• This record comes from PubMed

Allosteric Modulation of GPCRs of Class A by Cholesterol

. 2021 Feb 16 ; 22 (4) : . [epub] 20210216

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
19-05318S Grantová Agentura České Republiky
RVO:67985823 Akademie Věd České Republiky

G-protein coupled receptors (GPCRs) are membrane proteins that convey extracellular signals to the cellular milieu. They represent a target for more than 30% of currently marketed drugs. Here we review the effects of membrane cholesterol on the function of GPCRs of Class A. We review both the specific effects of cholesterol mediated via its direct high-affinity binding to the receptor and non-specific effects mediated by cholesterol-induced changes in the properties of the membrane. Cholesterol binds to many GPCRs at both canonical and non-canonical binding sites. It allosterically affects ligand binding to and activation of GPCRs. Additionally, it changes the oligomerization state of GPCRs. In this review, we consider a perspective of the potential for the development of new therapies that are targeted at manipulating the level of membrane cholesterol or modulating cholesterol binding sites on to GPCRs.

See more in PubMed

Hauser A.S., Attwood M.M., Rask-Andersen M., Schiöth H.B., Gloriam D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017;16:829–842. doi: 10.1038/nrd.2017.178. PubMed DOI PMC

Zhang Y., Doruker P., Kaynak B., Zhang S., Krieger J., Li H., Bahar I. Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Curr. Opin. Struct. Biol. 2020;62:14–21. doi: 10.1016/j.sbi.2019.11.002. PubMed DOI PMC

Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem. Phys. Lipids. 2016;199:61–73. doi: 10.1016/j.chemphyslip.2016.04.006. PubMed DOI

Sarkar P., Chattopadhyay A. Cholesterol interaction motifs in G protein-coupled receptors: Slippery hot spots? Wiley Interdiscip. Rev. Syst. Biol. Med. 2020:e1481. doi: 10.1002/wsbm.1481. PubMed DOI

Rose I.A., Hanson K.R., Wilkinson K.D., Wimmer M.J. A suggestion for naming faces of ring compounds. Proc. Natl. Acad. Sci. USA. 1980;77:2439–2441. doi: 10.1073/pnas.77.5.2439. PubMed DOI PMC

Bandara A., Panahi A., Pantelopulos G.A., Straub J.E. Exploring the structure and stability of cholesterol dimer formation in multicomponent lipid bilayers. J. Comput. Chem. 2017;38:1479–1488. doi: 10.1002/jcc.24516. PubMed DOI PMC

Fantini J., Barrantes F.J. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 2013;4:31. doi: 10.3389/fphys.2013.00031. PubMed DOI PMC

Mukherjee S., Chattopadhyay A. Monitoring cholesterol organization in membranes at low concentrations utilizing the wavelength-selective fluorescence approach. Chem. Phys. Lipids. 2005;134:79–84. doi: 10.1016/j.chemphyslip.2004.12.001. PubMed DOI

Niemelä P.S., Ollila S., Hyvönen M.T., Karttunen M., Vattulainen I. Assessing the nature of lipid raft membranes. PLoS Comput. Biol. 2007;3:0304–0312. doi: 10.1371/journal.pcbi.0030034. PubMed DOI PMC

Simons K., Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. cell Biol. 2000;1:31–39. doi: 10.1038/35036052. PubMed DOI

Killian J.A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta Rev. Biomembr. 1998;1376:401–416. doi: 10.1016/S0304-4157(98)00017-3. PubMed DOI

Lei B., Morris D.P., Smith M.P., Schwinn D.A. Lipid rafts constrain basal α1A-adrenergic receptor signaling by maintaining receptor in an inactive conformation. Cell. Signal. 2009;21:1532–1539. doi: 10.1016/j.cellsig.2009.06.001. PubMed DOI

Ostrom R.S., Insel P.A. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: Implications for molecular pharmacology. Br. J. Pharmacol. 2004;143:235–245. doi: 10.1038/sj.bjp.0705930. PubMed DOI PMC

Legler D.F., Matti C., Laufer J.M., Jakobs B.D., Purvanov V., Uetz-von Allmen E., Thelen M. Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention. Mol. Pharmacol. 2017;91:331–338. doi: 10.1124/mol.116.107151. PubMed DOI

Sviridov D., Mukhamedova N., Miller Y.I. Lipid rafts as a therapeutic target. J. Lipid Res. 2020;61:687–695. doi: 10.1194/jlr.TR120000658. PubMed DOI PMC

Cherezov V., Rosenbaum D.M., Hanson M.A., Rasmussen S.G.F., Thian F.S., Kobilka T.S., Choi H.-J., Kuhn P., Weis W.I., Kobilka B.K., et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–1265. doi: 10.1126/science.1150577. PubMed DOI PMC

Hanson M.A., Cherezov V., Griffith M.T., Roth C.B., Jaakola V.-P., Chien E.Y.T., Velasquez J., Kuhn P., Stevens R.C. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure. 2008;16:897–905. doi: 10.1016/j.str.2008.05.001. PubMed DOI PMC

Ishchenko A., Stauch B., Han G.W., Batyuk A., Shiriaeva A., Li C., Zatsepin N., Weierstall U., Liu W., Nango E., et al. Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCrJ. 2019;6:1106–1119. doi: 10.1107/S2052252519013137. PubMed DOI PMC

Claff T., Yu J., Blais V., Patel N., Martin C., Wu L., Han G.W., Holleran B.J., Van der Poorten O., White K.L., et al. Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. Sci. Adv. 2019;5:eaax9115. doi: 10.1126/sciadv.aax9115. PubMed DOI PMC

Che T., English J., Krumm B.E., Kim K., Pardon E., Olsen R.H.J., Wang S., Zhang S., Diberto J.F., Sciaky N., et al. Nanobody-enabled monitoring of kappa opioid receptor states. Nat. Commun. 2020;11:1145. doi: 10.1038/s41467-020-14889-7. PubMed DOI PMC

Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Mathiesen J.M., Sunahara R.K., Pardo L., Weis W.I., Kobilka B.K., Granier S. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature. 2012;485:321–326. doi: 10.1038/nature10954. PubMed DOI PMC

Huang W., Manglik A., Venkatakrishnan A.J., Laeremans T., Feinberg E.N., Sanborn A.L., Kato H.E., Livingston K.E., Thorsen T.S., Kling R.C., et al. Structural insights into µ-opioid receptor activation. Nature. 2015;524:315–321. doi: 10.1038/nature14886. PubMed DOI PMC

Wu H., Wacker D., Mileni M., Katritch V., Han G.W., Vardy E., Liu W., Thompson A.A., Huang X.-P., Carroll F.I., et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature. 2012;485:327–332. doi: 10.1038/nature10939. PubMed DOI PMC

Wacker D., Wang S., McCorvy J.D., Betz R.M., Venkatakrishnan A.J., Levit A., Lansu K., Schools Z.L., Che T., Nichols D.E., et al. Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell. 2017;168:377–389. doi: 10.1016/j.cell.2016.12.033. PubMed DOI PMC

McCorvy J.D., Wacker D., Wang S., Agegnehu B., Liu J., Lansu K., Tribo A.R., Olsen R.H.J., Che T., Jin J., et al. Structural determinants of 5-HT2B receptor activation and biased agonism. Nat. Struct. Mol. Biol. 2018;25:787–796. doi: 10.1038/s41594-018-0116-7. PubMed DOI PMC

Liu W., Chun E., Thompson A.A., Chubukov P., Xu F., Katritch V., Han G.W., Roth C.B., Heitman L.H., IJzerman A.P., et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337:232–236. doi: 10.1126/science.1219218. PubMed DOI PMC

Segala E., Guo D., Cheng R.K.Y., Bortolato A., Deflorian F., Doré A.S., Errey J.C., Heitman L.H., IJzerman A.P., Marshall F.H., et al. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength. J. Med. Chem. 2016;59:6470–6479. doi: 10.1021/acs.jmedchem.6b00653. PubMed DOI

Wingler L.M., Skiba M.A., McMahon C., Staus D.P., Kleinhenz A.L.W.W., Suomivuori C.-M.M., Latorraca N.R., Dror R.O., Lefkowitz R.J., Kruse A.C. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science. 2020;367:888–892. doi: 10.1126/science.aay9813. PubMed DOI PMC

Krishna Kumar K., Shalev-Benami M., Robertson M.J., Hu H., Banister S.D., Hollingsworth S.A., Latorraca N.R., Kato H.E., Hilger D., Maeda S., et al. Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex. Cell. 2019;176:448–458.e12. doi: 10.1016/j.cell.2018.11.040. PubMed DOI PMC

Xing C., Zhuang Y., Xu T.H., Feng Z., Zhou X.E., Chen M., Wang L., Meng X., Xue Y., Wang J., et al. Cryo-EM Structure of the Human Cannabinoid Receptor CB2-Gi Signaling Complex. Cell. 2020;180:645–654.e13. doi: 10.1016/j.cell.2020.01.007. PubMed DOI PMC

Oswald C., Rappas M., Kean J., Doré A.S., Errey J.C., Bennett K., Deflorian F., Christopher J.A., Jazayeri A., Mason J.S., et al. Intracellular allosteric antagonism of the CCR9 receptor. Nature. 2016;540:462–465. doi: 10.1038/nature20606. PubMed DOI

Gusach A., Luginina A., Marin E., Brouillette R.L., Besserer-Offroy É., Longpré J.-M., Ishchenko A., Popov P., Patel N., Fujimoto T., et al. Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nat. Commun. 2019;10:5573. doi: 10.1038/s41467-019-13348-2. PubMed DOI PMC

Liu K., Wu L., Yuan S., Wu M., Xu Y., Sun Q., Li S., Zhao S., Hua T., Liu Z.-J. Structural basis of CXC chemokine receptor 2 activation and signalling. Nature. 2020;585:135–140. doi: 10.1038/s41586-020-2492-5. PubMed DOI

Miles T.F., Spiess K., Jude K.M., Tsutsumi N., Burg J.S., Ingram J.R., Waghray D., Hjorto G.M., Larsen O., Ploegh H.L., et al. Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. Elife. 2018;7 doi: 10.7554/eLife.35850. PubMed DOI PMC

Shihoya W., Nishizawa T., Yamashita K., Inoue A., Hirata K., Kadji F.M.N., Okuta A., Tani K., Aoki J., Fujiyoshi Y., et al. X-ray structures of endothelin ETB receptor bound to clinical antagonist bosentan and its analog. Nat. Struct. Mol. Biol. 2017;24:758–764. doi: 10.1038/nsmb.3450. PubMed DOI

Chen T., Xiong M., Zong X., Ge Y., Zhang H., Wang M., Won Han G., Yi C., Ma L., Ye R.D., et al. Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nat. Commun. 2020;11:1208. doi: 10.1038/s41467-020-15009-1. PubMed DOI PMC

Zhuang Y., Liu H., Edward Zhou X., Kumar Verma R., de Waal P.W., Jang W., Xu T.-H., Wang L., Meng X., Zhao G., et al. Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling. Nat. Commun. 2020;11:885. doi: 10.1038/s41467-020-14728-9. PubMed DOI PMC

Waltenspühl Y., Schöppe J., Ehrenmann J., Kummer L., Plückthun A. Crystal structure of the human oxytocin receptor. Sci. Adv. 2020;6:eabb5419. doi: 10.1126/sciadv.abb5419. PubMed DOI PMC

Zhang K., Zhang J., Gao Z.-G., Zhang D., Zhu L., Han G.W., Moss S.M., Paoletta S., Kiselev E., Lu W., et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014;509:115–118. doi: 10.1038/nature13083. PubMed DOI PMC

Zhang D., Gao Z.-G., Zhang K., Kiselev E., Crane S., Wang J., Paoletta S., Yi C., Ma L., Zhang W., et al. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature. 2015;520:317–321. doi: 10.1038/nature14287. PubMed DOI PMC

Li H., Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–4997. doi: 10.1210/endo.139.12.6390. PubMed DOI

Jafurulla M., Tiwari S., Chattopadhyay A. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem. Biophys. Res. Commun. 2011;404:569–573. doi: 10.1016/j.bbrc.2010.12.031. PubMed DOI

Thal D.M., Sun B., Feng D., Nawaratne V., Leach K., Felder C.C., Bures M.G., Evans D.A., Weis W.I., Bachhawat P., et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature. 2016;531:335–340. doi: 10.1038/nature17188. PubMed DOI PMC

Maeda S., Xu J., Kadji F.M.N., Clark M.J., Zhao J., Tsutsumi N., Aoki J., Sunahara R.K., Inoue A., Garcia K.C., et al. Structure and selectivity engineering of the M1 muscarinic receptor toxin complex. Science. 2020;369:161–167. doi: 10.1126/science.aax2517. PubMed DOI PMC

Sengupta D., Chattopadhyay A. Molecular dynamics simulations of GPCR-cholesterol interaction: An emerging paradigm. Biochim. Biophys. Acta. 2015;1848:1775–1782. doi: 10.1016/j.bbamem.2015.03.018. PubMed DOI

Lee A.G. Interfacial Binding Sites for Cholesterol on G Protein-Coupled Receptors. Biophys. J. 2019;116:1586–1597. doi: 10.1016/j.bpj.2019.03.025. PubMed DOI PMC

Cang X., Du Y., Mao Y., Wang Y., Yang H., Jiang H. Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations. J. Phys. Chem. B. 2013;117:1085–1094. doi: 10.1021/jp3118192. PubMed DOI

McGraw C., Yang L., Levental I., Lyman E., Robinson A.S. Membrane cholesterol depletion reduces downstream signaling activity of the adenosine A2A receptor. Biochim. Biophys. Acta Biomembr. 2019;1861:760–767. doi: 10.1016/j.bbamem.2019.01.001. PubMed DOI PMC

Rouviere E., Arnarez C., Yang L., Lyman E. Identification of Two New Cholesterol Interaction Sites on the A2A Adenosine Receptor. Biophys. J. 2017;113:2415–2424. doi: 10.1016/j.bpj.2017.09.027. PubMed DOI PMC

Randáková A., Dolejší E., Rudajev V., Zimčík P., Doležal V., El-Fakahany E.E., Jakubík J. Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline. Neuropharmacology. 2018;133:129–144. doi: 10.1016/j.neuropharm.2018.01.027. PubMed DOI

Ballesteros J.A., Weinstein H. Methods in Neurosciences. Volume 25. Academic Press; San Diego, CA, USA: 1995. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors; pp. 366–428.

Gater D.L., Saurel O., Iordanov I., Liu W., Cherezov V., Milon A. Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR. Biophys. J. 2014;107:2305–2312. doi: 10.1016/j.bpj.2014.10.011. PubMed DOI PMC

Gimpl G., Klein U., Reiländer H., Fahrenholz F. Expression of the human oxytocin receptor in baculovirus-infected insect cells: High-affinity binding is induced by a cholesterol-cyclodextrin complex. Biochemistry. 1995;34:13794–13801. doi: 10.1021/bi00042a010. PubMed DOI

Chattopadhyay A., Jafurulla M., Kalipatnapu S., Pucadyil T.J., Harikumar K.G. Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochem. Biophys. Res. Commun. 2005;327:1036–1041. doi: 10.1016/j.bbrc.2004.12.102. PubMed DOI

Jafurulla M., Rao B.D., Sreedevi S., Ruysschaert J.-M., Covey D.F., Chattopadhyay A. Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim. Biophys. Acta. 2014;1838:158–163. doi: 10.1016/j.bbamem.2013.08.015. PubMed DOI PMC

Calmet P., Cullin C., Cortès S., Vang M., Caudy N., Baccouch R., Dessolin J., Maamar N.T., Lecomte S., Tillier B., et al. Cholesterol impacts chemokine CCR5 receptor ligand-binding activity. FEBS J. 2020;287:2367–2385. doi: 10.1111/febs.15145. PubMed DOI

Babcock G.J., Farzan M., Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J. Biol. Chem. 2003;278:3378–3385. doi: 10.1074/jbc.M210140200. PubMed DOI

Ruthirakuhan M., Herrmann N., Andreazza A.C., Verhoeff N.P.L.G., Gallagher D., Black S.E., Kiss A., Lanctôt K.L. 24S-Hydroxycholesterol Is Associated with Agitation Severity in Patients with Moderate-to-Severe Alzheimer’s Disease: Analyses from a Clinical Trial with Nabilone. J. Alzheimer’s Dis. 2019;71:21–31. doi: 10.3233/JAD-190202. PubMed DOI PMC

Guixà-González R., Albasanz J.L., Rodriguez-Espigares I., Pastor M., Sanz F., Martí-Solano M., Manna M., Martinez-Seara H., Hildebrand P.W., Martín M., et al. Membrane cholesterol access into a G-protein-coupled receptor. Nat. Commun. 2017;8 doi: 10.1038/ncomms14505. PubMed DOI PMC

Michal P., Rudajev V., El-Fakahany E.E., Dolezal V. Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur. J. Pharmacol. 2009;606:50–60. doi: 10.1016/j.ejphar.2009.01.028. PubMed DOI PMC

Michal P., El-Fakahany E.E., Doležal V. Changes in Membrane Cholesterol Differentially Influence Preferential and Non-preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors. Neurochem. Res. 2015;40:2068–2077. doi: 10.1007/s11064-014-1325-z. PubMed DOI PMC

André A., Gaibelet G., Le Guyader L., Welby M., Lopez A., Lebrun C. Membrane partitioning of various δ-opioid receptor forms before and after agonist activations: The effect of cholesterol. Biochim. Biophys. Acta Biomembr. 2008;1778:1483–1492. doi: 10.1016/j.bbamem.2008.03.017. PubMed DOI

Xu J., Hu Y., Kaindl J., Risel P., Hübner H., Maeda S., Niu X., Li H., Gmeiner P., Jin C., et al. Conformational Complexity and Dynamics in a Muscarinic Receptor Revealed by NMR Spectroscopy. Mol. Cell. 2019;75:53–65.e7. doi: 10.1016/j.molcel.2019.04.028. PubMed DOI

Nygaard R., Zou Y., Dror R.O., Mildorf T.J., Arlow D.H., Manglik A., Pan A.C., Liu C.W., Fung J.J., Bokoch M.P., et al. The dynamic process of β2-adrenergic receptor activation. Cell. 2013;152:532–542. doi: 10.1016/j.cell.2013.01.008. PubMed DOI PMC

Jakubík J., Randáková A., Chetverikov N., El-Fakahany E.E., Doležal V. The operational model of allosteric modulation of pharmacological agonism. Sci. Rep. 2020;10:14421. doi: 10.1038/s41598-020-71228-y. PubMed DOI PMC

Lee A.G. Lipid-protein interactions in biological membranes: A structural perspective. Biochim. Biophys. Acta. 2003;1612:1–40. doi: 10.1016/S0005-2736(03)00056-7. PubMed DOI

Trzaskowski B., Latek D., Yuan S., Ghoshdastider U., Debinski A., Filipek S. Action of molecular switches in GPCRs—Theoretical and experimental studies. Curr. Med. Chem. 2012;19:1090–1109. doi: 10.2174/092986712799320556. PubMed DOI PMC

Zhou Q., Yang D., Wu M., Guo Y., Guo W., Zhong L., Cai X., Dai A., Jang W., Shakhnovich E.I., et al. Common activation mechanism of class A GPCRs. Elife. 2019;8 doi: 10.7554/eLife.50279. PubMed DOI PMC

Hulme E.C. GPCR activation: A mutagenic spotlight on crystal structures. Trends Pharmacol. Sci. 2013;34:67–84. doi: 10.1016/j.tips.2012.11.002. PubMed DOI

Gimpl G., Burger K., Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36:10959–10974. doi: 10.1021/bi963138w. PubMed DOI

Levitt E.S., Clark M.J., Jenkins P.M., Martens J.R., Traynor J.R. Differential effect of membrane cholesterol removal on μ- and δ-opioid receptors. A parallel comparison of acute and chronic signaling to adenylyl cyclase. J. Biol. Chem. 2009;284:22108–22122. doi: 10.1074/jbc.M109.030411. PubMed DOI PMC

Neale C., Herce H.D., Pomès R., García A.E. Can Specific Protein-Lipid Interactions Stabilize an Active State of the Beta 2 Adrenergic Receptor? Biophys. J. 2015;109:1652–1662. doi: 10.1016/j.bpj.2015.08.028. PubMed DOI PMC

Pontier S.M., Percherancier Y., Galandrin S., Breit A., Galés C., Bouvier M. Cholesterol-dependent separation of the beta2-adrenergic receptor from its partners determines signaling efficacy: Insight into nanoscale organization of signal transduction. J. Biol. Chem. 2008;283:24659–24672. doi: 10.1074/jbc.M800778200. PubMed DOI PMC

Paila Y.D., Jindal E., Goswami S.K., Chattopadhyay A. Cholesterol depletion enhances adrenergic signaling in cardiac myocytes. Biochim. Biophys. Acta. 2011;1808:461–465. doi: 10.1016/j.bbamem.2010.09.006. PubMed DOI

Manna M., Niemelä M., Tynkkynen J., Javanainen M., Kulig W., Müller D.J., Rog T., Vattulainen I. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol. Elife. 2016;5:1–21. doi: 10.7554/eLife.18432. PubMed DOI PMC

Ferré S., Casadó V., Devi L.A., Filizola M., Jockers R., Lohse M.J., Milligan G., Pin J.-P., Guitart X. G protein-coupled receptor oligomerization revisited: Functional and pharmacological perspectives. Pharmacol. Rev. 2014;66:413–434. doi: 10.1124/pr.113.008052. PubMed DOI PMC

Jordan B.A., Devi L.A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999;399:697–700. doi: 10.1038/21441. PubMed DOI PMC

Gomes I., Gupta A., Filipovska J., Szeto H.H., Pintar J.E., Devi L.A. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. USA. 2004;101:5135–5139. doi: 10.1073/pnas.0307601101. PubMed DOI PMC

Tiwari V., He S.-Q., Huang Q., Liang L., Yang F., Chen Z., Tiwari V., Fujita W., Devi L.A., Dong X., et al. Activation of µ-δ opioid receptor heteromers inhibits neuropathic pain behavior in rodents. Pain. 2020;161:842–855. doi: 10.1097/j.pain.0000000000001768. PubMed DOI PMC

Kuszak A.J., Pitchiaya S., Anand J.P., Mosberg H.I., Walter N.G., Sunahara R.K. Purification and functional reconstitution of monomeric mu-opioid receptors: Allosteric modulation of agonist binding by Gi2. J. Biol. Chem. 2009;284:26732–26741. doi: 10.1074/jbc.M109.026922. PubMed DOI PMC

Meral D., Provasi D., Prada-Gracia D., Möller J., Marino K., Lohse M.J., Filizola M. Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations. Sci. Rep. 2018;8:7705. doi: 10.1038/s41598-018-26070-8. PubMed DOI PMC

Möller J., Isbilir A., Sungkaworn T., Osberg B., Karathanasis C., Sunkara V., Grushevskyi E.O., Bock A., Annibale P., Heilemann M., et al. Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nat. Chem. Biol. 2020;16:946–954. doi: 10.1038/s41589-020-0566-1. PubMed DOI

Fotiadis D., Liang Y., Filipek S., Saperstein D.A., Engel A., Palczewski K. The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett. 2004;564:281–288. doi: 10.1016/S0014-5793(04)00194-2. PubMed DOI PMC

Whorton M.R., Jastrzebska B., Park P.S.H., Fotiadis D., Engel A., Palczewski K., Sunahara R.K. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J. Biol. Chem. 2008;283:4387–4394. doi: 10.1074/jbc.M703346200. PubMed DOI PMC

Modzelewska A., Filipek S., Palczewski K., Park P.S.H. Arrestin interaction with rhodopsin: Conceptual models. Cell Biochem. Biophys. 2006;46:1–15. doi: 10.1385/CBB:46:1:1. PubMed DOI

Bayburt T.H., Vishnivetskiy S.A., McLean M.A., Morizumi T., Huang C.-C., Tesmer J.J.G., Ernst O.P., Sligar S.G., Gurevich V.V. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J. Biol. Chem. 2011;286:1420–1428. doi: 10.1074/jbc.M110.151043. PubMed DOI PMC

Zhao D.Y., Pöge M., Morizumi T., Gulati S., Van Eps N., Zhang J., Miszta P., Filipek S., Mahamid J., Plitzko J.M., et al. Cryo-EM structure of the native rhodopsin dimer in nanodiscs. J. Biol. Chem. 2019;294:14215–14230. doi: 10.1074/jbc.RA119.010089. PubMed DOI PMC

Milligan G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol. Pharmacol. 2013;84:158–169. doi: 10.1124/mol.113.084780. PubMed DOI PMC

Dainese E., Oddi S., Maccarrone M. Lipid-mediated dimerization of beta2-adrenergic receptor reveals important clues for cannabinoid receptors. Cell. Mol. Life Sci. 2008;65:2277–2279. doi: 10.1007/s00018-008-8139-6. PubMed DOI PMC

Wang J., He L., Combs C.A., Roderiquez G., Norcross M.A. Dimerization of CXCR4 in living malignant cells: Control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol. Cancer Ther. 2006;5:2474–2483. doi: 10.1158/1535-7163.MCT-05-0261. PubMed DOI

Angers S., Salahpour A., Joly E., Hilairet S., Chelsky D., Dennis M., Bouvier M. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET) Proc. Natl. Acad. Sci. USA. 2000;97:3684–3689. doi: 10.1073/pnas.060590697. PubMed DOI PMC

Prasanna X., Chattopadhyay A., Sengupta D. Cholesterol modulates the dimer interface of the β2- adrenergic receptor via cholesterol occupancy sites. Biophys. J. 2014;106:1290–1300. doi: 10.1016/j.bpj.2014.02.002. PubMed DOI PMC

Paila Y.D., Kombrabail M., Krishnamoorthy G., Chattopadhyay A. Oligomerization of the serotonin1A receptor in live cells: A time-resolved fluorescence anisotropy approach. J. Phys. Chem. B. 2011;115:11439–11447. doi: 10.1021/jp201458h. PubMed DOI

Ganguly S., Clayton A.H.A., Chattopadhyay A. Organization of higher-order oligomers of the serotonin₁(A) receptor explored utilizing homo-FRET in live cells. Biophys. J. 2011;100:361–368. doi: 10.1016/j.bpj.2010.12.3692. PubMed DOI PMC

Ayoub M.A., Couturier C., Lucas-Meunier E., Angers S., Fossier P., Bouvier M., Jockers R. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 2002;277:21522–21528. doi: 10.1074/jbc.M200729200. PubMed DOI

Gorinski N., Kowalsman N., Renner U., Wirth A., Reinartz M.T., Seifert R., Zeug A., Ponimaskin E., Niv M.Y. Computational and experimental analysis of the transmembrane domain 4/5 dimerization interface of the serotonin 5-HT(1A) receptor. Mol. Pharmacol. 2012;82:448–463. doi: 10.1124/mol.112.079137. PubMed DOI

Massaccesi L., Laudadio E., Mobbili G., Minnelli C., Galeazzi R. Cholesterol-mediated oligomerization pathways of serotonin G-coupled receptor 5-HT2C. Int. J. Biol. Macromol. 2020;160:1090–1100. doi: 10.1016/j.ijbiomac.2020.05.231. PubMed DOI

Park P.S.H., Wells J.W. Oligomeric potential of the M2 muscarinic cholinergic receptor. J. Neurochem. 2004;90:537–548. doi: 10.1111/j.1471-4159.2004.02536.x. PubMed DOI

McMillin S.M., Heusel M., Liu T., Costanzi S., Wess J. Structural basis of M3 muscarinic receptor dimer/oligomer formation. J. Biol. Chem. 2011;286:28584–28598. doi: 10.1074/jbc.M111.259788. PubMed DOI PMC

Park P.S.H., Sum C.S., Pawagi A.B., Wells J.W. Cooperativity and oligomeric status of cardiac muscarinic cholinergic receptors. Biochemistry. 2002;41:5588–5604. doi: 10.1021/bi011746s. PubMed DOI

Redka D.S., Pisterzi L.F., Wells J.W. Binding of orthosteric ligands to the allosteric site of the M(2) muscarinic cholinergic receptor. Mol. Pharmacol. 2008;74:834–843. doi: 10.1124/mol.108.048074. PubMed DOI

Redka D.S., Morizumi T., Elmslie G., Paranthaman P., Shivnaraine R.V., Ellis J., Ernst O.P., Wells J.W. Coupling of G proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor. J. Biol. Chem. 2014;289:24347–24365. doi: 10.1074/jbc.M114.559294. PubMed DOI PMC

Colozo A.T., Park P.S.-H., Sum C.S., Pisterzi L.F., Wells J.W. Cholesterol as a determinant of cooperativity in the M2 muscarinic cholinergic receptor. Biochem. Pharmacol. 2007;74:236–255. doi: 10.1016/j.bcp.2007.04.009. PubMed DOI

Liste M.J.V., Caltabiano G., Ward R.J., Alvarez-Curto E., Marsango S., Milligan G. The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor. Mol. Pharmacol. 2015;87:936–953. doi: 10.1124/mol.114.096925. PubMed DOI

Nguyen D.H., Taub D. Cholesterol is essential for macrophage inflammatory protein 1β binding and conformational integrity of CC chemokine receptor 5. Blood. 2002;99:4298–4306. doi: 10.1182/blood-2001-11-0087. PubMed DOI

Pluhackova K., Gahbauer S., Kranz F., Wassenaar T.A., Böckmann R.A. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4. PLoS Comput. Biol. 2016;12:e1005169. doi: 10.1371/journal.pcbi.1005169. PubMed DOI PMC

Wilkinson M., Siauw M., Horackova M. Modulation of cardiac M2 muscarinic receptor binding by progesterone-related steroids. J. Mol. Cell. Cardiol. 1995;27:1831–1839. doi: 10.1016/0022-2828(95)90006-3. PubMed DOI

Dolejší E., Szánti-Pintér E., Chetverikov N., Nelic D., Randáková A., Doležal V., Kudová E., Jakubík J. Steroids as the novel class of high-affinity allosteric modulators of muscarinic. Res. Sq. 2021 doi: 10.21203/RS.3.RS-140412/V1. PubMed DOI

Robichaud M., Debonnel G. Modulation of the firing activity of female dorsal raphe nucleus serotonergic neurons by neuroactive steroids. J. Endocrinol. 2004;182:11–21. doi: 10.1677/joe.0.1820011. PubMed DOI

Wang Z.-M., Qi Y.-J., Wu P.-Y., Zhu Y., Dong Y.-L., Cheng Z.-X., Zhu Y.-H., Dong Y., Ma L., Zheng P. Neuroactive steroid pregnenolone sulphate inhibits long-term potentiation via activation of alpha2-adrenoreceptors at excitatory synapses in rat medial prefrontal cortex. Int. J. Neuropsychopharmacol. 2008;11:611–624. doi: 10.1017/S1461145707008334. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...