CAVER: a new tool to explore routes from protein clefts, pockets and cavities
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16792811
PubMed Central
PMC1539030
DOI
10.1186/1471-2105-7-316
PII: 1471-2105-7-316
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- internet MeSH
- konformace proteinů MeSH
- krystalografie rentgenová metody MeSH
- magnetická rezonanční spektroskopie MeSH
- počítačová simulace MeSH
- proteiny chemie MeSH
- proteomika metody MeSH
- Rhodococcus MeSH
- rozpouštědla chemie MeSH
- sekundární struktura proteinů MeSH
- software MeSH
- Sphingomonas MeSH
- Xanthobacter MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny MeSH
- rozpouštědla MeSH
BACKGROUND: The main aim of this study was to develop and implement an algorithm for the rapid, accurate and automated identification of paths leading from buried protein clefts, pockets and cavities in dynamic and static protein structures to the outside solvent. RESULTS: The algorithm to perform a skeleton search was based on a reciprocal distance function grid that was developed and implemented for the CAVER program. The program identifies and visualizes routes from the interior of the protein to the bulk solvent. CAVER was primarily developed for proteins, but the algorithm is sufficiently robust to allow the analysis of any molecular system, including nucleic acids or inorganic material. Calculations can be performed using discrete structures from crystallographic analysis and NMR experiments as well as with trajectories from molecular dynamics simulations. The fully functional program is available as a stand-alone version and as plug-in for the molecular modeling program PyMol. Additionally, selected functions are accessible in an online version. CONCLUSION: The algorithm developed automatically finds the path from a starting point located within the interior of a protein. The algorithm is sufficiently rapid and robust to enable routine analysis of molecular dynamics trajectories containing thousands of snapshots. The algorithm is based on reciprocal metrics and provides an easy method to find a centerline, i.e. the spine, of complicated objects such as a protein tunnel. It can also be applied to many other molecules. CAVER is freely available from the web site http://loschmidt.chemi.muni.cz/caver/.
Zobrazit více v PubMed
Kleywegt GJ, Jones TA. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallographica Section D. 1994;50:178–185. PubMed
Lesk AM. Molecular speleology – the exploration of crevices in proteins for prediction of binding-sites, design of drugs and analysis of surface recognition. Acta Crystallographica Section A. 1986;42:83–85.
Laurie ATR, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics. 2005;21:1908–1916. doi: 10.1093/bioinformatics/bti315. PubMed DOI
Liang J, Edelsbrunner H, Woodward C. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Science. 1998;7:1884–1897. PubMed PMC
Chaloupkova R, Sykorova J, Prokop Z, Jesenska A, Monincovaa M, Pavlova M, Tsuda M, Nagata Y, Damborsky J. Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. Journal of Biological Chemistry. 2003;278:52622–52628. doi: 10.1074/jbc.M306762200. PubMed DOI
Bui JM, Tai K, McCammon JA. Acetylcholinesterase: Enhanced fluctuations and alternative routes to the active site in the complex with fasciculin-2. Journal of the American Chemical Society. 2004;126:7198–7205. doi: 10.1021/ja0485715. PubMed DOI
Tara S, Helms V, Straatsma TP, McCammon JA. Molecular dynamics of mouse acetylcholinesterase complexed with huperzine A. Biopolymers. 1999;50:347–359. doi: 10.1002/(SICI)1097-0282(19991005)50:4<347::AID-BIP1>3.0.CO;2-R. PubMed DOI
Bitter I, Sato M, Bender MA, Kaufman A, Wan M, Wax MR. Automatic, accurate and robust colon centerline algorithm. Radiology. 2000;217:370–370.
Bitter I, Kaufman AE, Sato M. Penalized-distance volumetric skeleton algorithm. Transactions on Visualization and Computer Graphics. 2001;7:195–206. doi: 10.1109/2945.942688. DOI
Wan M, Liang ZR, Ke Q, Hong LC, Bitter I, Kaufman A. Automatic centerline extraction for virtual colonoscopy. Transactions on Medical Imaging. 2002;21:1450–1460. doi: 10.1109/TMI.2002.806409. PubMed DOI
Kaufman AE, Lakare S, Kreeger K, Bitter I. Virtual colonoscopy. Communications of the ACM. 2005;48:37–41. doi: 10.1145/1042091.1042117. DOI
Barber CB, Dobkin DP, Huhdanpaa H. The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software. 1996;22:469–483. doi: 10.1145/235815.235821. DOI
Dijkstra EW. A note on two problems in connection with graphs. Numeriskche Mathematik. 1959;1:83–89.
Ford LR, Fulkerson DR. Flows in Networks. Princeton University Press; 1962.
Bellman R. On a Routing Problem. Quarterly of Applied Mathematic. 1958;16:87–90.
Floyd RW. Algorithm 97: Shortest path. Communications of the ACM. 1962;5:345. doi: 10.1145/367766.368168. DOI
DeLano WL. The case for open-source software in drug discovery. Drug Discovery Today. 2005;10:213–217. doi: 10.1016/S1359-6446(04)03363-X. PubMed DOI
Damborsky J, Rorije E, Jesenska A, Nagata Y, Klopman G, Peijnenburg WJGM. Structure-specificity relationships for haloalkane dehalogenases. Environmental Toxicology and Chemistry. 2001;20:2681–2689. doi: 10.1897/1551-5028(2001)020<2681:SSRFHD>2.0.CO;2. PubMed DOI
Franken SM, Rozeboom HJ, Kalk KH, Dijkstra BW. Crystal-structure of haloalkane dehalogenase – an enzyme to detoxify halogenated alkanes. EMBO Journal. 1991;10:1297–1302. PubMed PMC
Verschueren KHG, Kingma J, Rozeboom HJ, Kalk KH, Janssen DB, Dijkstra BW. Crystallographic and fluorescence studies of the interaction of haloalkane dehalogenase with halide-ions – studies with halide compounds reveal a halide binding-site in the active-site. Biochemistry. 1993;32:9031–9037. doi: 10.1021/bi00086a008. PubMed DOI
Verschueren KHG, Franken SM, Rozeboom HJ, Kalk KH, Dijkstra BW. Refined X-ray structures of haloalkane dehalogenase at pH 6.2 and pH 8.2 and implications for the reaction-mechanism. Journal of Molecular Biology. 1993;232:856–872. doi: 10.1006/jmbi.1993.1436. PubMed DOI
Verschueren KHG, Seljee F, Rozeboom HJ, Kalk KH, Dijkstra BW. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993;363:693–698. doi: 10.1038/363693a0. PubMed DOI
Krooshof GH, Ridder IS, Tepper AWJW, Vos GJ, Rozeboom HJ, Kalk KH, Dijkstra BW, Janssen DB. Kinetic analysis and X-ray structure of haloalkane dehalogenase with a modified halide-binding site. Biochemistry. 1998;37:15013–15023. doi: 10.1021/bi9815187. PubMed DOI
Pikkemaat MG, Ridder IS, Rozeboom HJ, Kalk KH, Dijkstra BW, Janssen DB. Crystallographic and kinetic evidence of a collision complex formed during halide import in haloalkane dehalogenase. Biochemistry. 1999;38:12052–12061. doi: 10.1021/bi990849w. PubMed DOI
Ridder IS, Rozeboom HJ, Dijkstra BW. Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 refined at 1.15 Angstrom resolution. Acta Crystallographica Section D. 1999;55:1273–1290. PubMed
Schanstra JP, Ridder IS, Heimeriks GJ, Rink R, Poelarends GJ, Kalk KH, Dijkstra BW, Janssen DB. Kinetic characterization and X-ray structure of a mutant of haloalkane dehalogenase with higher catalytic activity and modified substrate range. Biochemistry. 1996;35:13186–13195. doi: 10.1021/bi961151a. PubMed DOI
Newman J, Peat TS, Richard R, Kan L, Swanson PE, Affholter JA, Holmes IH, Schindler JF, Unkefer CJ, Terwilliger TC. Haloalkane dehalogenases: Structure of a Rhodococcus enzyme. Biochemistry. 1999;38:16105–16114. doi: 10.1021/bi9913855. PubMed DOI
Marek J, Vevodova J, Smatanova IK, Nagata Y, Svensson LA, Newman J, Takagi M, Damborsky J. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry. 2000;39:14082–14086. doi: 10.1021/bi001539c. PubMed DOI
Oakley AJ, Prokop Z, Bohac M, Kmunicek J, Jedlicka T, Monincova M, Kuta-Smatanova I, Nagata Y, Damborsky J, Wilce MCJ. Exploring the structure and activity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26: Evidence for product- and water-mediated inhibition. Biochemistry. 2002;41:4847–4855. doi: 10.1021/bi015734i. PubMed DOI
Oakley AJ, Klvana M, Otyepka M, Nagata Y, Wilce MCJ, Damborsky J. Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 Angstrom resolution: Dynamics of catalytic residues. Biochemistry. 2004;43:870–878. PubMed
Streltsov VA, Prokop Z, Damborsky J, Nagata Y, Oakley A, Wilce MCJ. Haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26: X-ray crystallographic studies of dehalogenation of brominated substrates. Biochemistry. 2003;42:10104–10112. doi: 10.1021/bi027280a. PubMed DOI
Otyepka M, Damborsky J. Functionally relevant motions of haloalkane dehalogenases occur in the specificity-modulating cap domains. Protein Science. 2002;11:1206–1217. doi: 10.1110/ps.ps3830102. PubMed DOI PMC
Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst
ChannelsDB: database of biomacromolecular tunnels and pores
Membrane cholesterol access into a G-protein-coupled receptor
The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function
MOLE 2.0: advanced approach for analysis of biomacromolecular channels
CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures
MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels
Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate
HotSpot Wizard: a web server for identification of hot spots in protein engineering