuropharm.2013.04.014. PubMed DOI
Chen PE, et al. Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. 2008;586:227–245. doi: 10.1113/jphysiol.2007.143172. PubMed DOI PMC
Dravid SM, et al. Structural determinants of D-cycloserine efficacy at the NR1/NR2C NMDA receptors. J. Neurosci. 2010;30:2741–2754. doi: 10.1523/JNEUROSCI.5390-09.2010. PubMed DOI PMC
Kuryatov A, Laube B, Betz H, Kuhse J. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron. 1994;12:1291–1300. doi: 10.1016/0896-6273(94)90445-6. PubMed DOI
Furukawa H, Gouaux E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 2003;22:2873–2885. doi: 10.1093/emboj/cdg303. PubMed DOI PMC
Tovar KR, McGinley MJ, Westbrook GL. Triheteromeric NMDA receptors at hippocampal synapses. J. Neurosci. 2013;33:9150–9160. doi: 10.1523/JNEUROSCI.0829-13.2013. PubMed DOI PMC
Rozeboom AM, et al. Evidence for glycinergic GluN1/GluN3 NMDA receptors in hippocampal metaplasticity. Neurobiol. Learn. Mem. 2015;125:265–273. doi: 10.1016/j.nlm.2015.10.005. PubMed DOI
Skrenkova K, et al. N-glycosylation regulates the trafficking and surface mobility of GluN3A-containing NMDA receptors. Front. Mol. Neurosci. 2018;11:188. doi: 10.3389/fnmol.2018.00188. PubMed DOI PMC
Lin YC, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat. Commun. 2014;5:4767. doi: 10.1038/ncomms5767. PubMed DOI PMC
Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron. 1997;18:493–503. doi: 10.1016/S0896-6273(00)81249-0. PubMed DOI
Wells G, et al. The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening. Proteins. 2018;86:1265–1276. doi: 10.1002/prot.25595. PubMed DOI PMC
Kehoe LA, et al. GluN3A promotes dendritic spine pruning and destabilization during postnatal development. J. Neurosci. 2014;34:9213–9221. doi: 10.1523/JNEUROSCI.5183-13.2014. PubMed DOI PMC
Fiuza M, Gonzalez-Gonzalez I, Perez-Otano I. GluN3A expression restricts spine maturation via inhibition of GIT1/Rac1 signaling. Proc. Natl. Acad. Sci. USA. 2013;110:20807–20812. doi: 10.1073/pnas.1312211110. PubMed DOI PMC
Wang H, et al. The GluN3A subunit exerts a neuroprotective effect in brain ischemia and the hypoxia process. ASN Neuro. 2013;5:231–242. doi: 10.1042/AN20130009. PubMed DOI PMC
Martinez-Turrillas R, et al. The NMDA receptor subunit GluN3A protects against 3-nitroproprionic-induced striatal lesions via inhibition of calpain activation. Neurobiol Dis. 2012;48:290–298. doi: 10.1016/j.nbd.2012.07.001. PubMed DOI
Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963;7:95–000. doi: 10.1016/S0022-2836(63)80023-6. PubMed DOI
O'Boyle NM, et al. Open babel: an open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Hemelikova K, Kolcheva M, Skrenkova K, Kaniakova M, Horak M. Lectins modulate the functional properties of GluN1/GluN3-containing NMDA receptors. Neuropharmacology. 2019;157:107671. doi: 10.1016/j.neuropharm.2019.107671. PubMed DOI
Vyklicky V, et al. Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front. Mol. Neurosci. 2018;11:110. doi: 10.3389/fnmol.2018.00110. PubMed DOI PMC
Kaniakova M, et al. Key amino acid residues within the third membrane domains of NR1 and NR2 subunits contribute to the regulation of the surface delivery of N-methyl-D-aspartate receptors. J. Biol. Chem. 2012;287:26423–26434. doi: 10.1074/jbc.M112.339085. PubMed DOI PMC
Turecek R, et al. Intracellular spermine decreases open probability of N-methyl-D-aspartate receptor channels. Neuroscience. 2004;125:879–887. doi: 10.1016/j.neuroscience.2004.03.003S0306452204001757. PubMed DOI
Gazova Z, et al. Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer's disease treatment. Biochim. Biophys. Acta Mol. Basis Dis. 1863;607–619:2017. doi: 10.1016/j.bbadis.2016.11.020. PubMed DOI
Kaniakova M, Lichnerova K, Vyklicky L, Horak M. Single amino acid residue in the M4 domain of GluN1 subunit regulates the surface delivery of NMDA receptors. J. Neurochem. 2012 doi: 10.1111/jnc.12002. PubMed DOI
Lee S, et al. Nedd4 E3 ligase and beta-arrestins regulate ubiquitination, trafficking, and stability of the mGlu7 receptor. Elife. 2019 doi: 10.7554/eLife.44502. PubMed DOI PMC
Terashima A, Suh YH, Isaac JTR. The AMPA receptor subunit GluA1 is required for CA1 hippocampal long-term potentiation but is not essential for synaptic transmission. Neurochem. Res. 2019;44:549–561. doi: 10.1007/s11064-017-2425-3. PubMed DOI