Allosteric Modulation of GPCRs of Class A by Cholesterol
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
19-05318S
Grantová Agentura České Republiky
RVO:67985823
Akademie Věd České Republiky
PubMed
33669406
PubMed Central
PMC7920425
DOI
10.3390/ijms22041953
PII: ijms22041953
Knihovny.cz E-resources
- Keywords
- GPCRs, allosteric modulation, cholesterol,
- MeSH
- Allosteric Regulation MeSH
- Anticholesteremic Agents pharmacology therapeutic use MeSH
- Cell Membrane metabolism MeSH
- Cholesterol chemistry metabolism MeSH
- Molecular Targeted Therapy methods MeSH
- Humans MeSH
- Ligands MeSH
- Receptors, G-Protein-Coupled chemistry classification metabolism MeSH
- Protein Binding MeSH
- Binding Sites drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anticholesteremic Agents MeSH
- Cholesterol MeSH
- Ligands MeSH
- Receptors, G-Protein-Coupled MeSH
G-protein coupled receptors (GPCRs) are membrane proteins that convey extracellular signals to the cellular milieu. They represent a target for more than 30% of currently marketed drugs. Here we review the effects of membrane cholesterol on the function of GPCRs of Class A. We review both the specific effects of cholesterol mediated via its direct high-affinity binding to the receptor and non-specific effects mediated by cholesterol-induced changes in the properties of the membrane. Cholesterol binds to many GPCRs at both canonical and non-canonical binding sites. It allosterically affects ligand binding to and activation of GPCRs. Additionally, it changes the oligomerization state of GPCRs. In this review, we consider a perspective of the potential for the development of new therapies that are targeted at manipulating the level of membrane cholesterol or modulating cholesterol binding sites on to GPCRs.
See more in PubMed
Hauser A.S., Attwood M.M., Rask-Andersen M., Schiöth H.B., Gloriam D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017;16:829–842. doi: 10.1038/nrd.2017.178. PubMed DOI PMC
Zhang Y., Doruker P., Kaynak B., Zhang S., Krieger J., Li H., Bahar I. Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Curr. Opin. Struct. Biol. 2020;62:14–21. doi: 10.1016/j.sbi.2019.11.002. PubMed DOI PMC
Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem. Phys. Lipids. 2016;199:61–73. doi: 10.1016/j.chemphyslip.2016.04.006. PubMed DOI
Sarkar P., Chattopadhyay A. Cholesterol interaction motifs in G protein-coupled receptors: Slippery hot spots? Wiley Interdiscip. Rev. Syst. Biol. Med. 2020:e1481. doi: 10.1002/wsbm.1481. PubMed DOI
Rose I.A., Hanson K.R., Wilkinson K.D., Wimmer M.J. A suggestion for naming faces of ring compounds. Proc. Natl. Acad. Sci. USA. 1980;77:2439–2441. doi: 10.1073/pnas.77.5.2439. PubMed DOI PMC
Bandara A., Panahi A., Pantelopulos G.A., Straub J.E. Exploring the structure and stability of cholesterol dimer formation in multicomponent lipid bilayers. J. Comput. Chem. 2017;38:1479–1488. doi: 10.1002/jcc.24516. PubMed DOI PMC
Fantini J., Barrantes F.J. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 2013;4:31. doi: 10.3389/fphys.2013.00031. PubMed DOI PMC
Mukherjee S., Chattopadhyay A. Monitoring cholesterol organization in membranes at low concentrations utilizing the wavelength-selective fluorescence approach. Chem. Phys. Lipids. 2005;134:79–84. doi: 10.1016/j.chemphyslip.2004.12.001. PubMed DOI
Niemelä P.S., Ollila S., Hyvönen M.T., Karttunen M., Vattulainen I. Assessing the nature of lipid raft membranes. PLoS Comput. Biol. 2007;3:0304–0312. doi: 10.1371/journal.pcbi.0030034. PubMed DOI PMC
Simons K., Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. cell Biol. 2000;1:31–39. doi: 10.1038/35036052. PubMed DOI
Killian J.A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta Rev. Biomembr. 1998;1376:401–416. doi: 10.1016/S0304-4157(98)00017-3. PubMed DOI
Lei B., Morris D.P., Smith M.P., Schwinn D.A. Lipid rafts constrain basal α1A-adrenergic receptor signaling by maintaining receptor in an inactive conformation. Cell. Signal. 2009;21:1532–1539. doi: 10.1016/j.cellsig.2009.06.001. PubMed DOI
Ostrom R.S., Insel P.A. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: Implications for molecular pharmacology. Br. J. Pharmacol. 2004;143:235–245. doi: 10.1038/sj.bjp.0705930. PubMed DOI PMC
Legler D.F., Matti C., Laufer J.M., Jakobs B.D., Purvanov V., Uetz-von Allmen E., Thelen M. Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention. Mol. Pharmacol. 2017;91:331–338. doi: 10.1124/mol.116.107151. PubMed DOI
Sviridov D., Mukhamedova N., Miller Y.I. Lipid rafts as a therapeutic target. J. Lipid Res. 2020;61:687–695. doi: 10.1194/jlr.TR120000658. PubMed DOI PMC
Cherezov V., Rosenbaum D.M., Hanson M.A., Rasmussen S.G.F., Thian F.S., Kobilka T.S., Choi H.-J., Kuhn P., Weis W.I., Kobilka B.K., et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–1265. doi: 10.1126/science.1150577. PubMed DOI PMC
Hanson M.A., Cherezov V., Griffith M.T., Roth C.B., Jaakola V.-P., Chien E.Y.T., Velasquez J., Kuhn P., Stevens R.C. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure. 2008;16:897–905. doi: 10.1016/j.str.2008.05.001. PubMed DOI PMC
Ishchenko A., Stauch B., Han G.W., Batyuk A., Shiriaeva A., Li C., Zatsepin N., Weierstall U., Liu W., Nango E., et al. Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCrJ. 2019;6:1106–1119. doi: 10.1107/S2052252519013137. PubMed DOI PMC
Claff T., Yu J., Blais V., Patel N., Martin C., Wu L., Han G.W., Holleran B.J., Van der Poorten O., White K.L., et al. Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. Sci. Adv. 2019;5:eaax9115. doi: 10.1126/sciadv.aax9115. PubMed DOI PMC
Che T., English J., Krumm B.E., Kim K., Pardon E., Olsen R.H.J., Wang S., Zhang S., Diberto J.F., Sciaky N., et al. Nanobody-enabled monitoring of kappa opioid receptor states. Nat. Commun. 2020;11:1145. doi: 10.1038/s41467-020-14889-7. PubMed DOI PMC
Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Mathiesen J.M., Sunahara R.K., Pardo L., Weis W.I., Kobilka B.K., Granier S. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature. 2012;485:321–326. doi: 10.1038/nature10954. PubMed DOI PMC
Huang W., Manglik A., Venkatakrishnan A.J., Laeremans T., Feinberg E.N., Sanborn A.L., Kato H.E., Livingston K.E., Thorsen T.S., Kling R.C., et al. Structural insights into µ-opioid receptor activation. Nature. 2015;524:315–321. doi: 10.1038/nature14886. PubMed DOI PMC
Wu H., Wacker D., Mileni M., Katritch V., Han G.W., Vardy E., Liu W., Thompson A.A., Huang X.-P., Carroll F.I., et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature. 2012;485:327–332. doi: 10.1038/nature10939. PubMed DOI PMC
Wacker D., Wang S., McCorvy J.D., Betz R.M., Venkatakrishnan A.J., Levit A., Lansu K., Schools Z.L., Che T., Nichols D.E., et al. Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell. 2017;168:377–389. doi: 10.1016/j.cell.2016.12.033. PubMed DOI PMC
McCorvy J.D., Wacker D., Wang S., Agegnehu B., Liu J., Lansu K., Tribo A.R., Olsen R.H.J., Che T., Jin J., et al. Structural determinants of 5-HT2B receptor activation and biased agonism. Nat. Struct. Mol. Biol. 2018;25:787–796. doi: 10.1038/s41594-018-0116-7. PubMed DOI PMC
Liu W., Chun E., Thompson A.A., Chubukov P., Xu F., Katritch V., Han G.W., Roth C.B., Heitman L.H., IJzerman A.P., et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337:232–236. doi: 10.1126/science.1219218. PubMed DOI PMC
Segala E., Guo D., Cheng R.K.Y., Bortolato A., Deflorian F., Doré A.S., Errey J.C., Heitman L.H., IJzerman A.P., Marshall F.H., et al. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength. J. Med. Chem. 2016;59:6470–6479. doi: 10.1021/acs.jmedchem.6b00653. PubMed DOI
Wingler L.M., Skiba M.A., McMahon C., Staus D.P., Kleinhenz A.L.W.W., Suomivuori C.-M.M., Latorraca N.R., Dror R.O., Lefkowitz R.J., Kruse A.C. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science. 2020;367:888–892. doi: 10.1126/science.aay9813. PubMed DOI PMC
Krishna Kumar K., Shalev-Benami M., Robertson M.J., Hu H., Banister S.D., Hollingsworth S.A., Latorraca N.R., Kato H.E., Hilger D., Maeda S., et al. Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex. Cell. 2019;176:448–458.e12. doi: 10.1016/j.cell.2018.11.040. PubMed DOI PMC
Xing C., Zhuang Y., Xu T.H., Feng Z., Zhou X.E., Chen M., Wang L., Meng X., Xue Y., Wang J., et al. Cryo-EM Structure of the Human Cannabinoid Receptor CB2-Gi Signaling Complex. Cell. 2020;180:645–654.e13. doi: 10.1016/j.cell.2020.01.007. PubMed DOI PMC
Oswald C., Rappas M., Kean J., Doré A.S., Errey J.C., Bennett K., Deflorian F., Christopher J.A., Jazayeri A., Mason J.S., et al. Intracellular allosteric antagonism of the CCR9 receptor. Nature. 2016;540:462–465. doi: 10.1038/nature20606. PubMed DOI
Gusach A., Luginina A., Marin E., Brouillette R.L., Besserer-Offroy É., Longpré J.-M., Ishchenko A., Popov P., Patel N., Fujimoto T., et al. Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nat. Commun. 2019;10:5573. doi: 10.1038/s41467-019-13348-2. PubMed DOI PMC
Liu K., Wu L., Yuan S., Wu M., Xu Y., Sun Q., Li S., Zhao S., Hua T., Liu Z.-J. Structural basis of CXC chemokine receptor 2 activation and signalling. Nature. 2020;585:135–140. doi: 10.1038/s41586-020-2492-5. PubMed DOI
Miles T.F., Spiess K., Jude K.M., Tsutsumi N., Burg J.S., Ingram J.R., Waghray D., Hjorto G.M., Larsen O., Ploegh H.L., et al. Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. Elife. 2018;7 doi: 10.7554/eLife.35850. PubMed DOI PMC
Shihoya W., Nishizawa T., Yamashita K., Inoue A., Hirata K., Kadji F.M.N., Okuta A., Tani K., Aoki J., Fujiyoshi Y., et al. X-ray structures of endothelin ETB receptor bound to clinical antagonist bosentan and its analog. Nat. Struct. Mol. Biol. 2017;24:758–764. doi: 10.1038/nsmb.3450. PubMed DOI
Chen T., Xiong M., Zong X., Ge Y., Zhang H., Wang M., Won Han G., Yi C., Ma L., Ye R.D., et al. Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nat. Commun. 2020;11:1208. doi: 10.1038/s41467-020-15009-1. PubMed DOI PMC
Zhuang Y., Liu H., Edward Zhou X., Kumar Verma R., de Waal P.W., Jang W., Xu T.-H., Wang L., Meng X., Zhao G., et al. Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling. Nat. Commun. 2020;11:885. doi: 10.1038/s41467-020-14728-9. PubMed DOI PMC
Waltenspühl Y., Schöppe J., Ehrenmann J., Kummer L., Plückthun A. Crystal structure of the human oxytocin receptor. Sci. Adv. 2020;6:eabb5419. doi: 10.1126/sciadv.abb5419. PubMed DOI PMC
Zhang K., Zhang J., Gao Z.-G., Zhang D., Zhu L., Han G.W., Moss S.M., Paoletta S., Kiselev E., Lu W., et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014;509:115–118. doi: 10.1038/nature13083. PubMed DOI PMC
Zhang D., Gao Z.-G., Zhang K., Kiselev E., Crane S., Wang J., Paoletta S., Yi C., Ma L., Zhang W., et al. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature. 2015;520:317–321. doi: 10.1038/nature14287. PubMed DOI PMC
Li H., Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–4997. doi: 10.1210/endo.139.12.6390. PubMed DOI
Jafurulla M., Tiwari S., Chattopadhyay A. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem. Biophys. Res. Commun. 2011;404:569–573. doi: 10.1016/j.bbrc.2010.12.031. PubMed DOI
Thal D.M., Sun B., Feng D., Nawaratne V., Leach K., Felder C.C., Bures M.G., Evans D.A., Weis W.I., Bachhawat P., et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature. 2016;531:335–340. doi: 10.1038/nature17188. PubMed DOI PMC
Maeda S., Xu J., Kadji F.M.N., Clark M.J., Zhao J., Tsutsumi N., Aoki J., Sunahara R.K., Inoue A., Garcia K.C., et al. Structure and selectivity engineering of the M1 muscarinic receptor toxin complex. Science. 2020;369:161–167. doi: 10.1126/science.aax2517. PubMed DOI PMC
Sengupta D., Chattopadhyay A. Molecular dynamics simulations of GPCR-cholesterol interaction: An emerging paradigm. Biochim. Biophys. Acta. 2015;1848:1775–1782. doi: 10.1016/j.bbamem.2015.03.018. PubMed DOI
Lee A.G. Interfacial Binding Sites for Cholesterol on G Protein-Coupled Receptors. Biophys. J. 2019;116:1586–1597. doi: 10.1016/j.bpj.2019.03.025. PubMed DOI PMC
Cang X., Du Y., Mao Y., Wang Y., Yang H., Jiang H. Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations. J. Phys. Chem. B. 2013;117:1085–1094. doi: 10.1021/jp3118192. PubMed DOI
McGraw C., Yang L., Levental I., Lyman E., Robinson A.S. Membrane cholesterol depletion reduces downstream signaling activity of the adenosine A2A receptor. Biochim. Biophys. Acta Biomembr. 2019;1861:760–767. doi: 10.1016/j.bbamem.2019.01.001. PubMed DOI PMC
Rouviere E., Arnarez C., Yang L., Lyman E. Identification of Two New Cholesterol Interaction Sites on the A2A Adenosine Receptor. Biophys. J. 2017;113:2415–2424. doi: 10.1016/j.bpj.2017.09.027. PubMed DOI PMC
Randáková A., Dolejší E., Rudajev V., Zimčík P., Doležal V., El-Fakahany E.E., Jakubík J. Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline. Neuropharmacology. 2018;133:129–144. doi: 10.1016/j.neuropharm.2018.01.027. PubMed DOI
Ballesteros J.A., Weinstein H. Methods in Neurosciences. Volume 25. Academic Press; San Diego, CA, USA: 1995. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors; pp. 366–428.
Gater D.L., Saurel O., Iordanov I., Liu W., Cherezov V., Milon A. Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR. Biophys. J. 2014;107:2305–2312. doi: 10.1016/j.bpj.2014.10.011. PubMed DOI PMC
Gimpl G., Klein U., Reiländer H., Fahrenholz F. Expression of the human oxytocin receptor in baculovirus-infected insect cells: High-affinity binding is induced by a cholesterol-cyclodextrin complex. Biochemistry. 1995;34:13794–13801. doi: 10.1021/bi00042a010. PubMed DOI
Chattopadhyay A., Jafurulla M., Kalipatnapu S., Pucadyil T.J., Harikumar K.G. Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochem. Biophys. Res. Commun. 2005;327:1036–1041. doi: 10.1016/j.bbrc.2004.12.102. PubMed DOI
Jafurulla M., Rao B.D., Sreedevi S., Ruysschaert J.-M., Covey D.F., Chattopadhyay A. Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim. Biophys. Acta. 2014;1838:158–163. doi: 10.1016/j.bbamem.2013.08.015. PubMed DOI PMC
Calmet P., Cullin C., Cortès S., Vang M., Caudy N., Baccouch R., Dessolin J., Maamar N.T., Lecomte S., Tillier B., et al. Cholesterol impacts chemokine CCR5 receptor ligand-binding activity. FEBS J. 2020;287:2367–2385. doi: 10.1111/febs.15145. PubMed DOI
Babcock G.J., Farzan M., Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J. Biol. Chem. 2003;278:3378–3385. doi: 10.1074/jbc.M210140200. PubMed DOI
Ruthirakuhan M., Herrmann N., Andreazza A.C., Verhoeff N.P.L.G., Gallagher D., Black S.E., Kiss A., Lanctôt K.L. 24S-Hydroxycholesterol Is Associated with Agitation Severity in Patients with Moderate-to-Severe Alzheimer’s Disease: Analyses from a Clinical Trial with Nabilone. J. Alzheimer’s Dis. 2019;71:21–31. doi: 10.3233/JAD-190202. PubMed DOI PMC
Guixà-González R., Albasanz J.L., Rodriguez-Espigares I., Pastor M., Sanz F., Martí-Solano M., Manna M., Martinez-Seara H., Hildebrand P.W., Martín M., et al. Membrane cholesterol access into a G-protein-coupled receptor. Nat. Commun. 2017;8 doi: 10.1038/ncomms14505. PubMed DOI PMC
Michal P., Rudajev V., El-Fakahany E.E., Dolezal V. Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur. J. Pharmacol. 2009;606:50–60. doi: 10.1016/j.ejphar.2009.01.028. PubMed DOI PMC
Michal P., El-Fakahany E.E., Doležal V. Changes in Membrane Cholesterol Differentially Influence Preferential and Non-preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors. Neurochem. Res. 2015;40:2068–2077. doi: 10.1007/s11064-014-1325-z. PubMed DOI PMC
André A., Gaibelet G., Le Guyader L., Welby M., Lopez A., Lebrun C. Membrane partitioning of various δ-opioid receptor forms before and after agonist activations: The effect of cholesterol. Biochim. Biophys. Acta Biomembr. 2008;1778:1483–1492. doi: 10.1016/j.bbamem.2008.03.017. PubMed DOI
Xu J., Hu Y., Kaindl J., Risel P., Hübner H., Maeda S., Niu X., Li H., Gmeiner P., Jin C., et al. Conformational Complexity and Dynamics in a Muscarinic Receptor Revealed by NMR Spectroscopy. Mol. Cell. 2019;75:53–65.e7. doi: 10.1016/j.molcel.2019.04.028. PubMed DOI
Nygaard R., Zou Y., Dror R.O., Mildorf T.J., Arlow D.H., Manglik A., Pan A.C., Liu C.W., Fung J.J., Bokoch M.P., et al. The dynamic process of β2-adrenergic receptor activation. Cell. 2013;152:532–542. doi: 10.1016/j.cell.2013.01.008. PubMed DOI PMC
Jakubík J., Randáková A., Chetverikov N., El-Fakahany E.E., Doležal V. The operational model of allosteric modulation of pharmacological agonism. Sci. Rep. 2020;10:14421. doi: 10.1038/s41598-020-71228-y. PubMed DOI PMC
Lee A.G. Lipid-protein interactions in biological membranes: A structural perspective. Biochim. Biophys. Acta. 2003;1612:1–40. doi: 10.1016/S0005-2736(03)00056-7. PubMed DOI
Trzaskowski B., Latek D., Yuan S., Ghoshdastider U., Debinski A., Filipek S. Action of molecular switches in GPCRs—Theoretical and experimental studies. Curr. Med. Chem. 2012;19:1090–1109. doi: 10.2174/092986712799320556. PubMed DOI PMC
Zhou Q., Yang D., Wu M., Guo Y., Guo W., Zhong L., Cai X., Dai A., Jang W., Shakhnovich E.I., et al. Common activation mechanism of class A GPCRs. Elife. 2019;8 doi: 10.7554/eLife.50279. PubMed DOI PMC
Hulme E.C. GPCR activation: A mutagenic spotlight on crystal structures. Trends Pharmacol. Sci. 2013;34:67–84. doi: 10.1016/j.tips.2012.11.002. PubMed DOI
Gimpl G., Burger K., Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36:10959–10974. doi: 10.1021/bi963138w. PubMed DOI
Levitt E.S., Clark M.J., Jenkins P.M., Martens J.R., Traynor J.R. Differential effect of membrane cholesterol removal on μ- and δ-opioid receptors. A parallel comparison of acute and chronic signaling to adenylyl cyclase. J. Biol. Chem. 2009;284:22108–22122. doi: 10.1074/jbc.M109.030411. PubMed DOI PMC
Neale C., Herce H.D., Pomès R., García A.E. Can Specific Protein-Lipid Interactions Stabilize an Active State of the Beta 2 Adrenergic Receptor? Biophys. J. 2015;109:1652–1662. doi: 10.1016/j.bpj.2015.08.028. PubMed DOI PMC
Pontier S.M., Percherancier Y., Galandrin S., Breit A., Galés C., Bouvier M. Cholesterol-dependent separation of the beta2-adrenergic receptor from its partners determines signaling efficacy: Insight into nanoscale organization of signal transduction. J. Biol. Chem. 2008;283:24659–24672. doi: 10.1074/jbc.M800778200. PubMed DOI PMC
Paila Y.D., Jindal E., Goswami S.K., Chattopadhyay A. Cholesterol depletion enhances adrenergic signaling in cardiac myocytes. Biochim. Biophys. Acta. 2011;1808:461–465. doi: 10.1016/j.bbamem.2010.09.006. PubMed DOI
Manna M., Niemelä M., Tynkkynen J., Javanainen M., Kulig W., Müller D.J., Rog T., Vattulainen I. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol. Elife. 2016;5:1–21. doi: 10.7554/eLife.18432. PubMed DOI PMC
Ferré S., Casadó V., Devi L.A., Filizola M., Jockers R., Lohse M.J., Milligan G., Pin J.-P., Guitart X. G protein-coupled receptor oligomerization revisited: Functional and pharmacological perspectives. Pharmacol. Rev. 2014;66:413–434. doi: 10.1124/pr.113.008052. PubMed DOI PMC
Jordan B.A., Devi L.A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999;399:697–700. doi: 10.1038/21441. PubMed DOI PMC
Gomes I., Gupta A., Filipovska J., Szeto H.H., Pintar J.E., Devi L.A. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. USA. 2004;101:5135–5139. doi: 10.1073/pnas.0307601101. PubMed DOI PMC
Tiwari V., He S.-Q., Huang Q., Liang L., Yang F., Chen Z., Tiwari V., Fujita W., Devi L.A., Dong X., et al. Activation of µ-δ opioid receptor heteromers inhibits neuropathic pain behavior in rodents. Pain. 2020;161:842–855. doi: 10.1097/j.pain.0000000000001768. PubMed DOI PMC
Kuszak A.J., Pitchiaya S., Anand J.P., Mosberg H.I., Walter N.G., Sunahara R.K. Purification and functional reconstitution of monomeric mu-opioid receptors: Allosteric modulation of agonist binding by Gi2. J. Biol. Chem. 2009;284:26732–26741. doi: 10.1074/jbc.M109.026922. PubMed DOI PMC
Meral D., Provasi D., Prada-Gracia D., Möller J., Marino K., Lohse M.J., Filizola M. Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations. Sci. Rep. 2018;8:7705. doi: 10.1038/s41598-018-26070-8. PubMed DOI PMC
Möller J., Isbilir A., Sungkaworn T., Osberg B., Karathanasis C., Sunkara V., Grushevskyi E.O., Bock A., Annibale P., Heilemann M., et al. Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nat. Chem. Biol. 2020;16:946–954. doi: 10.1038/s41589-020-0566-1. PubMed DOI
Fotiadis D., Liang Y., Filipek S., Saperstein D.A., Engel A., Palczewski K. The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett. 2004;564:281–288. doi: 10.1016/S0014-5793(04)00194-2. PubMed DOI PMC
Whorton M.R., Jastrzebska B., Park P.S.H., Fotiadis D., Engel A., Palczewski K., Sunahara R.K. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J. Biol. Chem. 2008;283:4387–4394. doi: 10.1074/jbc.M703346200. PubMed DOI PMC
Modzelewska A., Filipek S., Palczewski K., Park P.S.H. Arrestin interaction with rhodopsin: Conceptual models. Cell Biochem. Biophys. 2006;46:1–15. doi: 10.1385/CBB:46:1:1. PubMed DOI
Bayburt T.H., Vishnivetskiy S.A., McLean M.A., Morizumi T., Huang C.-C., Tesmer J.J.G., Ernst O.P., Sligar S.G., Gurevich V.V. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J. Biol. Chem. 2011;286:1420–1428. doi: 10.1074/jbc.M110.151043. PubMed DOI PMC
Zhao D.Y., Pöge M., Morizumi T., Gulati S., Van Eps N., Zhang J., Miszta P., Filipek S., Mahamid J., Plitzko J.M., et al. Cryo-EM structure of the native rhodopsin dimer in nanodiscs. J. Biol. Chem. 2019;294:14215–14230. doi: 10.1074/jbc.RA119.010089. PubMed DOI PMC
Milligan G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol. Pharmacol. 2013;84:158–169. doi: 10.1124/mol.113.084780. PubMed DOI PMC
Dainese E., Oddi S., Maccarrone M. Lipid-mediated dimerization of beta2-adrenergic receptor reveals important clues for cannabinoid receptors. Cell. Mol. Life Sci. 2008;65:2277–2279. doi: 10.1007/s00018-008-8139-6. PubMed DOI PMC
Wang J., He L., Combs C.A., Roderiquez G., Norcross M.A. Dimerization of CXCR4 in living malignant cells: Control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol. Cancer Ther. 2006;5:2474–2483. doi: 10.1158/1535-7163.MCT-05-0261. PubMed DOI
Angers S., Salahpour A., Joly E., Hilairet S., Chelsky D., Dennis M., Bouvier M. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET) Proc. Natl. Acad. Sci. USA. 2000;97:3684–3689. doi: 10.1073/pnas.060590697. PubMed DOI PMC
Prasanna X., Chattopadhyay A., Sengupta D. Cholesterol modulates the dimer interface of the β2- adrenergic receptor via cholesterol occupancy sites. Biophys. J. 2014;106:1290–1300. doi: 10.1016/j.bpj.2014.02.002. PubMed DOI PMC
Paila Y.D., Kombrabail M., Krishnamoorthy G., Chattopadhyay A. Oligomerization of the serotonin1A receptor in live cells: A time-resolved fluorescence anisotropy approach. J. Phys. Chem. B. 2011;115:11439–11447. doi: 10.1021/jp201458h. PubMed DOI
Ganguly S., Clayton A.H.A., Chattopadhyay A. Organization of higher-order oligomers of the serotonin₁(A) receptor explored utilizing homo-FRET in live cells. Biophys. J. 2011;100:361–368. doi: 10.1016/j.bpj.2010.12.3692. PubMed DOI PMC
Ayoub M.A., Couturier C., Lucas-Meunier E., Angers S., Fossier P., Bouvier M., Jockers R. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 2002;277:21522–21528. doi: 10.1074/jbc.M200729200. PubMed DOI
Gorinski N., Kowalsman N., Renner U., Wirth A., Reinartz M.T., Seifert R., Zeug A., Ponimaskin E., Niv M.Y. Computational and experimental analysis of the transmembrane domain 4/5 dimerization interface of the serotonin 5-HT(1A) receptor. Mol. Pharmacol. 2012;82:448–463. doi: 10.1124/mol.112.079137. PubMed DOI
Massaccesi L., Laudadio E., Mobbili G., Minnelli C., Galeazzi R. Cholesterol-mediated oligomerization pathways of serotonin G-coupled receptor 5-HT2C. Int. J. Biol. Macromol. 2020;160:1090–1100. doi: 10.1016/j.ijbiomac.2020.05.231. PubMed DOI
Park P.S.H., Wells J.W. Oligomeric potential of the M2 muscarinic cholinergic receptor. J. Neurochem. 2004;90:537–548. doi: 10.1111/j.1471-4159.2004.02536.x. PubMed DOI
McMillin S.M., Heusel M., Liu T., Costanzi S., Wess J. Structural basis of M3 muscarinic receptor dimer/oligomer formation. J. Biol. Chem. 2011;286:28584–28598. doi: 10.1074/jbc.M111.259788. PubMed DOI PMC
Park P.S.H., Sum C.S., Pawagi A.B., Wells J.W. Cooperativity and oligomeric status of cardiac muscarinic cholinergic receptors. Biochemistry. 2002;41:5588–5604. doi: 10.1021/bi011746s. PubMed DOI
Redka D.S., Pisterzi L.F., Wells J.W. Binding of orthosteric ligands to the allosteric site of the M(2) muscarinic cholinergic receptor. Mol. Pharmacol. 2008;74:834–843. doi: 10.1124/mol.108.048074. PubMed DOI
Redka D.S., Morizumi T., Elmslie G., Paranthaman P., Shivnaraine R.V., Ellis J., Ernst O.P., Wells J.W. Coupling of G proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor. J. Biol. Chem. 2014;289:24347–24365. doi: 10.1074/jbc.M114.559294. PubMed DOI PMC
Colozo A.T., Park P.S.-H., Sum C.S., Pisterzi L.F., Wells J.W. Cholesterol as a determinant of cooperativity in the M2 muscarinic cholinergic receptor. Biochem. Pharmacol. 2007;74:236–255. doi: 10.1016/j.bcp.2007.04.009. PubMed DOI
Liste M.J.V., Caltabiano G., Ward R.J., Alvarez-Curto E., Marsango S., Milligan G. The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor. Mol. Pharmacol. 2015;87:936–953. doi: 10.1124/mol.114.096925. PubMed DOI
Nguyen D.H., Taub D. Cholesterol is essential for macrophage inflammatory protein 1β binding and conformational integrity of CC chemokine receptor 5. Blood. 2002;99:4298–4306. doi: 10.1182/blood-2001-11-0087. PubMed DOI
Pluhackova K., Gahbauer S., Kranz F., Wassenaar T.A., Böckmann R.A. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4. PLoS Comput. Biol. 2016;12:e1005169. doi: 10.1371/journal.pcbi.1005169. PubMed DOI PMC
Wilkinson M., Siauw M., Horackova M. Modulation of cardiac M2 muscarinic receptor binding by progesterone-related steroids. J. Mol. Cell. Cardiol. 1995;27:1831–1839. doi: 10.1016/0022-2828(95)90006-3. PubMed DOI
Dolejší E., Szánti-Pintér E., Chetverikov N., Nelic D., Randáková A., Doležal V., Kudová E., Jakubík J. Steroids as the novel class of high-affinity allosteric modulators of muscarinic. Res. Sq. 2021 doi: 10.21203/RS.3.RS-140412/V1. PubMed DOI
Robichaud M., Debonnel G. Modulation of the firing activity of female dorsal raphe nucleus serotonergic neurons by neuroactive steroids. J. Endocrinol. 2004;182:11–21. doi: 10.1677/joe.0.1820011. PubMed DOI
Wang Z.-M., Qi Y.-J., Wu P.-Y., Zhu Y., Dong Y.-L., Cheng Z.-X., Zhu Y.-H., Dong Y., Ma L., Zheng P. Neuroactive steroid pregnenolone sulphate inhibits long-term potentiation via activation of alpha2-adrenoreceptors at excitatory synapses in rat medial prefrontal cortex. Int. J. Neuropsychopharmacol. 2008;11:611–624. doi: 10.1017/S1461145707008334. PubMed DOI
Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids