Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
European Union - Next Generation EU, Programme EXCELES, ID Project No. LX22NPO5104
European Union
RVO:61388963
Czech Academy of Sciences
RVO:67985823
Czech Academy of Sciences
PubMed
36361865
PubMed Central
PMC9656441
DOI
10.3390/ijms232113075
PII: ijms232113075
Knihovny.cz E-zdroje
- Klíčová slova
- allosteric modulation, cholesterol, muscarinic receptors, neuroactive steroids, neurosteroids,
- MeSH
- cholesterol MeSH
- hormony metabolismus MeSH
- neurosteroidy * farmakologie MeSH
- receptory muskarinové MeSH
- steroidy farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cholesterol MeSH
- hormony MeSH
- neurosteroidy * MeSH
- receptory muskarinové MeSH
- steroidy MeSH
Muscarinic acetylcholine receptors are membrane receptors involved in many physiological processes. Malfunction of muscarinic signaling is a cause of various internal diseases, as well as psychiatric and neurologic conditions. Cholesterol, neurosteroids, neuroactive steroids, and steroid hormones are molecules of steroid origin that, besides having well-known genomic effects, also modulate membrane proteins including muscarinic acetylcholine receptors. Here, we review current knowledge on the allosteric modulation of muscarinic receptors by these steroids. We give a perspective on the research on the non-genomic effects of steroidal compounds on muscarinic receptors and drug development, with an aim to ultimately exploit such knowledge.
Zobrazit více v PubMed
Bonner T.I., Buckley N.J., Young A.C., Brann M.R. Identification of a Family of Muscarinic Acetylcholine Receptor Genes. Science. 1987;237:527–532. doi: 10.1126/science.3037705. PubMed DOI
Caulfield M.P. Muscarinic Receptors—Characterization, Coupling and Function. Pharmacol. Ther. 1993;58:319–379. doi: 10.1016/0163-7258(93)90027-B. PubMed DOI
Eglen R.M. Overview of Muscarinic Receptor Subtypes. In: Fryer A.D., Arthur Christopoulos N.N.M., editors. Handb Exp Pharmacol. Springer; Berlin/Heidelberg, Germany: 2012. pp. 3–28. PubMed
Scarr E. Muscarinic Receptors: Their Roles in Disorders of the Central Nervous System and Potential as Therapeutic Targets. CNS Neurosci. Ther. 2012;18:369–379. doi: 10.1111/j.1755-5949.2011.00249.x. PubMed DOI PMC
Abrams P., Andersson K.-E., Buccafusco J.J., Chapple C., De Groat W.C., Fryer A., Kay G., Laties A., Nathanson N., Pasricha P.J., et al. Muscarinic receptors: Their distribution and function in body systems, and the implications for treating overactive bladder. J. Cereb. Blood Flow Metab. 2006;148:565–578. doi: 10.1038/sj.bjp.0706780. PubMed DOI PMC
Gosens R., Zaagsma J., Meurs H., Halayko A.J. Muscarinic Receptor Signaling in the Pathophysiology of Asthma and COPD. Respir. Res. 2006;7:73. doi: 10.1186/1465-9921-7-73. PubMed DOI PMC
Gautam D., Han S.J., Duttaroy A., Mears D., Hamdan F.F., Li J.H., Cui Y., Jeon J., Wess J. Role of the M3 Muscarinic Acetylcholine Receptor in β-Cell Function and Glucose Homeostasis. Diabetes, Obes. Metab. 2007;9:158–169. doi: 10.1111/j.1463-1326.2007.00781.x. PubMed DOI
Krejcí A., Tucek S. Changes of Cooperativity between N-Methylscopolamine and Allosteric Modulators Alcuronium and Gallamine Induced by Mutations of External Loops of Muscarinic M(3) Receptors. Mol. Pharmacol. 2001;60:761–767. PubMed
Mysliveček J., Říčný J., Kolář F., Tuček S. The Effects of Hydrocortisone on Rat Heart Muscarinic and Adrenergic A1, Β1 and Β2 Receptors, Propranolol-Resistant Binding Sites and on Some Subsequent Steps in Intracellular Signalling. Naunyn. Schmiedebergs. Arch. Pharmacol. 2003;368:366–376. doi: 10.1007/s00210-003-0825-1. PubMed DOI
Jakubik J., El-Fakahany E.E. Current Advances in Allosteric Modulation of Muscarinic Receptors. Biomolecules. 2020;10:325. doi: 10.3390/biom10020325. PubMed DOI PMC
Zhang Y., Doruker P., Kaynak B., Zhang S., Krieger J., Li H., Bahar I. Intrinsic Dynamics Is Evolutionarily Optimized to Enable Allosteric Behavior. Curr. Opin. Struct. Biol. 2020;62:14–21. doi: 10.1016/j.sbi.2019.11.002. PubMed DOI PMC
Clark A.L., Mitchelson F. The Inhibitory Effect of Gallamine on Muscarinic Receptors. Br. J. Pharmacol. 1976;58:323–331. doi: 10.1111/j.1476-5381.1976.tb07708.x. PubMed DOI PMC
Stockton J.M., Birdsall N.J., Burgen A.S., Hulme E.C. Modification of the Binding Properties of Muscarinic Receptors by Gallamine. Mol. Pharmacol. 1983;23:551–557. PubMed
Nedoma J., Dorofeeva N.A., Tuček S., Shelkovnikov S.A., Danilov A.F. Interaction of the Neuromuscular Blocking Drugs Alcuronium, Decamethonium, Gallamine, Pancuronium, Ritebronium, Tercuronium and d-Tubocurarine with Muscarinic Acetylcholine Receptors in the Heart and Ileum. Naunyn Schmiedebergs Arch. Pharmacol. 1985;329:176–181. doi: 10.1007/BF00501209. PubMed DOI
Lazareno S., Dolezal V., Popham A., Birdsall N.J.M. Thiochrome Enhances Acetylcholine Affinity at Muscarinic M4 Receptors: Receptor Subtype Selectivity via Cooperativity Rather than Affinity. Mol. Pharmacol. 2004;65:257–266. doi: 10.1124/mol.65.1.257. PubMed DOI
Waelbroeck M., Robberecht P., De Neef P., Christophe J. Effects of Verapamil on the Binding Properties of Rat Heart Muscarinic Receptors: Evidence for an Allosteric Site. Biochem. Biophys. Res. Commun. 1984;121:340–345. doi: 10.1016/0006-291X(84)90728-9. PubMed DOI
Proska J., Tucek S. Competition between Positive and Negative Allosteric Effectors on Muscarinic Receptors. Mol. Pharmacol. 1995;48:696–702. PubMed
Proška J., Tuček S. Positive Allosteric Action of Eburnamonine on Cardiac Muscarinic Acetylcholine Receptors. Eur. J. Pharmacol. 1996;305:201–205. doi: 10.1016/0014-2999(96)00169-0. PubMed DOI
Dong G.Z., Kameyama K., Rinken A., Haga T. Ligand Binding Properties of Muscarinic Acetylcholine Receptor Subtypes (M1-M5) Expressed in Baculovirus-Infected Insect Cells. J. Pharmacol. Exp. Ther. 1995;274:378–384. PubMed
Dong G.Z., Haga T., Itokawa H., Mizobe F. Allosteric Binding of 9-Methoxy-Alpha-Lapachone and Alcuronium to the Muscarinic Acetylcholine Receptor M2 Subtype. Biomed. Res. 1995;16:327–335. doi: 10.2220/biomedres.16.327. DOI
Birdsall N.J.M., Lazareno S. Allosterism at Muscarinic Receptors: Ligands and Mechanisms. Mini Rev. Med. Chem. 2005;5:523–543. doi: 10.2174/1389557054023251. PubMed DOI
Gregory K.J., Sexton P.M., Christopoulos A. Allosteric Modulation of Muscarinic Acetylcholine Receptors. Curr. Neuropharmacol. 2007;5:157–167. doi: 10.2174/157015907781695946. PubMed DOI PMC
Jakubík J., El-Fakahany E.E. Allosteric Modulation of Muscarinic Acetylcholine Receptors. Pharmaceuticals. 2010;3:2838–2860. doi: 10.3390/ph3092838. PubMed DOI PMC
Ma L., Seager M.A., Seager M., Wittmann M., Jacobson M., Bickel D., Burno M., Jones K., Graufelds V.K., Xu G., et al. Selective Activation of the M1 Muscarinic Acetylcholine Receptor Achieved by Allosteric Potentiation. Proc. Natl. Acad. Sci. USA. 2009;106:15950–15955. doi: 10.1073/pnas.0900903106. PubMed DOI PMC
Shirey J.K., Brady A.E., Jones P.J., Davis A.A., Bridges T.M., Kennedy J.P., Jadhav S.B., Menon U.N., Xiang Z., Watson M.L., et al. A Selective Allosteric Potentiator of the M1 Muscarinic Acetylcholine Receptor Increases Activity of Medial Prefrontal Cortical Neurons and Restores Impairments in Reversal Learning. J. Neurosci. 2009;29:14271–14286. doi: 10.1523/JNEUROSCI.3930-09.2009. PubMed DOI PMC
Shirey J.K., Xiang Z., Orton D., Brady A.E., Johnson K.A., Williams R., Ayala J.E., Rodriguez A.L., Wess J., Weaver D., et al. An Allosteric Potentiator of M4 MAChR Modulates Hippocampal Synaptic Transmission. Nat. Chem. Biol. 2008;4:42–50. doi: 10.1038/nchembio.2007.55. PubMed DOI
Brady A.E., Jones C.K., Bridges T.M., Kennedy J.P., Thompson A.D., Heiman J.U., Breininger M.L., Gentry P.R., Yin H., Jadhav S.B., et al. Centrally Active Allosteric Potentiators of the M4 Muscarinic Acetylcholine Receptor Reverse Amphetamine-Induced Hyperlocomotor Activity in Rats. J. Pharmacol. Exp. Ther. 2008;327:941–953. doi: 10.1124/jpet.108.140350. PubMed DOI PMC
Chan W.Y., McKinzie D.L., Bose S., Mitchell S.N., Witkin J.M., Thompson R.C., Christopoulos A., Lazareno S., Birdsall N.J.M., Bymaster F.P., et al. Allosteric Modulation of the Muscarinic M4 Receptor as an Approach to Treating Schizophrenia. Proc. Natl. Acad. Sci. USA. 2008;105:10978–10983. doi: 10.1073/pnas.0800567105. PubMed DOI PMC
Michal P., Rudajev V., El-Fakahany E.E., Dolezal V. Membrane Cholesterol Content Influences Binding Properties of Muscarinic M2 Receptors and Differentially Impacts Activation of Second Messenger Pathways. Eur. J. Pharmacol. 2009;606:50–60. doi: 10.1016/j.ejphar.2009.01.028. PubMed DOI PMC
Michal P., El-Fakahany E.E., Doležal V. Changes in Membrane Cholesterol Differentially Influence Preferential and Non-Preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors. Neurochem. Res. 2015;40:2068–2077. doi: 10.1007/s11064-014-1325-z. PubMed DOI PMC
Randáková A., Dolejší E., Rudajev V., Zimčík P., Doležal V., El-Fakahany E.E., Jakubík J. Role of Membrane Cholesterol in Differential Sensitivity of Muscarinic Receptor Subtypes to Persistently Bound Xanomeline. Neuropharmacology. 2018;133:129–144. doi: 10.1016/j.neuropharm.2018.01.027. PubMed DOI
Acconcia F., Marino M. Steroid Hormones: Synthesis, Secretion, and Transport. In: Belfiore A., LeRoith D., editors. Principles of Endocrinology and Hormone Action. Springer International Publishing; Cham, Switzerland: 2016. pp. 1–31.
Rupprecht R., Holsboer F. Neuroactive Steroids: Mechanisms of Action and Neuropsychopharmacological Perspectives. Trends Neurosci. 1999;22:410–416. doi: 10.1016/S0166-2236(99)01399-5. PubMed DOI
Do Rego J.L., Seong J.Y., Burel D., Leprince J., Luu-The V., Tsutsui K., Tonon M.C., Pelletier G., Vaudry H. Neurosteroid Biosynthesis: Enzymatic Pathways and Neuroendocrine Regulation by Neurotransmitters and Neuropeptides. Front. Neuroendocrinol. 2009;30:259–301. doi: 10.1016/j.yfrne.2009.05.006. PubMed DOI
Reddy D.S. Neurosteroids: Endogenous Role in the Human Brain and Therapeutic Potentials. Prog. Brain Res. 2010;186:113–137. doi: 10.1016/B978-0-444-53630-3.00008-7. PubMed DOI PMC
Wilkenfeld S.R., Lin C., Frigo D.E. Communication between Genomic and Non-Genomic Signaling Events Coordinate Steroid Hormone Actions. Steroids. 2018;133:2–7. doi: 10.1016/j.steroids.2017.11.005. PubMed DOI PMC
Zhao X.F. G Protein-Coupled Receptors Function as Cell Membrane Receptors for the Steroid Hormone 20-Hydroxyecdysone. Cell Commun. Signal. 2020;18:1–9. doi: 10.1186/s12964-020-00620-y. PubMed DOI PMC
Baulieu E., Robel P. Neurosteroids: A New Brain Function? J. Steroid Biochem. Mol. Biol. 1990;37:395–403. doi: 10.1016/0960-0760(90)90490-C. PubMed DOI
Colciago A., Bonalume V., Melfi V., Magnaghi V. Genomic and Non-Genomic Action of Neurosteroids in the Peripheral Nervous System. Front. Neurosci. 2020;14:796. doi: 10.3389/fnins.2020.00796. PubMed DOI PMC
Daniel J.M., Hulst J.L., Lee C.D. Role of Hippocampal M2 Muscarinic Receptors in the Estrogen-Induced Enhancement of Working Memory. Neuroscience. 2005;132:57–64. doi: 10.1016/j.neuroscience.2005.01.002. PubMed DOI
Darnaudéry M., Koehl M., Piazza P.V., Le Moal M., Mayo W. Pregnenolone Sulfate Increases Hippocampal Acetylcholine Release and Spatial Recognition. Brain Res. 2000;852:173–179. doi: 10.1016/S0006-8993(99)01964-2. PubMed DOI
Horishita T., Minami K., Uezono Y., Shiraishi M., Ogata J., Okamoto T., Terada T., Sata T. The Effects of the Neurosteroids: Pregnenolone, Progesterone and Dehydroepiandrosterone on Muscarinic Receptor-Induced Responses in Xenopus Oocytes Expressing M1 and M3 Receptors. Naunyn. Schmiedebergs. Arch. Pharmacol. 2005;371:221–228. doi: 10.1007/s00210-005-1022-1. PubMed DOI
Klangkalya B., Chan A. The Effects of Ovarian Hormones on Beta-Adrenergic and Muscarinic Receptors in Rat Heart. Life Sci. 1988;42:2307–2314. doi: 10.1016/0024-3205(88)90183-X. PubMed DOI
Klangkalya B., Chan A. Structure-Activity Relationships of Steroid Hormones on Muscarinic Receptor Binding. J. Steroid Biochem. 1988;29:111–118. doi: 10.1016/0022-4731(88)90384-6. PubMed DOI
Klangkalya B., Chan A. Inhibition of Hypothalamic and Pituitary Muscarinic Receptor Binding by Progesterone. Neuroendocrinology. 1988;47:294–302. doi: 10.1159/000124928. PubMed DOI
Dolejší E., Szánti-Pintér E., Chetverikov N., Nelic D., Randáková A., Doležal V., Kudová E., Jakubík J. Neurosteroids and Steroid Hormones Are Allosteric Modulators of Muscarinic Receptors. Neuropharmacology. 2021;199:108798. doi: 10.1016/j.neuropharm.2021.108798. PubMed DOI
Dolejší E., Chetverikov N., Szánti-Pintér E., Nelic D., Randáková A., Doležal V., El-Fakahany E.E., Kudová E., Jakubík J. Neuroactive Steroids, WIN-Compounds and Cholesterol Share a Common Binding Site on Muscarinic Acetylcholine Receptors. Biochem. Pharmacol. 2021;192:114699. doi: 10.1016/j.bcp.2021.114699. PubMed DOI
Fantini J., Barrantes F.J. How Cholesterol Interacts with Membrane Proteins: An Exploration of Cholesterol-Binding Sites Including CRAC, CARC, and Tilted Domains. Front. Physiol. 2013;4:31. doi: 10.3389/fphys.2013.00031. PubMed DOI PMC
Bandara A., Panahi A., Pantelopulos G.A., Straub J.E. Exploring the Structure and Stability of Cholesterol Dimer Formation in Multicomponent Lipid Bilayers. J. Comput. Chem. 2017;38:1479–1488. doi: 10.1002/jcc.24516. PubMed DOI PMC
Simons K., Toomre D. Lipid Rafts and Signal Transduction. Nat. Rev. Mol. Cell Biol. 2000;1:31–39. doi: 10.1038/35036052. PubMed DOI
Lei B., Morris D.P., Smith M.P., Schwinn D.A. Lipid Rafts Constrain Basal A1A-Adrenergic Receptor Signaling by Maintaining Receptor in an Inactive Conformation. Cell. Signal. 2009;21:1532–1539. doi: 10.1016/j.cellsig.2009.06.001. PubMed DOI
Niemelä P.S., Ollila S., Hyvönen M.T., Karttunen M., Vattulainen I. Assessing the Nature of Lipid Raft Membranes. PLoS Comput. Biol. 2007;3:304–312. doi: 10.1371/journal.pcbi.0030034. PubMed DOI PMC
Levitan I., Fang Y., Rosenhouse-Dantsker A., Romanenko V. Cholesterol and Ion Channels. Subcell. Biochem. 2010;51:509. doi: 10.1007/978-90-481-8622-8_19. PubMed DOI PMC
Duncan A.L., Song W., Sansom M.S.P. Lipid-Dependent Regulation of Ion Channels and G Protein–Coupled Receptors: Insights from Structures and Simulations. Annu. Rev. Pharmacol. Toxicol. 2020;60:31–50. doi: 10.1146/annurev-pharmtox-010919-023411. PubMed DOI
Gimpl G., Burger K., Fahrenholz F. A Closer Look at the Cholesterol Sensor. Trends Biochem. Sci. 2002;27:596–599. doi: 10.1016/S0968-0004(02)02224-7. PubMed DOI
Hanson M.A., Cherezov V., Griffith M.T., Roth C.B., Jaakola V.-P., Chien E.Y.T., Velasquez J., Kuhn P., Stevens R.C. A Specific Cholesterol Binding Site Is Established by the 2.8 A Structure of the Human Beta2-Adrenergic Receptor. Structure. 2008;16:897–905. doi: 10.1016/j.str.2008.05.001. PubMed DOI PMC
Paila Y.D., Tiwari S., Chattopadhyay A. Are Specific Nonannular Cholesterol Binding Sites Present in G-Protein Coupled Receptors? Biochim. Biophys. Acta Biomembr. 2009;1788:295–302. doi: 10.1016/j.bbamem.2008.11.020. PubMed DOI
Gimpl G. Interaction of G Protein Coupled Receptors and Cholesterol. Chem. Phys. Lipids. 2016;199:61–73. doi: 10.1016/j.chemphyslip.2016.04.006. PubMed DOI
Sarkar P., Chattopadhyay A. Cholesterol Interaction Motifs in G Protein-Coupled Receptors: Slippery Hot Spots? Wiley Interdiscip. Rev. Syst. Biol. Med. 2020;12:e1481. doi: 10.1002/wsbm.1481. PubMed DOI
Reddy D.S., Estes W.A. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol. Sci. 2016;37:543–561. doi: 10.1016/j.tips.2016.04.003. PubMed DOI PMC
Ratner M.H., Kumaresan V., Farb D.H. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front. Endocrinol. 2019;10:169. doi: 10.3389/fendo.2019.00169. PubMed DOI PMC
Coronel M.F., Labombarda F., González S.L. Neuroactive Steroids, Nociception and Neuropathic Pain: A Flashback to Go Forward. Steroids. 2016;110:77–87. doi: 10.1016/j.steroids.2016.04.005. PubMed DOI
Joksimovic S.L., Covey D.F., Jevtovic-Todorovic V., Todorovic S.M. Neurosteroids in Pain Management: A New Perspective on an Old Player. Front. Pharmacol. 2018;9:1127. doi: 10.3389/fphar.2018.01127. PubMed DOI PMC
Meyer L., Taleb O., Patte-Mensah C., Mensah-Nyagan A.-G. Neurosteroids and Neuropathic Pain Management: Basic Evidence and Therapeutic Perspectives. Front. Neuroendocrinol. 2019;55:100795. doi: 10.1016/j.yfrne.2019.100795. PubMed DOI
González S.L., Meyer L., Raggio M.C., Taleb O., Coronel M.F., Patte-Mensah C., Mensah-Nyagan A.G. Allopregnanolone and Progesterone in Experimental Neuropathic Pain: Former and New Insights with a Translational Perspective. Cell. Mol. Neurobiol. 2019;39:523–537. doi: 10.1007/s10571-018-0618-1. PubMed DOI
Borowicz K.K., Piskorska B., Banach M., Czuczwar S.J. Neuroprotective Actions of Neurosteroids. Front. Endocrinol. 2011;2:50. doi: 10.3389/fendo.2011.00050. PubMed DOI PMC
Mendell A.L., MacLusky N.J. Neurosteroid Metabolites of Gonadal Steroid Hormones in Neuroprotection: Implications for Sex Differences in Neurodegenerative Disease. Front. Mol. Neurosci. 2018;11:359. doi: 10.3389/fnmol.2018.00359. PubMed DOI PMC
Yilmaz C., Karali K., Fodelianaki G., Gravanis A., Chavakis T., Charalampopoulos I., Alexaki V.I. Neurosteroids as Regulators of Neuroinflammation. Front. Neuroendocrinol. 2019;55:100788. doi: 10.1016/j.yfrne.2019.100788. PubMed DOI
Kudova E. Rapid Effects of Neurosteroids on Neuronal Plasticity and Their Physiological and Pathological Implications. Neurosci. Lett. 2021;750:135771. doi: 10.1016/j.neulet.2021.135771. PubMed DOI
Klinge C.M. Principles of Endocrinology and Hormone Action. Springer; Cham, Switzerland: 2018. Steroid Hormone Receptors and Signal Transduction Processes; pp. 187–232.
Reddy D.S. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy. Front. Cell. Neurosci. 2016;10:101. doi: 10.3389/fncel.2016.00101. PubMed DOI PMC
Baulieu E.E. Neurosteroids: A Novel Function of the Brain. Psychoneuroendocrinology. 1998;23:963–987. doi: 10.1016/S0306-4530(98)00071-7. PubMed DOI
Reddy D.S. Mass Spectrometric Assay and Physiological-Pharmacological Activity of Androgenic Neurosteroids. Neurochem. Int. 2008;52:541–553. doi: 10.1016/j.neuint.2007.05.019. PubMed DOI PMC
Reddy D.S. Role of Hormones and Neurosteroids in Epileptogenesis. Front. Cell. Neurosci. 2013;7:115. doi: 10.3389/fncel.2013.00115. PubMed DOI PMC
Reddy D.S. Progress in Brain Research. Volume 186. Elsevier; Amsterdam, The Netherlands: 2010. Neurosteroids; pp. 113–137. PubMed PMC
Baulieu E.E., Schumacher M. Progesterone as a Neuroactive Neurosteroid, with Special Reference to the Effect of Progesterone on Myelination. Hum. Reprod. 2000;15((Suppl. 1)):1–13. doi: 10.1093/humrep/15.suppl_1.1. PubMed DOI
Almey A., Milner T.A., Brake W.G. Estrogen Receptors in the Central Nervous System and Their Implication for Dopamine-Dependent Cognition in Females. Horm. Behav. 2015;74:125–138. doi: 10.1016/j.yhbeh.2015.06.010. PubMed DOI PMC
Pang Z.P., Han W. Regulation of Synaptic Functions in Central Nervous System by Endocrine Hormones and the Maintenance of Energy Homoeostasis. Biosci. Rep. 2012;32:423–432. doi: 10.1042/BSR20120026. PubMed DOI PMC
Karpinski M., Mattina G.F., Steiner M. Effect of Gonadal Hormones on Neurotransmitters Implicated in the Pathophysiology of Obsessive-Compulsive Disorder: A Critical Review. Neuroendocrinology. 2017;105:1–16. doi: 10.1159/000453664. PubMed DOI
Barth C., Villringer A., Sacher J. Sex Hormones Affect Neurotransmitters and Shape the Adult Female Brain during Hormonal Transition Periods. Front. Neurosci. 2015;9:1–20. doi: 10.3389/fnins.2015.00037. PubMed DOI PMC
Rudolph L.M., Cornil C.A., Mittelman-Smith M.A., Rainville J.R., Remage-Healey L., Sinchak K., Micevych P.E. Actions of Steroids: New Neurotransmitters. J. Neurosci. 2016;36:11449–11458. doi: 10.1523/JNEUROSCI.2473-16.2016. PubMed DOI PMC
Belanoff J.K., Gross K., Yager A., Schatzberg A.F. Corticosteroids and Cognition. J. Psychiatr. Res. 2001;35:127–145. doi: 10.1016/S0022-3956(01)00018-8. PubMed DOI
Wolf O.T. Cognitive Functions and Sex Steroids. Ann. Endocrinol. 2003;64:158–161. PubMed
Ali S.A., Begum T., Reza F. Hormonal Influences on Cognitive Function. Malaysian J. Med. Sci. 2018;25:31–41. doi: 10.21315/mjms2018.25.4.3. PubMed DOI PMC
Frick K.M., Kim J. Mechanisms Underlying the Rapid Effects of Estradiol and Progesterone on Hippocampal Memory Consolidation in Female Rodents. Horm. Behav. 2018;104:100–110. doi: 10.1016/j.yhbeh.2018.04.013. PubMed DOI PMC
Ouanes S., Popp J. High Cortisol and the Risk of Dementia and Alzheimer’s Disease: A Review of the Literature. Front. Aging Neurosci. 2019;11:43. doi: 10.3389/fnagi.2019.00043. PubMed DOI PMC
McEwen B.S. Steroid Hormones: Effect on Brain Development and Function. Horm. Res. 1992;37:1–10. doi: 10.1159/000182393. PubMed DOI
Rubinow D.R., Schmidt P.J. Gonadal Steroids, Brain, and Behavior: Role of Context. Dialogues Clin. Neurosci. 2002;4:123–137. doi: 10.31887/DCNS.2002.4.2/drubinow. PubMed DOI PMC
Thomas P., Pang Y. Membrane Progesterone Receptors: Evidence for Neuroprotective, Neurosteroid Signaling and Neuroendocrine Functions in Neuronal Cells. Neuroendocrinology. 2012;96:162–171. doi: 10.1159/000339822. PubMed DOI PMC
Thomas P., Pang Y. Anti-Apoptotic Actions of Allopregnanolone and Ganaxolone Mediated Through Membrane Progesterone Receptors (PAQRs) in Neuronal Cells. Front. Endocrinol. 2020;11:417. doi: 10.3389/fendo.2020.00417. PubMed DOI PMC
Webb S.J., Geoghegan T.E., Prough R.A., Michael Miller K.K. The Biological Actions of Dehydroepiandrosterone Involves Multiple Receptors. Drug Metab. Rev. 2006;38:89–116. doi: 10.1080/03602530600569877. PubMed DOI PMC
Zheng P. Neuroactive Steroid Regulation of Neurotransmitter Release in the CNS: Action, Mechanism and Possible Significance. Prog. Neurobiol. 2009;89:134–152. doi: 10.1016/j.pneurobio.2009.07.001. PubMed DOI
Yadid G., Sudai E., Maayan R., Gispan I., Weizman A. The Role of Dehydroepiandrosterone (DHEA) in Drug-Seeking Behavior. Neurosci. Biobehav. Rev. 2010;35:303–314. doi: 10.1016/j.neubiorev.2010.03.003. PubMed DOI
Lösel R., Wehling M. Nongenomic Actions of Steroid Hormones. Nat. Rev. Mol. Cell Biol. 2003;4:46–56. doi: 10.1038/nrm1009. PubMed DOI
Tuem K.B., Atey T.M. Neuroactive Steroids: Receptor Interactions and Responses. Front. Neurol. 2017;8:442. doi: 10.3389/fneur.2017.00442. PubMed DOI PMC
Wang C., Liu Y., Cao J.-M. G Protein-Coupled Receptors: Extranuclear Mediators for the Non-Genomic Actions of Steroids. Int. J. Mol. Sci. 2014;15:15412–15425. doi: 10.3390/ijms150915412. PubMed DOI PMC
Rosenbaum D.M., Rasmussen S.G.F., Kobilka B.K. The Structure and Function of G-Protein-Coupled Receptors. Nature. 2009;459:356–363. doi: 10.1038/nature08144. PubMed DOI PMC
Hauser A.S., Attwood M.M., Rask-Andersen M., Schiöth H.B., Gloriam D.E. Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat. Rev. Drug Discov. 2017;16:829–842. doi: 10.1038/nrd.2017.178. PubMed DOI PMC
Dascal N., Kahanovitch U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. Int. Rev. Neurobiol. 2015;123:27–85. doi: 10.1016/bs.irn.2015.06.001. PubMed DOI
Randáková A., Nelic D., Ungerová D., Nwokoye P., Su Q., Doležal V., El-Fakahany E.E., Boulos J., Jakubík J. Novel M 2 -selective, G i -biased Agonists of Muscarinic Acetylcholine Receptors. Br. J. Pharmacol. 2020;177:2073–2089. doi: 10.1111/bph.14970. PubMed DOI PMC
Randáková A., Jakubík J. Functionally Selective and Biased Agonists of Muscarinic Receptors. Pharmacol. Res. 2021;169:105641. doi: 10.1016/j.phrs.2021.105641. PubMed DOI
Li H., Papadopoulos V. Peripheral-Type Benzodiazepine Receptor Function in Cholesterol Transport. Identification of a Putative Cholesterol Recognition/Interaction Amino Acid Sequence and Consensus Pattern. Endocrinology. 1998;139:4991–4997. doi: 10.1210/endo.139.12.6390. PubMed DOI
Jafurulla M., Tiwari S., Chattopadhyay A. Identification of Cholesterol Recognition Amino Acid Consensus (CRAC) Motif in G-Protein Coupled Receptors. Biochem. Biophys. Res. Commun. 2011;404:569–573. doi: 10.1016/j.bbrc.2010.12.031. PubMed DOI
Bymaster F.P., Carter P.A., Peters S.C., Zhang W., Ward J.S., Mitch C.H., Calligaro D.O., Whitesitt C.A., DeLapp N., Shannon H.E., et al. Xanomeline Compared to Other Muscarinic Agents on Stimulation of Phosphoinositide Hydrolysis in Vivo and Other Cholinomimetic Effects. Brain Res. 1998;795:179–190. doi: 10.1016/S0006-8993(98)00267-4. PubMed DOI
DeLapp N., Wu S., Belagaje R., Johnstone E., Little S., Shannon H., Bymaster F., Calligaro D., Mitch C., Whitesitt C., et al. Effects of the M1 Agonist Xanomeline on Processing of Human Beta-Amyloid Precursor Protein (FAD, Swedish Mutant) Transfected into Chinese Hamster Ovary-M1 Cells. Biochem. Biophys. Res. Commun. 1998;244:156–160. doi: 10.1006/bbrc.1998.8235. PubMed DOI
Christopoulos A., Pierce T.L., Sorman J.L., El-Fakahany E.E. On the Unique Binding and Activating Properties of Xanomeline at the M1 Muscarinic Acetylcholine Receptor. Mol. Pharmacol. 1998;53:1120–1130. PubMed
Grant M.K.O., El-Fakahany E.E. Persistent Binding and Functional Antagonism by Xanomeline at the Muscarinic M5 Receptor. J. Pharmacol. Exp. Ther. 2005;315:313–319. doi: 10.1124/jpet.105.090134. PubMed DOI
Avissar S., Egozi Y., Sokolovsky M. Studies on Muscarinic Receptors in Mouse and Rat Hypothalamus: A Comparison of Sex and Cyclical Differences. Neuroendocrinology. 1981;32:295–302. doi: 10.1159/000123175. PubMed DOI
Wilkinson M., Giles A., Wilkinson D.A. M 2 Muscarinic ([3 H] N -Methyl Scopolamine) Binding in Micropunches of Rat Ventricular Myocardium: Characterization and Modification by Progesterone. Can. J. Physiol. Pharmacol. 1992;70:943–948. doi: 10.1139/y92-129. PubMed DOI
Wilkinson M., Siauw M., Horackova M. Modulation of cardiac M2 muscarinic receptor binding by progesterone-related steroids. J. Mol. Cell. Cardiol. 1995;27:1831–1839. doi: 10.1016/0022-2828(95)90006-3. PubMed DOI
Shiraishi M., Minami K., Shibuya I., Uezono Y., Ogata J., Okamoto T., Murasaki O., Kaibara M., Ueta Y., Shigematsu A. The Inhibitory Effects of Alphaxalone on M1 and M3 Muscarinic Receptors Expressed in Xenopus Oocytes. Anesth. Analg. 2003;97:449–455. doi: 10.1213/01.ANE.0000068985.78588.E1. PubMed DOI
Sokolovsky M., Egozi Y., Avissar S. Molecular Regulation of Receptors: Interaction of Beta-Estradiol and Progesterone with the Muscarinic System. Proc. Natl. Acad. Sci. USA. 1981;78:5554–5558. doi: 10.1073/pnas.78.9.5554. PubMed DOI PMC
Al-Daham M.I.M., Thomas P.J. Contrasting Effects of Testicular and Ovarian Steroids upon Muscarinic Binding Sites in the Brain. Pharmacology. 1987;34:250–258. doi: 10.1159/000138276. PubMed DOI
Bae Y.J., Zeidler R., Baber R., Vogel M., Wirkner K., Loeffler M., Ceglarek U., Kiess W., Körner A., Thiery J., et al. Reference Intervals of Nine Steroid Hormones over the Life-Span Analyzed by LC-MS/MS: Effect of Age, Gender, Puberty, and Oral Contraceptives. J. Steroid Biochem. Mol. Biol. 2019;193:105409. doi: 10.1016/j.jsbmb.2019.105409. PubMed DOI
Hill M., Hána V., Velíková M., Pařízek A., Kolátorová L., Vítků J., Škodová T., Šimková M., Šimják P., Kancheva R., et al. A Method for Determination of One Hundred Endogenous Steroids in Human Serum by Gas Chromatography-Tandem Mass Spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI
Lazareno S., Popham A., Birdsall N.J. Allosteric Interactions of Staurosporine and Other Indolocarbazoles with N-[Methyl-(3)H]Scopolamine and Acetylcholine at Muscarinic Receptor Subtypes: Identification of a Second Allosteric Site. Mol. Pharmacol. 2000;58:194–207. doi: 10.1124/mol.58.1.194. PubMed DOI
Lazareno S., Popham A., Birdsall N.J.M. Analogs of WIN 62,577 Define a Second Allosteric Site on Muscarinic Receptors. Mol. Pharmacol. 2002;62:1492–1505. doi: 10.1124/mol.62.6.1492. PubMed DOI
Kruse A.C., Ring A.M., Manglik A., Hu J., Hu K., Eitel K., Hübner H., Pardon E., Valant C., Sexton P.M., et al. Activation and Allosteric Modulation of a Muscarinic Acetylcholine Receptor. Nature. 2013;504:101–106. doi: 10.1038/nature12735. PubMed DOI PMC
Huang X.-P., Prilla S., Mohr K., Ellis J. Critical Amino Acid Residues of the Common Allosteric Site on the M2 Muscarinic Acetylcholine Receptor: More Similarities than Differences between the Structurally Divergent Agents Gallamine and Bis(Ammonio)Alkane-Type Hexamethylene-Bis-[Dimethyl-(3-Phthalimidopropyl)ammonium]dibromide. Mol. Pharmacol. 2005;68:769–778. doi: 10.1124/mol.105.014043. PubMed DOI
Leppik R.A., Miller R.C., Eck M., Paquet J.L. Role of Acidic Amino Acids in the Allosteric Modulation by Gallamine of Antagonist Binding at the M2 Muscarinic Acetylcholine Receptor. Mol. Pharmacol. 1994;45:983–990. PubMed
Jakubík J., El-Fakahany E.E. Allosteric Modulation of GPCRs of Class A by Cholesterol. Int. J. Mol. Sci. 2021;22:1953. doi: 10.3390/ijms22041953. PubMed DOI PMC