• This record comes from PubMed

Membrane cholesterol access into a G-protein-coupled receptor

. 2017 Feb 21 ; 8 () : 14505. [epub] 20170221

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs.

See more in PubMed

Dawaliby R. et al.. Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat. Chem. Biol. 12, 35–39 (2015). PubMed PMC

Guixà-González R. et al.. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors. Sci. Rep. 6, 19839 (2016). PubMed PMC

Paila Y. D. & Chattopadhyay A. The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj. J. 26, 711–720 (2009). PubMed

Paila Y. D. & Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell. Biochem 51, 381–398 (2010). PubMed

Oates J. & Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr. Opin. Struct. Biol. 21, 802–807 (2011). PubMed

Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem. Phys. Lipids 199, 61–73 (2016). PubMed

Gimpl G., Burger K. & Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry 36, 10959–10974 (1997). PubMed

Nguyen D. H. & Taub D. CXCR4 function requires membrane cholesterol: implications for HIV infection. J. Immunol. 168, 4121–4126 (2002). PubMed

Nguyen D. H. & Taub D. D. Inhibition of chemokine receptor function by membrane cholesterol oxidation. Exp. Cell Res. 291, 36–45 (2003). PubMed

Harikumar K. G. et al.. Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J. Biol. Chem. 280, 2176–2185 (2005). PubMed

Huang P. et al.. Cholesterol reduction by methyl-β-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem. Pharmacol. 73, 534–549 (2007). PubMed PMC

Bari M., Paradisi A., Pasquariello N. & Maccarrone M. Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. J. Neurosci. Res. 81, 275–283 (2005). PubMed

Colozo A. T., Park P. S. H., Sum C. S., Pisterzi L. F. & Wells J. W. Cholesterol as a determinant of cooperativity in the M2 muscarinic cholinergic receptor. Biochem. Pharmacol. 74, 236–255 (2007). PubMed

Michal P., Rudajev V., El-Fakahany E. E. & Dolezal V. Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur. J. Pharmacol. 606, 50–60 (2009). PubMed PMC

Xu W. et al.. Localization of the kappa opioid receptor in lipid rafts. J. Pharmacol. Exp. Ther. 317, 1295–1306 (2006). PubMed

Rod R., Segments O. & Albert D. Cholesterol modulation of photoreceptor function in bovine retinal rod outer segments. J. Biol. Chem. 265, 20727–20730 (1990). PubMed

Mitchell D. C., Straume M., Miller J. L. & Litman B. J. Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids? Biochemistry 29, 9143–9149 (1990). PubMed

Albert A. D., Boesze-Battaglia K., Paw Z., Watts A. & Epand R. M. Effect of cholesterol on rhodopsin stability in disk membranes. BBA—Protein Struct. Mol 1297, 77–82 (1996). PubMed

Niu S. L., Mitchell D. C. & Litman B. J. Manipulation of cholesterol levels in rod disk membranes by methyl-β-cyclodextrin: effects on receptor activation. J. Biol. Chem. 277, 20139–20145 (2002). PubMed

Zocher M., Zhang C., Rasmussen S. G. F., Kobilka B. K. & Müller D. J. Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 109, E3463–E3472 (2012). PubMed PMC

Khelashvili G., Mondal S., Andersen O. S. & Weinstein H. Cholesterol modulates the membrane effects and spatial organization of membrane-penetrating ligands for G-protein coupled receptors. J. Phys. Chem. B 114, 12046–12057 (2010). PubMed PMC

Cherezov V. et al.. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1266 (2007). PubMed PMC

Hanson M. A. et al.. A specific cholesterol binding site is established by the 2.8Å structure of the human β2-adrenergic receptor. Structure 16, 897–905 (2008). PubMed PMC

Liu W. et al.. Structural basis for allosteric regulation of GPCRs by sodium ions. Science (80-. ) 337, 232–236 (2012). PubMed PMC

Wu H. et al.. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58–64 (2014). PubMed PMC

Song Y., Kenworthy A. K. & Sanders C. R. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci. 23, 1–22 (2014). PubMed PMC

Benned-Jensen T. et al.. Molecular characterization of oxysterol binding to the epstein-barr virus-induced gene 2 (GPR183). J. Biol. Chem. 287, 35470–35483 (2012). PubMed PMC

Sensi C. et al.. Oxysterols act as promiscuous ligands of class-A GPCRs: in silico molecular modeling and in vitro validation. Cell Signal. 26, 2614–2620 (2014). PubMed

Nachtergaele S. et al.. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8, 211–220 (2012). PubMed PMC

Byrne E. F. X. et al.. Structural basis of Smoothened regulation by its extracellular domains. Nature 535, 517–522 (2016). PubMed PMC

Burnstock G. & Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol. Rev. 66, 102–192 (2014). PubMed

Popoli P. & Pepponi R. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system. CNS Neurol. Disord. Drug Targets 11, 664–674 (2012). PubMed

Cunha R. A., Ferré S., Vaugeois J.-M. & Chen J.-F. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr. Pharm. Des 14, 1512–1524 (2008). PubMed PMC

Morelli M. et al.. Role of adenosine A2A receptors in Parkinsonian motor impairment and l-DOPA-induced motor complications. Prog. Neurobiol. 83, 293–309 (2007). PubMed

Lyman E. et al.. A role for a specific cholesterol interaction in stabilizing the Apo configuration of the human A2A adenosine receptor. Structure 17, 1660–1668 (2009). PubMed PMC

Lee J. Y. J. & Lyman E. Predictions for cholesterol interaction sites on the A2A adenosine receptor. J. Am. Chem. Soc. 134, 16512–16515 (2012). PubMed PMC

Park J. H. et al.. Opsin, a structural model for olfactory receptors? Angew. Chemie—Int. Ed 52, 11021–11024 (2013). PubMed

Szczepek M. et al.. Crystal structure of a common GPCR binding interface for G protein and arrestin. Nat. Commun. 5, 4801 (2014). PubMed PMC

O'Malley M. A., Helgeson M. E., Wagner N. J. & Robinson A. S. The morphology and composition of cholesterol-rich micellar nanostructures determine transmembrane protein (GPCR) activity. Biophys. J. 100, L11–L13 (2011). PubMed PMC

Jaakola V., Griffith M. & Hanson M. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008). PubMed PMC

Brannigan G., Hénin J., Law R., Eckenhoff R. & Klein M. L. Embedded cholesterol in the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 105, 14418–14423 (2008). PubMed PMC

Javitch J. A., Li X., Kaback J. & Karlin A. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc. Natl. Acad. Sci. USA 91, 10355–10359 (1994). PubMed PMC

Hanson M. A. et al.. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012). PubMed PMC

Hurst D. P. et al.. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J. Biol. Chem. 285, 17954–17964 (2010). PubMed PMC

Park J. H., Scheerer P., Hofmann K. P., Choe H.-W. & Ernst O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008). PubMed

Mustafi D. & Palczewski K. Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol. Pharmacol. 75, 1–12 (2009). PubMed PMC

Hildebrand P. W. et al.. A ligand channel through the G protein coupled receptor opsin. PLoS ONE 4, e4382 (2009). PubMed PMC

Piechnick R. et al.. Effect of channel mutations on the uptake and release of the retinal ligand in opsin. Proc. Natl. Acad. Sci. USA 109, 5247–5252 (2012). PubMed PMC

Petrek M. et al.. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316 (2006). PubMed PMC

Wang T. & Duan Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102–1115 (2009). PubMed PMC

Luis Albasanz J., Fernandez M. & Martín M. Internalization of metabotropic glutamate receptor in C6 cells through clathrin-coated vesicles. Brain Res. Mol. Brain Res. 99, 54–66 (2002). PubMed

Castillo C. A., Albasanz J. L., Fernández M. & Martín M. Endogenous expression of adenosine A1, A2 and A3 receptors in rat C6 glioma cells. Neurochem. Res. 32, 1056–1070 (2007). PubMed

Gou-Fàbregas M. et al.. 7-dehydrocholesterol efficiently supports Ret signaling in a mouse model of Smith-Opitz-Lemli syndrome. Sci. Rep 6, 28534 (2016). PubMed PMC

Jové M. et al.. Lipidomic and metabolomic analyses reveal potential plasma biomarkers of early atheromatous plaque formation in hamsters. Cardiovasc. Res. 97, 642–652 (2013). PubMed

Sandra K., Pereira A. D. S., Vanhoenacker G., David F. & Sandra P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 1217, 4087–4099 (2010). PubMed

Sana T. R., Roark J. C., Li X., Waddell K. & Fischer S. M. Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech 19, 258–266 (2008). PubMed PMC

Harvey M. J., Giupponi G. & De Fabritiis G. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1–9 (2009). PubMed

Klauda J. B. et al.. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010). PubMed PMC

Lim J. B., Rogaski B. & Klauda J. B. Update of the cholesterol force field parameters in CHARMM. J. Phys. Chem. B 116, 203–210 (2012). PubMed

MacKerell A. & Bashford D. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 5647, 3586–3616 (1998). PubMed

Jo S., Lim J. J. B., Klauda J. J. B. & Im W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 96, 50–58 (2009). PubMed PMC

Humphrey W., Dalke A. & Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). PubMed

McNamara R. K. et al.. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol. Psychiatry 62, 17–24 (2007). PubMed

McNamara R. K. et al.. Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: gender differences and partial normalization with antipsychotic medications. Schizophr. Res. 91, 37–50 (2007). PubMed PMC

McNamara R. K. et al.. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res. 160, 285–299 (2008). PubMed PMC

Martín V. et al.. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex. J. Alzheimers Dis. 19, 489–502 (2010). PubMed

Fabelo N. et al.. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson's disease and incidental Parkinson's disease. Mol. Med. 17, 1107 (2011). PubMed PMC

Taha A. Y., Cheon Y., Ma K., Rapoport S. I. & Rao J. S. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J. Psychiatr. Res. 47, 636–643 (2013). PubMed PMC

Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A. & Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).

Grest G. & Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 33, 3628–3631 (1986). PubMed

Darden T., York D. & Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 27709, 13–16 (1993).

Eswar N., Eramian D., Webb B., Shen M.-Y. & Sali A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008). PubMed

Abraham M. J. et al.. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

Crowley M. F., Williamson M. J. & Walker R. C. CHAMBER: comprehensive support for CHARMM force fields within the AMBER software. Int. J. Quant. Chem. 109, 3767–3772 (2009).

Dahl A. C. E., Chavent M. & Sansom M. S. P. Bendix: intuitive helix geometry analysis and abstraction. Bioinformatics 28, 2193–2194 (2012). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...