Membrane cholesterol access into a G-protein-coupled receptor
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28220900
PubMed Central
PMC5321766
DOI
10.1038/ncomms14505
PII: ncomms14505
Knihovny.cz E-resources
- MeSH
- Cell Membrane chemistry metabolism MeSH
- Cholesterol chemistry metabolism MeSH
- Binding, Competitive MeSH
- Rats MeSH
- Cell Line, Tumor MeSH
- Protein Domains * MeSH
- Receptor, Adenosine A2A chemistry metabolism MeSH
- Receptors, G-Protein-Coupled chemistry metabolism MeSH
- Molecular Dynamics Simulation MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cholesterol MeSH
- Receptor, Adenosine A2A MeSH
- Receptors, G-Protein-Coupled MeSH
Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs.
Department of Physics Tampere University of Technology PO Box 692 FI 33101 Tampere Finland
Research Programme on Biomedical Informatics 08003 Barcelona Spain
See more in PubMed
Dawaliby R. et al.. Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat. Chem. Biol. 12, 35–39 (2015). PubMed PMC
Guixà-González R. et al.. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors. Sci. Rep. 6, 19839 (2016). PubMed PMC
Paila Y. D. & Chattopadhyay A. The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj. J. 26, 711–720 (2009). PubMed
Paila Y. D. & Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell. Biochem 51, 381–398 (2010). PubMed
Oates J. & Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr. Opin. Struct. Biol. 21, 802–807 (2011). PubMed
Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem. Phys. Lipids 199, 61–73 (2016). PubMed
Gimpl G., Burger K. & Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry 36, 10959–10974 (1997). PubMed
Nguyen D. H. & Taub D. CXCR4 function requires membrane cholesterol: implications for HIV infection. J. Immunol. 168, 4121–4126 (2002). PubMed
Nguyen D. H. & Taub D. D. Inhibition of chemokine receptor function by membrane cholesterol oxidation. Exp. Cell Res. 291, 36–45 (2003). PubMed
Harikumar K. G. et al.. Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J. Biol. Chem. 280, 2176–2185 (2005). PubMed
Huang P. et al.. Cholesterol reduction by methyl-β-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem. Pharmacol. 73, 534–549 (2007). PubMed PMC
Bari M., Paradisi A., Pasquariello N. & Maccarrone M. Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. J. Neurosci. Res. 81, 275–283 (2005). PubMed
Colozo A. T., Park P. S. H., Sum C. S., Pisterzi L. F. & Wells J. W. Cholesterol as a determinant of cooperativity in the M2 muscarinic cholinergic receptor. Biochem. Pharmacol. 74, 236–255 (2007). PubMed
Michal P., Rudajev V., El-Fakahany E. E. & Dolezal V. Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur. J. Pharmacol. 606, 50–60 (2009). PubMed PMC
Xu W. et al.. Localization of the kappa opioid receptor in lipid rafts. J. Pharmacol. Exp. Ther. 317, 1295–1306 (2006). PubMed
Rod R., Segments O. & Albert D. Cholesterol modulation of photoreceptor function in bovine retinal rod outer segments. J. Biol. Chem. 265, 20727–20730 (1990). PubMed
Mitchell D. C., Straume M., Miller J. L. & Litman B. J. Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids? Biochemistry 29, 9143–9149 (1990). PubMed
Albert A. D., Boesze-Battaglia K., Paw Z., Watts A. & Epand R. M. Effect of cholesterol on rhodopsin stability in disk membranes. BBA—Protein Struct. Mol 1297, 77–82 (1996). PubMed
Niu S. L., Mitchell D. C. & Litman B. J. Manipulation of cholesterol levels in rod disk membranes by methyl-β-cyclodextrin: effects on receptor activation. J. Biol. Chem. 277, 20139–20145 (2002). PubMed
Zocher M., Zhang C., Rasmussen S. G. F., Kobilka B. K. & Müller D. J. Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 109, E3463–E3472 (2012). PubMed PMC
Khelashvili G., Mondal S., Andersen O. S. & Weinstein H. Cholesterol modulates the membrane effects and spatial organization of membrane-penetrating ligands for G-protein coupled receptors. J. Phys. Chem. B 114, 12046–12057 (2010). PubMed PMC
Cherezov V. et al.. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1266 (2007). PubMed PMC
Hanson M. A. et al.. A specific cholesterol binding site is established by the 2.8Å structure of the human β2-adrenergic receptor. Structure 16, 897–905 (2008). PubMed PMC
Liu W. et al.. Structural basis for allosteric regulation of GPCRs by sodium ions. Science (80-. ) 337, 232–236 (2012). PubMed PMC
Wu H. et al.. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58–64 (2014). PubMed PMC
Song Y., Kenworthy A. K. & Sanders C. R. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci. 23, 1–22 (2014). PubMed PMC
Benned-Jensen T. et al.. Molecular characterization of oxysterol binding to the epstein-barr virus-induced gene 2 (GPR183). J. Biol. Chem. 287, 35470–35483 (2012). PubMed PMC
Sensi C. et al.. Oxysterols act as promiscuous ligands of class-A GPCRs: in silico molecular modeling and in vitro validation. Cell Signal. 26, 2614–2620 (2014). PubMed
Nachtergaele S. et al.. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8, 211–220 (2012). PubMed PMC
Byrne E. F. X. et al.. Structural basis of Smoothened regulation by its extracellular domains. Nature 535, 517–522 (2016). PubMed PMC
Burnstock G. & Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol. Rev. 66, 102–192 (2014). PubMed
Popoli P. & Pepponi R. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system. CNS Neurol. Disord. Drug Targets 11, 664–674 (2012). PubMed
Cunha R. A., Ferré S., Vaugeois J.-M. & Chen J.-F. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr. Pharm. Des 14, 1512–1524 (2008). PubMed PMC
Morelli M. et al.. Role of adenosine A2A receptors in Parkinsonian motor impairment and l-DOPA-induced motor complications. Prog. Neurobiol. 83, 293–309 (2007). PubMed
Lyman E. et al.. A role for a specific cholesterol interaction in stabilizing the Apo configuration of the human A2A adenosine receptor. Structure 17, 1660–1668 (2009). PubMed PMC
Lee J. Y. J. & Lyman E. Predictions for cholesterol interaction sites on the A2A adenosine receptor. J. Am. Chem. Soc. 134, 16512–16515 (2012). PubMed PMC
Park J. H. et al.. Opsin, a structural model for olfactory receptors? Angew. Chemie—Int. Ed 52, 11021–11024 (2013). PubMed
Szczepek M. et al.. Crystal structure of a common GPCR binding interface for G protein and arrestin. Nat. Commun. 5, 4801 (2014). PubMed PMC
O'Malley M. A., Helgeson M. E., Wagner N. J. & Robinson A. S. The morphology and composition of cholesterol-rich micellar nanostructures determine transmembrane protein (GPCR) activity. Biophys. J. 100, L11–L13 (2011). PubMed PMC
Jaakola V., Griffith M. & Hanson M. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008). PubMed PMC
Brannigan G., Hénin J., Law R., Eckenhoff R. & Klein M. L. Embedded cholesterol in the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 105, 14418–14423 (2008). PubMed PMC
Javitch J. A., Li X., Kaback J. & Karlin A. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc. Natl. Acad. Sci. USA 91, 10355–10359 (1994). PubMed PMC
Hanson M. A. et al.. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012). PubMed PMC
Hurst D. P. et al.. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J. Biol. Chem. 285, 17954–17964 (2010). PubMed PMC
Park J. H., Scheerer P., Hofmann K. P., Choe H.-W. & Ernst O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008). PubMed
Mustafi D. & Palczewski K. Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol. Pharmacol. 75, 1–12 (2009). PubMed PMC
Hildebrand P. W. et al.. A ligand channel through the G protein coupled receptor opsin. PLoS ONE 4, e4382 (2009). PubMed PMC
Piechnick R. et al.. Effect of channel mutations on the uptake and release of the retinal ligand in opsin. Proc. Natl. Acad. Sci. USA 109, 5247–5252 (2012). PubMed PMC
Petrek M. et al.. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316 (2006). PubMed PMC
Wang T. & Duan Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J. Mol. Biol. 392, 1102–1115 (2009). PubMed PMC
Luis Albasanz J., Fernandez M. & Martín M. Internalization of metabotropic glutamate receptor in C6 cells through clathrin-coated vesicles. Brain Res. Mol. Brain Res. 99, 54–66 (2002). PubMed
Castillo C. A., Albasanz J. L., Fernández M. & Martín M. Endogenous expression of adenosine A1, A2 and A3 receptors in rat C6 glioma cells. Neurochem. Res. 32, 1056–1070 (2007). PubMed
Gou-Fàbregas M. et al.. 7-dehydrocholesterol efficiently supports Ret signaling in a mouse model of Smith-Opitz-Lemli syndrome. Sci. Rep 6, 28534 (2016). PubMed PMC
Jové M. et al.. Lipidomic and metabolomic analyses reveal potential plasma biomarkers of early atheromatous plaque formation in hamsters. Cardiovasc. Res. 97, 642–652 (2013). PubMed
Sandra K., Pereira A. D. S., Vanhoenacker G., David F. & Sandra P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 1217, 4087–4099 (2010). PubMed
Sana T. R., Roark J. C., Li X., Waddell K. & Fischer S. M. Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech 19, 258–266 (2008). PubMed PMC
Harvey M. J., Giupponi G. & De Fabritiis G. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1–9 (2009). PubMed
Klauda J. B. et al.. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010). PubMed PMC
Lim J. B., Rogaski B. & Klauda J. B. Update of the cholesterol force field parameters in CHARMM. J. Phys. Chem. B 116, 203–210 (2012). PubMed
MacKerell A. & Bashford D. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 5647, 3586–3616 (1998). PubMed
Jo S., Lim J. J. B., Klauda J. J. B. & Im W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 96, 50–58 (2009). PubMed PMC
Humphrey W., Dalke A. & Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). PubMed
McNamara R. K. et al.. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol. Psychiatry 62, 17–24 (2007). PubMed
McNamara R. K. et al.. Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: gender differences and partial normalization with antipsychotic medications. Schizophr. Res. 91, 37–50 (2007). PubMed PMC
McNamara R. K. et al.. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res. 160, 285–299 (2008). PubMed PMC
Martín V. et al.. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex. J. Alzheimers Dis. 19, 489–502 (2010). PubMed
Fabelo N. et al.. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson's disease and incidental Parkinson's disease. Mol. Med. 17, 1107 (2011). PubMed PMC
Taha A. Y., Cheon Y., Ma K., Rapoport S. I. & Rao J. S. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J. Psychiatr. Res. 47, 636–643 (2013). PubMed PMC
Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A. & Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).
Grest G. & Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 33, 3628–3631 (1986). PubMed
Darden T., York D. & Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 27709, 13–16 (1993).
Eswar N., Eramian D., Webb B., Shen M.-Y. & Sali A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008). PubMed
Abraham M. J. et al.. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Crowley M. F., Williamson M. J. & Walker R. C. CHAMBER: comprehensive support for CHARMM force fields within the AMBER software. Int. J. Quant. Chem. 109, 3767–3772 (2009).
Dahl A. C. E., Chavent M. & Sansom M. S. P. Bendix: intuitive helix geometry analysis and abstraction. Bioinformatics 28, 2193–2194 (2012). PubMed PMC
Allosteric Modulation of GPCRs of Class A by Cholesterol
Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions