Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids

. 2022 Oct 28 ; 23 (21) : . [epub] 20221028

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36361865

Grantová podpora
European Union - Next Generation EU, Programme EXCELES, ID Project No. LX22NPO5104 European Union
RVO:61388963 Czech Academy of Sciences
RVO:67985823 Czech Academy of Sciences

Muscarinic acetylcholine receptors are membrane receptors involved in many physiological processes. Malfunction of muscarinic signaling is a cause of various internal diseases, as well as psychiatric and neurologic conditions. Cholesterol, neurosteroids, neuroactive steroids, and steroid hormones are molecules of steroid origin that, besides having well-known genomic effects, also modulate membrane proteins including muscarinic acetylcholine receptors. Here, we review current knowledge on the allosteric modulation of muscarinic receptors by these steroids. We give a perspective on the research on the non-genomic effects of steroidal compounds on muscarinic receptors and drug development, with an aim to ultimately exploit such knowledge.

Zobrazit více v PubMed

Bonner T.I., Buckley N.J., Young A.C., Brann M.R. Identification of a Family of Muscarinic Acetylcholine Receptor Genes. Science. 1987;237:527–532. doi: 10.1126/science.3037705. PubMed DOI

Caulfield M.P. Muscarinic Receptors—Characterization, Coupling and Function. Pharmacol. Ther. 1993;58:319–379. doi: 10.1016/0163-7258(93)90027-B. PubMed DOI

Eglen R.M. Overview of Muscarinic Receptor Subtypes. In: Fryer A.D., Arthur Christopoulos N.N.M., editors. Handb Exp Pharmacol. Springer; Berlin/Heidelberg, Germany: 2012. pp. 3–28. PubMed

Scarr E. Muscarinic Receptors: Their Roles in Disorders of the Central Nervous System and Potential as Therapeutic Targets. CNS Neurosci. Ther. 2012;18:369–379. doi: 10.1111/j.1755-5949.2011.00249.x. PubMed DOI PMC

Abrams P., Andersson K.-E., Buccafusco J.J., Chapple C., De Groat W.C., Fryer A., Kay G., Laties A., Nathanson N., Pasricha P.J., et al. Muscarinic receptors: Their distribution and function in body systems, and the implications for treating overactive bladder. J. Cereb. Blood Flow Metab. 2006;148:565–578. doi: 10.1038/sj.bjp.0706780. PubMed DOI PMC

Gosens R., Zaagsma J., Meurs H., Halayko A.J. Muscarinic Receptor Signaling in the Pathophysiology of Asthma and COPD. Respir. Res. 2006;7:73. doi: 10.1186/1465-9921-7-73. PubMed DOI PMC

Gautam D., Han S.J., Duttaroy A., Mears D., Hamdan F.F., Li J.H., Cui Y., Jeon J., Wess J. Role of the M3 Muscarinic Acetylcholine Receptor in β-Cell Function and Glucose Homeostasis. Diabetes, Obes. Metab. 2007;9:158–169. doi: 10.1111/j.1463-1326.2007.00781.x. PubMed DOI

Krejcí A., Tucek S. Changes of Cooperativity between N-Methylscopolamine and Allosteric Modulators Alcuronium and Gallamine Induced by Mutations of External Loops of Muscarinic M(3) Receptors. Mol. Pharmacol. 2001;60:761–767. PubMed

Mysliveček J., Říčný J., Kolář F., Tuček S. The Effects of Hydrocortisone on Rat Heart Muscarinic and Adrenergic A1, Β1 and Β2 Receptors, Propranolol-Resistant Binding Sites and on Some Subsequent Steps in Intracellular Signalling. Naunyn. Schmiedebergs. Arch. Pharmacol. 2003;368:366–376. doi: 10.1007/s00210-003-0825-1. PubMed DOI

Jakubik J., El-Fakahany E.E. Current Advances in Allosteric Modulation of Muscarinic Receptors. Biomolecules. 2020;10:325. doi: 10.3390/biom10020325. PubMed DOI PMC

Zhang Y., Doruker P., Kaynak B., Zhang S., Krieger J., Li H., Bahar I. Intrinsic Dynamics Is Evolutionarily Optimized to Enable Allosteric Behavior. Curr. Opin. Struct. Biol. 2020;62:14–21. doi: 10.1016/j.sbi.2019.11.002. PubMed DOI PMC

Clark A.L., Mitchelson F. The Inhibitory Effect of Gallamine on Muscarinic Receptors. Br. J. Pharmacol. 1976;58:323–331. doi: 10.1111/j.1476-5381.1976.tb07708.x. PubMed DOI PMC

Stockton J.M., Birdsall N.J., Burgen A.S., Hulme E.C. Modification of the Binding Properties of Muscarinic Receptors by Gallamine. Mol. Pharmacol. 1983;23:551–557. PubMed

Nedoma J., Dorofeeva N.A., Tuček S., Shelkovnikov S.A., Danilov A.F. Interaction of the Neuromuscular Blocking Drugs Alcuronium, Decamethonium, Gallamine, Pancuronium, Ritebronium, Tercuronium and d-Tubocurarine with Muscarinic Acetylcholine Receptors in the Heart and Ileum. Naunyn Schmiedebergs Arch. Pharmacol. 1985;329:176–181. doi: 10.1007/BF00501209. PubMed DOI

Lazareno S., Dolezal V., Popham A., Birdsall N.J.M. Thiochrome Enhances Acetylcholine Affinity at Muscarinic M4 Receptors: Receptor Subtype Selectivity via Cooperativity Rather than Affinity. Mol. Pharmacol. 2004;65:257–266. doi: 10.1124/mol.65.1.257. PubMed DOI

Waelbroeck M., Robberecht P., De Neef P., Christophe J. Effects of Verapamil on the Binding Properties of Rat Heart Muscarinic Receptors: Evidence for an Allosteric Site. Biochem. Biophys. Res. Commun. 1984;121:340–345. doi: 10.1016/0006-291X(84)90728-9. PubMed DOI

Proska J., Tucek S. Competition between Positive and Negative Allosteric Effectors on Muscarinic Receptors. Mol. Pharmacol. 1995;48:696–702. PubMed

Proška J., Tuček S. Positive Allosteric Action of Eburnamonine on Cardiac Muscarinic Acetylcholine Receptors. Eur. J. Pharmacol. 1996;305:201–205. doi: 10.1016/0014-2999(96)00169-0. PubMed DOI

Dong G.Z., Kameyama K., Rinken A., Haga T. Ligand Binding Properties of Muscarinic Acetylcholine Receptor Subtypes (M1-M5) Expressed in Baculovirus-Infected Insect Cells. J. Pharmacol. Exp. Ther. 1995;274:378–384. PubMed

Dong G.Z., Haga T., Itokawa H., Mizobe F. Allosteric Binding of 9-Methoxy-Alpha-Lapachone and Alcuronium to the Muscarinic Acetylcholine Receptor M2 Subtype. Biomed. Res. 1995;16:327–335. doi: 10.2220/biomedres.16.327. DOI

Birdsall N.J.M., Lazareno S. Allosterism at Muscarinic Receptors: Ligands and Mechanisms. Mini Rev. Med. Chem. 2005;5:523–543. doi: 10.2174/1389557054023251. PubMed DOI

Gregory K.J., Sexton P.M., Christopoulos A. Allosteric Modulation of Muscarinic Acetylcholine Receptors. Curr. Neuropharmacol. 2007;5:157–167. doi: 10.2174/157015907781695946. PubMed DOI PMC

Jakubík J., El-Fakahany E.E. Allosteric Modulation of Muscarinic Acetylcholine Receptors. Pharmaceuticals. 2010;3:2838–2860. doi: 10.3390/ph3092838. PubMed DOI PMC

Ma L., Seager M.A., Seager M., Wittmann M., Jacobson M., Bickel D., Burno M., Jones K., Graufelds V.K., Xu G., et al. Selective Activation of the M1 Muscarinic Acetylcholine Receptor Achieved by Allosteric Potentiation. Proc. Natl. Acad. Sci. USA. 2009;106:15950–15955. doi: 10.1073/pnas.0900903106. PubMed DOI PMC

Shirey J.K., Brady A.E., Jones P.J., Davis A.A., Bridges T.M., Kennedy J.P., Jadhav S.B., Menon U.N., Xiang Z., Watson M.L., et al. A Selective Allosteric Potentiator of the M1 Muscarinic Acetylcholine Receptor Increases Activity of Medial Prefrontal Cortical Neurons and Restores Impairments in Reversal Learning. J. Neurosci. 2009;29:14271–14286. doi: 10.1523/JNEUROSCI.3930-09.2009. PubMed DOI PMC

Shirey J.K., Xiang Z., Orton D., Brady A.E., Johnson K.A., Williams R., Ayala J.E., Rodriguez A.L., Wess J., Weaver D., et al. An Allosteric Potentiator of M4 MAChR Modulates Hippocampal Synaptic Transmission. Nat. Chem. Biol. 2008;4:42–50. doi: 10.1038/nchembio.2007.55. PubMed DOI

Brady A.E., Jones C.K., Bridges T.M., Kennedy J.P., Thompson A.D., Heiman J.U., Breininger M.L., Gentry P.R., Yin H., Jadhav S.B., et al. Centrally Active Allosteric Potentiators of the M4 Muscarinic Acetylcholine Receptor Reverse Amphetamine-Induced Hyperlocomotor Activity in Rats. J. Pharmacol. Exp. Ther. 2008;327:941–953. doi: 10.1124/jpet.108.140350. PubMed DOI PMC

Chan W.Y., McKinzie D.L., Bose S., Mitchell S.N., Witkin J.M., Thompson R.C., Christopoulos A., Lazareno S., Birdsall N.J.M., Bymaster F.P., et al. Allosteric Modulation of the Muscarinic M4 Receptor as an Approach to Treating Schizophrenia. Proc. Natl. Acad. Sci. USA. 2008;105:10978–10983. doi: 10.1073/pnas.0800567105. PubMed DOI PMC

Michal P., Rudajev V., El-Fakahany E.E., Dolezal V. Membrane Cholesterol Content Influences Binding Properties of Muscarinic M2 Receptors and Differentially Impacts Activation of Second Messenger Pathways. Eur. J. Pharmacol. 2009;606:50–60. doi: 10.1016/j.ejphar.2009.01.028. PubMed DOI PMC

Michal P., El-Fakahany E.E., Doležal V. Changes in Membrane Cholesterol Differentially Influence Preferential and Non-Preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors. Neurochem. Res. 2015;40:2068–2077. doi: 10.1007/s11064-014-1325-z. PubMed DOI PMC

Randáková A., Dolejší E., Rudajev V., Zimčík P., Doležal V., El-Fakahany E.E., Jakubík J. Role of Membrane Cholesterol in Differential Sensitivity of Muscarinic Receptor Subtypes to Persistently Bound Xanomeline. Neuropharmacology. 2018;133:129–144. doi: 10.1016/j.neuropharm.2018.01.027. PubMed DOI

Acconcia F., Marino M. Steroid Hormones: Synthesis, Secretion, and Transport. In: Belfiore A., LeRoith D., editors. Principles of Endocrinology and Hormone Action. Springer International Publishing; Cham, Switzerland: 2016. pp. 1–31.

Rupprecht R., Holsboer F. Neuroactive Steroids: Mechanisms of Action and Neuropsychopharmacological Perspectives. Trends Neurosci. 1999;22:410–416. doi: 10.1016/S0166-2236(99)01399-5. PubMed DOI

Do Rego J.L., Seong J.Y., Burel D., Leprince J., Luu-The V., Tsutsui K., Tonon M.C., Pelletier G., Vaudry H. Neurosteroid Biosynthesis: Enzymatic Pathways and Neuroendocrine Regulation by Neurotransmitters and Neuropeptides. Front. Neuroendocrinol. 2009;30:259–301. doi: 10.1016/j.yfrne.2009.05.006. PubMed DOI

Reddy D.S. Neurosteroids: Endogenous Role in the Human Brain and Therapeutic Potentials. Prog. Brain Res. 2010;186:113–137. doi: 10.1016/B978-0-444-53630-3.00008-7. PubMed DOI PMC

Wilkenfeld S.R., Lin C., Frigo D.E. Communication between Genomic and Non-Genomic Signaling Events Coordinate Steroid Hormone Actions. Steroids. 2018;133:2–7. doi: 10.1016/j.steroids.2017.11.005. PubMed DOI PMC

Zhao X.F. G Protein-Coupled Receptors Function as Cell Membrane Receptors for the Steroid Hormone 20-Hydroxyecdysone. Cell Commun. Signal. 2020;18:1–9. doi: 10.1186/s12964-020-00620-y. PubMed DOI PMC

Baulieu E., Robel P. Neurosteroids: A New Brain Function? J. Steroid Biochem. Mol. Biol. 1990;37:395–403. doi: 10.1016/0960-0760(90)90490-C. PubMed DOI

Colciago A., Bonalume V., Melfi V., Magnaghi V. Genomic and Non-Genomic Action of Neurosteroids in the Peripheral Nervous System. Front. Neurosci. 2020;14:796. doi: 10.3389/fnins.2020.00796. PubMed DOI PMC

Daniel J.M., Hulst J.L., Lee C.D. Role of Hippocampal M2 Muscarinic Receptors in the Estrogen-Induced Enhancement of Working Memory. Neuroscience. 2005;132:57–64. doi: 10.1016/j.neuroscience.2005.01.002. PubMed DOI

Darnaudéry M., Koehl M., Piazza P.V., Le Moal M., Mayo W. Pregnenolone Sulfate Increases Hippocampal Acetylcholine Release and Spatial Recognition. Brain Res. 2000;852:173–179. doi: 10.1016/S0006-8993(99)01964-2. PubMed DOI

Horishita T., Minami K., Uezono Y., Shiraishi M., Ogata J., Okamoto T., Terada T., Sata T. The Effects of the Neurosteroids: Pregnenolone, Progesterone and Dehydroepiandrosterone on Muscarinic Receptor-Induced Responses in Xenopus Oocytes Expressing M1 and M3 Receptors. Naunyn. Schmiedebergs. Arch. Pharmacol. 2005;371:221–228. doi: 10.1007/s00210-005-1022-1. PubMed DOI

Klangkalya B., Chan A. The Effects of Ovarian Hormones on Beta-Adrenergic and Muscarinic Receptors in Rat Heart. Life Sci. 1988;42:2307–2314. doi: 10.1016/0024-3205(88)90183-X. PubMed DOI

Klangkalya B., Chan A. Structure-Activity Relationships of Steroid Hormones on Muscarinic Receptor Binding. J. Steroid Biochem. 1988;29:111–118. doi: 10.1016/0022-4731(88)90384-6. PubMed DOI

Klangkalya B., Chan A. Inhibition of Hypothalamic and Pituitary Muscarinic Receptor Binding by Progesterone. Neuroendocrinology. 1988;47:294–302. doi: 10.1159/000124928. PubMed DOI

Dolejší E., Szánti-Pintér E., Chetverikov N., Nelic D., Randáková A., Doležal V., Kudová E., Jakubík J. Neurosteroids and Steroid Hormones Are Allosteric Modulators of Muscarinic Receptors. Neuropharmacology. 2021;199:108798. doi: 10.1016/j.neuropharm.2021.108798. PubMed DOI

Dolejší E., Chetverikov N., Szánti-Pintér E., Nelic D., Randáková A., Doležal V., El-Fakahany E.E., Kudová E., Jakubík J. Neuroactive Steroids, WIN-Compounds and Cholesterol Share a Common Binding Site on Muscarinic Acetylcholine Receptors. Biochem. Pharmacol. 2021;192:114699. doi: 10.1016/j.bcp.2021.114699. PubMed DOI

Fantini J., Barrantes F.J. How Cholesterol Interacts with Membrane Proteins: An Exploration of Cholesterol-Binding Sites Including CRAC, CARC, and Tilted Domains. Front. Physiol. 2013;4:31. doi: 10.3389/fphys.2013.00031. PubMed DOI PMC

Bandara A., Panahi A., Pantelopulos G.A., Straub J.E. Exploring the Structure and Stability of Cholesterol Dimer Formation in Multicomponent Lipid Bilayers. J. Comput. Chem. 2017;38:1479–1488. doi: 10.1002/jcc.24516. PubMed DOI PMC

Simons K., Toomre D. Lipid Rafts and Signal Transduction. Nat. Rev. Mol. Cell Biol. 2000;1:31–39. doi: 10.1038/35036052. PubMed DOI

Lei B., Morris D.P., Smith M.P., Schwinn D.A. Lipid Rafts Constrain Basal A1A-Adrenergic Receptor Signaling by Maintaining Receptor in an Inactive Conformation. Cell. Signal. 2009;21:1532–1539. doi: 10.1016/j.cellsig.2009.06.001. PubMed DOI

Niemelä P.S., Ollila S., Hyvönen M.T., Karttunen M., Vattulainen I. Assessing the Nature of Lipid Raft Membranes. PLoS Comput. Biol. 2007;3:304–312. doi: 10.1371/journal.pcbi.0030034. PubMed DOI PMC

Levitan I., Fang Y., Rosenhouse-Dantsker A., Romanenko V. Cholesterol and Ion Channels. Subcell. Biochem. 2010;51:509. doi: 10.1007/978-90-481-8622-8_19. PubMed DOI PMC

Duncan A.L., Song W., Sansom M.S.P. Lipid-Dependent Regulation of Ion Channels and G Protein–Coupled Receptors: Insights from Structures and Simulations. Annu. Rev. Pharmacol. Toxicol. 2020;60:31–50. doi: 10.1146/annurev-pharmtox-010919-023411. PubMed DOI

Gimpl G., Burger K., Fahrenholz F. A Closer Look at the Cholesterol Sensor. Trends Biochem. Sci. 2002;27:596–599. doi: 10.1016/S0968-0004(02)02224-7. PubMed DOI

Hanson M.A., Cherezov V., Griffith M.T., Roth C.B., Jaakola V.-P., Chien E.Y.T., Velasquez J., Kuhn P., Stevens R.C. A Specific Cholesterol Binding Site Is Established by the 2.8 A Structure of the Human Beta2-Adrenergic Receptor. Structure. 2008;16:897–905. doi: 10.1016/j.str.2008.05.001. PubMed DOI PMC

Paila Y.D., Tiwari S., Chattopadhyay A. Are Specific Nonannular Cholesterol Binding Sites Present in G-Protein Coupled Receptors? Biochim. Biophys. Acta Biomembr. 2009;1788:295–302. doi: 10.1016/j.bbamem.2008.11.020. PubMed DOI

Gimpl G. Interaction of G Protein Coupled Receptors and Cholesterol. Chem. Phys. Lipids. 2016;199:61–73. doi: 10.1016/j.chemphyslip.2016.04.006. PubMed DOI

Sarkar P., Chattopadhyay A. Cholesterol Interaction Motifs in G Protein-Coupled Receptors: Slippery Hot Spots? Wiley Interdiscip. Rev. Syst. Biol. Med. 2020;12:e1481. doi: 10.1002/wsbm.1481. PubMed DOI

Reddy D.S., Estes W.A. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol. Sci. 2016;37:543–561. doi: 10.1016/j.tips.2016.04.003. PubMed DOI PMC

Ratner M.H., Kumaresan V., Farb D.H. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front. Endocrinol. 2019;10:169. doi: 10.3389/fendo.2019.00169. PubMed DOI PMC

Coronel M.F., Labombarda F., González S.L. Neuroactive Steroids, Nociception and Neuropathic Pain: A Flashback to Go Forward. Steroids. 2016;110:77–87. doi: 10.1016/j.steroids.2016.04.005. PubMed DOI

Joksimovic S.L., Covey D.F., Jevtovic-Todorovic V., Todorovic S.M. Neurosteroids in Pain Management: A New Perspective on an Old Player. Front. Pharmacol. 2018;9:1127. doi: 10.3389/fphar.2018.01127. PubMed DOI PMC

Meyer L., Taleb O., Patte-Mensah C., Mensah-Nyagan A.-G. Neurosteroids and Neuropathic Pain Management: Basic Evidence and Therapeutic Perspectives. Front. Neuroendocrinol. 2019;55:100795. doi: 10.1016/j.yfrne.2019.100795. PubMed DOI

González S.L., Meyer L., Raggio M.C., Taleb O., Coronel M.F., Patte-Mensah C., Mensah-Nyagan A.G. Allopregnanolone and Progesterone in Experimental Neuropathic Pain: Former and New Insights with a Translational Perspective. Cell. Mol. Neurobiol. 2019;39:523–537. doi: 10.1007/s10571-018-0618-1. PubMed DOI

Borowicz K.K., Piskorska B., Banach M., Czuczwar S.J. Neuroprotective Actions of Neurosteroids. Front. Endocrinol. 2011;2:50. doi: 10.3389/fendo.2011.00050. PubMed DOI PMC

Mendell A.L., MacLusky N.J. Neurosteroid Metabolites of Gonadal Steroid Hormones in Neuroprotection: Implications for Sex Differences in Neurodegenerative Disease. Front. Mol. Neurosci. 2018;11:359. doi: 10.3389/fnmol.2018.00359. PubMed DOI PMC

Yilmaz C., Karali K., Fodelianaki G., Gravanis A., Chavakis T., Charalampopoulos I., Alexaki V.I. Neurosteroids as Regulators of Neuroinflammation. Front. Neuroendocrinol. 2019;55:100788. doi: 10.1016/j.yfrne.2019.100788. PubMed DOI

Kudova E. Rapid Effects of Neurosteroids on Neuronal Plasticity and Their Physiological and Pathological Implications. Neurosci. Lett. 2021;750:135771. doi: 10.1016/j.neulet.2021.135771. PubMed DOI

Klinge C.M. Principles of Endocrinology and Hormone Action. Springer; Cham, Switzerland: 2018. Steroid Hormone Receptors and Signal Transduction Processes; pp. 187–232.

Reddy D.S. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy. Front. Cell. Neurosci. 2016;10:101. doi: 10.3389/fncel.2016.00101. PubMed DOI PMC

Baulieu E.E. Neurosteroids: A Novel Function of the Brain. Psychoneuroendocrinology. 1998;23:963–987. doi: 10.1016/S0306-4530(98)00071-7. PubMed DOI

Reddy D.S. Mass Spectrometric Assay and Physiological-Pharmacological Activity of Androgenic Neurosteroids. Neurochem. Int. 2008;52:541–553. doi: 10.1016/j.neuint.2007.05.019. PubMed DOI PMC

Reddy D.S. Role of Hormones and Neurosteroids in Epileptogenesis. Front. Cell. Neurosci. 2013;7:115. doi: 10.3389/fncel.2013.00115. PubMed DOI PMC

Reddy D.S. Progress in Brain Research. Volume 186. Elsevier; Amsterdam, The Netherlands: 2010. Neurosteroids; pp. 113–137. PubMed PMC

Baulieu E.E., Schumacher M. Progesterone as a Neuroactive Neurosteroid, with Special Reference to the Effect of Progesterone on Myelination. Hum. Reprod. 2000;15((Suppl. 1)):1–13. doi: 10.1093/humrep/15.suppl_1.1. PubMed DOI

Almey A., Milner T.A., Brake W.G. Estrogen Receptors in the Central Nervous System and Their Implication for Dopamine-Dependent Cognition in Females. Horm. Behav. 2015;74:125–138. doi: 10.1016/j.yhbeh.2015.06.010. PubMed DOI PMC

Pang Z.P., Han W. Regulation of Synaptic Functions in Central Nervous System by Endocrine Hormones and the Maintenance of Energy Homoeostasis. Biosci. Rep. 2012;32:423–432. doi: 10.1042/BSR20120026. PubMed DOI PMC

Karpinski M., Mattina G.F., Steiner M. Effect of Gonadal Hormones on Neurotransmitters Implicated in the Pathophysiology of Obsessive-Compulsive Disorder: A Critical Review. Neuroendocrinology. 2017;105:1–16. doi: 10.1159/000453664. PubMed DOI

Barth C., Villringer A., Sacher J. Sex Hormones Affect Neurotransmitters and Shape the Adult Female Brain during Hormonal Transition Periods. Front. Neurosci. 2015;9:1–20. doi: 10.3389/fnins.2015.00037. PubMed DOI PMC

Rudolph L.M., Cornil C.A., Mittelman-Smith M.A., Rainville J.R., Remage-Healey L., Sinchak K., Micevych P.E. Actions of Steroids: New Neurotransmitters. J. Neurosci. 2016;36:11449–11458. doi: 10.1523/JNEUROSCI.2473-16.2016. PubMed DOI PMC

Belanoff J.K., Gross K., Yager A., Schatzberg A.F. Corticosteroids and Cognition. J. Psychiatr. Res. 2001;35:127–145. doi: 10.1016/S0022-3956(01)00018-8. PubMed DOI

Wolf O.T. Cognitive Functions and Sex Steroids. Ann. Endocrinol. 2003;64:158–161. PubMed

Ali S.A., Begum T., Reza F. Hormonal Influences on Cognitive Function. Malaysian J. Med. Sci. 2018;25:31–41. doi: 10.21315/mjms2018.25.4.3. PubMed DOI PMC

Frick K.M., Kim J. Mechanisms Underlying the Rapid Effects of Estradiol and Progesterone on Hippocampal Memory Consolidation in Female Rodents. Horm. Behav. 2018;104:100–110. doi: 10.1016/j.yhbeh.2018.04.013. PubMed DOI PMC

Ouanes S., Popp J. High Cortisol and the Risk of Dementia and Alzheimer’s Disease: A Review of the Literature. Front. Aging Neurosci. 2019;11:43. doi: 10.3389/fnagi.2019.00043. PubMed DOI PMC

McEwen B.S. Steroid Hormones: Effect on Brain Development and Function. Horm. Res. 1992;37:1–10. doi: 10.1159/000182393. PubMed DOI

Rubinow D.R., Schmidt P.J. Gonadal Steroids, Brain, and Behavior: Role of Context. Dialogues Clin. Neurosci. 2002;4:123–137. doi: 10.31887/DCNS.2002.4.2/drubinow. PubMed DOI PMC

Thomas P., Pang Y. Membrane Progesterone Receptors: Evidence for Neuroprotective, Neurosteroid Signaling and Neuroendocrine Functions in Neuronal Cells. Neuroendocrinology. 2012;96:162–171. doi: 10.1159/000339822. PubMed DOI PMC

Thomas P., Pang Y. Anti-Apoptotic Actions of Allopregnanolone and Ganaxolone Mediated Through Membrane Progesterone Receptors (PAQRs) in Neuronal Cells. Front. Endocrinol. 2020;11:417. doi: 10.3389/fendo.2020.00417. PubMed DOI PMC

Webb S.J., Geoghegan T.E., Prough R.A., Michael Miller K.K. The Biological Actions of Dehydroepiandrosterone Involves Multiple Receptors. Drug Metab. Rev. 2006;38:89–116. doi: 10.1080/03602530600569877. PubMed DOI PMC

Zheng P. Neuroactive Steroid Regulation of Neurotransmitter Release in the CNS: Action, Mechanism and Possible Significance. Prog. Neurobiol. 2009;89:134–152. doi: 10.1016/j.pneurobio.2009.07.001. PubMed DOI

Yadid G., Sudai E., Maayan R., Gispan I., Weizman A. The Role of Dehydroepiandrosterone (DHEA) in Drug-Seeking Behavior. Neurosci. Biobehav. Rev. 2010;35:303–314. doi: 10.1016/j.neubiorev.2010.03.003. PubMed DOI

Lösel R., Wehling M. Nongenomic Actions of Steroid Hormones. Nat. Rev. Mol. Cell Biol. 2003;4:46–56. doi: 10.1038/nrm1009. PubMed DOI

Tuem K.B., Atey T.M. Neuroactive Steroids: Receptor Interactions and Responses. Front. Neurol. 2017;8:442. doi: 10.3389/fneur.2017.00442. PubMed DOI PMC

Wang C., Liu Y., Cao J.-M. G Protein-Coupled Receptors: Extranuclear Mediators for the Non-Genomic Actions of Steroids. Int. J. Mol. Sci. 2014;15:15412–15425. doi: 10.3390/ijms150915412. PubMed DOI PMC

Rosenbaum D.M., Rasmussen S.G.F., Kobilka B.K. The Structure and Function of G-Protein-Coupled Receptors. Nature. 2009;459:356–363. doi: 10.1038/nature08144. PubMed DOI PMC

Hauser A.S., Attwood M.M., Rask-Andersen M., Schiöth H.B., Gloriam D.E. Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat. Rev. Drug Discov. 2017;16:829–842. doi: 10.1038/nrd.2017.178. PubMed DOI PMC

Dascal N., Kahanovitch U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. Int. Rev. Neurobiol. 2015;123:27–85. doi: 10.1016/bs.irn.2015.06.001. PubMed DOI

Randáková A., Nelic D., Ungerová D., Nwokoye P., Su Q., Doležal V., El-Fakahany E.E., Boulos J., Jakubík J. Novel M 2 -selective, G i -biased Agonists of Muscarinic Acetylcholine Receptors. Br. J. Pharmacol. 2020;177:2073–2089. doi: 10.1111/bph.14970. PubMed DOI PMC

Randáková A., Jakubík J. Functionally Selective and Biased Agonists of Muscarinic Receptors. Pharmacol. Res. 2021;169:105641. doi: 10.1016/j.phrs.2021.105641. PubMed DOI

Li H., Papadopoulos V. Peripheral-Type Benzodiazepine Receptor Function in Cholesterol Transport. Identification of a Putative Cholesterol Recognition/Interaction Amino Acid Sequence and Consensus Pattern. Endocrinology. 1998;139:4991–4997. doi: 10.1210/endo.139.12.6390. PubMed DOI

Jafurulla M., Tiwari S., Chattopadhyay A. Identification of Cholesterol Recognition Amino Acid Consensus (CRAC) Motif in G-Protein Coupled Receptors. Biochem. Biophys. Res. Commun. 2011;404:569–573. doi: 10.1016/j.bbrc.2010.12.031. PubMed DOI

Bymaster F.P., Carter P.A., Peters S.C., Zhang W., Ward J.S., Mitch C.H., Calligaro D.O., Whitesitt C.A., DeLapp N., Shannon H.E., et al. Xanomeline Compared to Other Muscarinic Agents on Stimulation of Phosphoinositide Hydrolysis in Vivo and Other Cholinomimetic Effects. Brain Res. 1998;795:179–190. doi: 10.1016/S0006-8993(98)00267-4. PubMed DOI

DeLapp N., Wu S., Belagaje R., Johnstone E., Little S., Shannon H., Bymaster F., Calligaro D., Mitch C., Whitesitt C., et al. Effects of the M1 Agonist Xanomeline on Processing of Human Beta-Amyloid Precursor Protein (FAD, Swedish Mutant) Transfected into Chinese Hamster Ovary-M1 Cells. Biochem. Biophys. Res. Commun. 1998;244:156–160. doi: 10.1006/bbrc.1998.8235. PubMed DOI

Christopoulos A., Pierce T.L., Sorman J.L., El-Fakahany E.E. On the Unique Binding and Activating Properties of Xanomeline at the M1 Muscarinic Acetylcholine Receptor. Mol. Pharmacol. 1998;53:1120–1130. PubMed

Grant M.K.O., El-Fakahany E.E. Persistent Binding and Functional Antagonism by Xanomeline at the Muscarinic M5 Receptor. J. Pharmacol. Exp. Ther. 2005;315:313–319. doi: 10.1124/jpet.105.090134. PubMed DOI

Avissar S., Egozi Y., Sokolovsky M. Studies on Muscarinic Receptors in Mouse and Rat Hypothalamus: A Comparison of Sex and Cyclical Differences. Neuroendocrinology. 1981;32:295–302. doi: 10.1159/000123175. PubMed DOI

Wilkinson M., Giles A., Wilkinson D.A. M 2 Muscarinic ([3 H] N -Methyl Scopolamine) Binding in Micropunches of Rat Ventricular Myocardium: Characterization and Modification by Progesterone. Can. J. Physiol. Pharmacol. 1992;70:943–948. doi: 10.1139/y92-129. PubMed DOI

Wilkinson M., Siauw M., Horackova M. Modulation of cardiac M2 muscarinic receptor binding by progesterone-related steroids. J. Mol. Cell. Cardiol. 1995;27:1831–1839. doi: 10.1016/0022-2828(95)90006-3. PubMed DOI

Shiraishi M., Minami K., Shibuya I., Uezono Y., Ogata J., Okamoto T., Murasaki O., Kaibara M., Ueta Y., Shigematsu A. The Inhibitory Effects of Alphaxalone on M1 and M3 Muscarinic Receptors Expressed in Xenopus Oocytes. Anesth. Analg. 2003;97:449–455. doi: 10.1213/01.ANE.0000068985.78588.E1. PubMed DOI

Sokolovsky M., Egozi Y., Avissar S. Molecular Regulation of Receptors: Interaction of Beta-Estradiol and Progesterone with the Muscarinic System. Proc. Natl. Acad. Sci. USA. 1981;78:5554–5558. doi: 10.1073/pnas.78.9.5554. PubMed DOI PMC

Al-Daham M.I.M., Thomas P.J. Contrasting Effects of Testicular and Ovarian Steroids upon Muscarinic Binding Sites in the Brain. Pharmacology. 1987;34:250–258. doi: 10.1159/000138276. PubMed DOI

Bae Y.J., Zeidler R., Baber R., Vogel M., Wirkner K., Loeffler M., Ceglarek U., Kiess W., Körner A., Thiery J., et al. Reference Intervals of Nine Steroid Hormones over the Life-Span Analyzed by LC-MS/MS: Effect of Age, Gender, Puberty, and Oral Contraceptives. J. Steroid Biochem. Mol. Biol. 2019;193:105409. doi: 10.1016/j.jsbmb.2019.105409. PubMed DOI

Hill M., Hána V., Velíková M., Pařízek A., Kolátorová L., Vítků J., Škodová T., Šimková M., Šimják P., Kancheva R., et al. A Method for Determination of One Hundred Endogenous Steroids in Human Serum by Gas Chromatography-Tandem Mass Spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI

Lazareno S., Popham A., Birdsall N.J. Allosteric Interactions of Staurosporine and Other Indolocarbazoles with N-[Methyl-(3)H]Scopolamine and Acetylcholine at Muscarinic Receptor Subtypes: Identification of a Second Allosteric Site. Mol. Pharmacol. 2000;58:194–207. doi: 10.1124/mol.58.1.194. PubMed DOI

Lazareno S., Popham A., Birdsall N.J.M. Analogs of WIN 62,577 Define a Second Allosteric Site on Muscarinic Receptors. Mol. Pharmacol. 2002;62:1492–1505. doi: 10.1124/mol.62.6.1492. PubMed DOI

Kruse A.C., Ring A.M., Manglik A., Hu J., Hu K., Eitel K., Hübner H., Pardon E., Valant C., Sexton P.M., et al. Activation and Allosteric Modulation of a Muscarinic Acetylcholine Receptor. Nature. 2013;504:101–106. doi: 10.1038/nature12735. PubMed DOI PMC

Huang X.-P., Prilla S., Mohr K., Ellis J. Critical Amino Acid Residues of the Common Allosteric Site on the M2 Muscarinic Acetylcholine Receptor: More Similarities than Differences between the Structurally Divergent Agents Gallamine and Bis(Ammonio)Alkane-Type Hexamethylene-Bis-[Dimethyl-(3-Phthalimidopropyl)ammonium]dibromide. Mol. Pharmacol. 2005;68:769–778. doi: 10.1124/mol.105.014043. PubMed DOI

Leppik R.A., Miller R.C., Eck M., Paquet J.L. Role of Acidic Amino Acids in the Allosteric Modulation by Gallamine of Antagonist Binding at the M2 Muscarinic Acetylcholine Receptor. Mol. Pharmacol. 1994;45:983–990. PubMed

Jakubík J., El-Fakahany E.E. Allosteric Modulation of GPCRs of Class A by Cholesterol. Int. J. Mol. Sci. 2021;22:1953. doi: 10.3390/ijms22041953. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace