Current Advances in Allosteric Modulation of Muscarinic Receptors

. 2020 Feb 18 ; 10 (2) : . [epub] 20200218

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32085536

Grantová podpora
19-05318S Grantová Agentura České Republiky - International
RVO:67985823 Akademie věd České Republiky - International

Allosteric modulators are ligands that bind to a site on the receptor that is spatially separated from the orthosteric binding site for the endogenous neurotransmitter. Allosteric modulators modulate the binding affinity, potency, and efficacy of orthosteric ligands. Muscarinic acetylcholine receptors are prototypical allosterically-modulated G-protein-coupled receptors. They are a potential therapeutic target for the treatment of psychiatric, neurologic, and internal diseases like schizophrenia, Alzheimer's disease, Huntington disease, type 2 diabetes, or chronic pulmonary obstruction. Here, we reviewed the progress made during the last decade in our understanding of their mechanisms of binding, allosteric modulation, and in vivo actions in order to understand the translational impact of studying this important class of pharmacological agents. We overviewed newly developed allosteric modulators of muscarinic receptors as well as new spin-off ideas like bitopic ligands combining allosteric and orthosteric moieties and photo-switchable ligands based on bitopic agents.

Zobrazit více v PubMed

Bonner T.I., Buckley N.J., Young A.C., Brann M.R. Identification of a family of muscarinic acetylcholine receptor genes. Science. 1987;237:527–532. doi: 10.1126/science.3037705. PubMed DOI

Haga K., Kruse A.C., Asada H., Yurugi-Kobayashi T., Shiroishi M., Zhang C., Weis W.I., Okada T., Kobilka B.K., Haga T., et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature. 2012;482:547–551. doi: 10.1038/nature10753. PubMed DOI PMC

Kruse A.C., Hu J., Pan A.C., Arlow D.H., Rosenbaum D.M., Rosemond E., Green H.F., Liu T., Chae P.S., Dror R.O., et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature. 2012;482:552–556. doi: 10.1038/nature10867. PubMed DOI PMC

Kruse A.C., Ring A.M., Manglik A., Hu J., Hu K., Eitel K., Hübner H., Pardon E., Valant C., Sexton P.M., et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature. 2013;504:101–106. doi: 10.1038/nature12735. PubMed DOI PMC

Thal D.M., Sun B., Feng D., Nawaratne V., Leach K., Felder C.C., Bures M.G., Evans D.A., Weis W.I., Bachhawat P., et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature. 2016;531:335–340. doi: 10.1038/nature17188. PubMed DOI PMC

Vuckovic Z., Gentry P.R., Berizzi A.E., Hirata K., Varghese S., Thompson G., van der Westhuizen E.T., Burger W.A.C., Rahmani R., Valant C., et al. Crystal structure of the M5 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA. 2019;116:26001–26007. doi: 10.1073/pnas.1914446116. PubMed DOI PMC

Eglen R.M. Handb Exp Pharmacol. Springer; Heidelberg, Germany: 2012. Overview of muscarinic receptor subtypes; pp. 3–28. PubMed

Conn P.J., Jones C.K., Lindsley C.W. Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci. 2009;30:148–155. doi: 10.1016/j.tips.2008.12.002. PubMed DOI PMC

Bock A., Schrage R., Mohr K. Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology. 2018;136:427–437. doi: 10.1016/j.neuropharm.2017.09.024. PubMed DOI

Gautam D., Han S.-J., Duttaroy A., Mears D., Hamdan F.F., Li J.H., Cui Y., Jeon J., Wess J. Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis. Diabetes Obes. Metab. 2007;9:158–169. doi: 10.1111/j.1463-1326.2007.00781.x. PubMed DOI

Gosens R., Zaagsma J., Meurs H., Halayko A.J. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir. Res. 2006;7:73. doi: 10.1186/1465-9921-7-73. PubMed DOI PMC

Hegde S.S. Muscarinic receptors in the bladder: From basic research to therapeutics. Br. J. Pharmacol. 2006;147:S80–S87. doi: 10.1038/sj.bjp.0706560. PubMed DOI PMC

Monod J., Wyman J., Changeux J.P. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 1965;12:88–118. doi: 10.1016/S0022-2836(65)80285-6. PubMed DOI

Koshland D.E., Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966;5:365–385. doi: 10.1021/bi00865a047. PubMed DOI

Jakubík J., El-Fakahany E.E. Allosteric Modulation of Muscarinic Receptors. In: Myslivecek J., Jakubik J., editors. Muscarinic Receptor: From Structure to Animal Models. Volume 107. Neuromethods; Humana Press; Springer Science + Business Media LLC; New York, NY, USA: 2016. pp. 95–130.

Kenakin T., Strachan R.T. PAM-Antagonists: A Better Way to Block Pathological Receptor Signaling? Trends Pharmacol. Sci. 2018;39:748–765. doi: 10.1016/j.tips.2018.05.001. PubMed DOI

Jakubík J., Bacáková L., Lisá V., El-Fakahany E.E., Tucek S. Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc. Natl. Acad. Sci. USA. 1996;93:8705–8709. doi: 10.1073/pnas.93.16.8705. PubMed DOI PMC

Lüllmann H., Ohnesorge F.K., Schauwecker G.C., Wassermann O. Inhibition of the actions of carbachol and DFP on guinea pig isolated atria by alkane-bis-ammonium compounds. Eur. J. Pharmacol. 1969;6:241–247. doi: 10.1016/0014-2999(69)90181-2. PubMed DOI

Clark A.L., Mitchelson F. The inhibitory effect of gallamine on muscarinic receptors. Br. J. Pharmacol. 1976;58:323–331. doi: 10.1111/j.1476-5381.1976.tb07708.x. PubMed DOI PMC

Jakubík J., El-Fakahany E.E. Allosteric Modulation of Muscarinic Acetylcholine Receptors. Pharmaceuticals. 2010;3:2838–2860. doi: 10.3390/ph3092838. PubMed DOI PMC

Mash D.C., Flynn D.D., Potter L.T. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science. 1985;228:1115–1117. doi: 10.1126/science.3992249. PubMed DOI

Perry E.K., Smith C.J., Court J.A., Perry R.H. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types. J. Neural Transm. Park. Dis. Dement. Sect. 1990;2:149–158. doi: 10.1007/BF02257646. PubMed DOI

Buels K.S., Fryer A.D. Muscarinic receptor antagonists: Effects on pulmonary function. Handb. Exp. Pharmacol. 2012;208:317–341. PubMed PMC

Krejčí A., Tuček S. Changes of cooperativity between N-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic M(3) receptors. Mol. Pharmacol. 2001;60:761–767. PubMed

Huang X.-P., Prilla S., Mohr K., Ellis J. Critical amino acid residues of the common allosteric site on the M2 muscarinic acetylcholine receptor: more similarities than differences between the structurally divergent agents gallamine and bis(ammonio)alkane-type hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide. Mol. Pharmacol. 2005;68:769–778. PubMed

Jakubík J., Krejcí A., Dolezal V. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators. J. Pharmacol. Exp. Ther. 2005;313:688–696. doi: 10.1124/jpet.104.080358. PubMed DOI

Leppik R.A., Miller R.C., Eck M., Paquet J.L. Role of acidic amino acids in the allosteric modulation by gallamine of antagonist binding at the m2 muscarinic acetylcholine receptor. Mol. Pharmacol. 1994;45:983–990. PubMed

Dror R.O., Green H.F., Valant C., Borhani D.W., Valcourt J.R., Pan A.C., Arlow D.H., Canals M., Lane J.R., Rahmani R., et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature. 2013;503:295–299. doi: 10.1038/nature12595. PubMed DOI

Abdul-Ridha A., López L., Keov P., Thal D.M., Mistry S.N., Sexton P.M., Lane J.R., Canals M., Christopoulos A. Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. J. Biol. Chem. 2014;289:6067–6079. doi: 10.1074/jbc.M113.539080. PubMed DOI PMC

Nawaratne V., Leach K., Felder C.C., Sexton P.M., Christopoulos A. Structural determinants of allosteric agonism and modulation at the M4 muscarinic acetylcholine receptor: Identification of ligand-specific and global activation mechanisms. J. Biol. Chem. 2010;285:19012–19021. doi: 10.1074/jbc.M110.125096. PubMed DOI PMC

Hollingsworth S.A., Kelly B., Valant C., Michaelis J.A., Mastromihalis O., Thompson G., Venkatakrishnan A.J., Hertig S., Scammells P.J., Sexton P.M., et al. Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nat. Commun. 2019;10:3289. doi: 10.1038/s41467-019-11062-7. PubMed DOI PMC

Ballesteros J.A., Weinstein H. Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. In: Sealfon S.C., Conn P.M., editors. Methods in Neurosciences. Volume 25. Academic Press; San Diego, CA, USA: 1995. pp. 366–428.

Isberg V., De Graaf C., Bortolato A., Cherezov V., Katritch V., Marshall F.H., Mordalski S., Pin J.-P.P., Stevens R.C., Vriend G., et al. Generic GPCR residue numbers—Aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 2015;36:22–31. doi: 10.1016/j.tips.2014.11.001. PubMed DOI PMC

Abdul-Ridha A., Lane J.R., Mistry S.N., López L., Sexton P.M., Scammells P.J., Christopoulos A., Canals M. Mechanistic insights into allosteric structure-function relationships at the M1 muscarinic acetylcholine receptor. J. Biol. Chem. 2014;289:33701–33711. doi: 10.1074/jbc.M114.604967. PubMed DOI PMC

Bradley S.J., Bourgognon J.M., Sanger H.E., Verity N., Mogg A.J., White D.J., Butcher A.J., Moreno J.A., Molloy C., Macedo-Hatch T., et al. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. J. Clin. Investig. 2016;127:487–499. doi: 10.1172/JCI87526. PubMed DOI PMC

Lazareno S., Popham A., Birdsall N.J.M. Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol. Pharmacol. 2002;62:1492–1505. doi: 10.1124/mol.62.6.1492. PubMed DOI

Michal P., Rudajev V., El-Fakahany E.E., Doležal V. Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur. J. Pharmacol. 2009;606:50–60. doi: 10.1016/j.ejphar.2009.01.028. PubMed DOI PMC

Michal P., El-Fakahany E.E., Doležal V. Changes in Membrane Cholesterol Differentially Influence Preferential and Non-preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors. Neurochem. Res. 2014;40:2068–2077. doi: 10.1007/s11064-014-1325-z. PubMed DOI PMC

Janickova H., Rudajev V., Dolejsi E., Koivisto H., Jakubik J., Tanila H., El-Fakahany E.E., Dolezal V. Lipid-Based Diets Improve Muscarinic Neurotransmission in the Hippocampus of Transgenic APPswe/PS1dE9 Mice. Curr. Alzheimer Res. 2015;12:923–931. doi: 10.2174/1567205012666151027130350. PubMed DOI

Randáková A., Dolejší E., Rudajev V., Zimčík P., Doležal V., El-Fakahany E.E., Jakubík J. Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline. Neuropharmacology. 2018;133:129–144. doi: 10.1016/j.neuropharm.2018.01.027. PubMed DOI

Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem. Phys. Lipids. 2016;199:61–73. doi: 10.1016/j.chemphyslip.2016.04.006. PubMed DOI

Lee A.G. Interfacial Binding Sites for Cholesterol on G Protein-Coupled Receptors. Biophys. J. 2019;116:1586–1597. doi: 10.1016/j.bpj.2019.03.025. PubMed DOI PMC

Zlotos D.P., Buller S., Stiefl N., Baumann K., Mohr K. Probing the pharmacophore for allosteric ligands of muscarinic M2 receptors: SAR and QSAR studies in a series of bisquaternary salts of caracurine V and related ring systems. J. Med. Chem. 2004;47:3561–3571. doi: 10.1021/jm0311341. PubMed DOI

Bermudez M., Wolber G. Structure versus function—The impact of computational methods on the discovery of specific GPCR-ligands. Bioorganic Med. Chem. 2015;23:3907–3912. doi: 10.1016/j.bmc.2015.03.026. PubMed DOI

Ballesteros J.A., Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 1995;25:366–428.

Burger W.A.C., Sexton P.M., Christopoulos A., Thal D.M. Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. J. Gen. Physiol. 2018;150:1360–1372. doi: 10.1085/jgp.201711979. PubMed DOI PMC

Laugwitz K.L., Allgeier A., Offermanns S., Spicher K., Van Sande J., Dumont J.E., Schultz G. The human thyrotropin receptor: A heptahelical receptor capable of stimulating members of all four G protein families. Proc. Natl. Acad. Sci. USA. 1996;93:116–120. doi: 10.1073/pnas.93.1.116. PubMed DOI PMC

Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol. Ther. 2003;99:25–44. doi: 10.1016/S0163-7258(03)00051-2. PubMed DOI

Jakubik J., El-Fakahany E.E., Doležal V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol. Pharmacol. 2006;70:656–666. doi: 10.1124/mol.106.023762. PubMed DOI

Kenakin T., Christopoulos A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 2013;12:205–216. doi: 10.1038/nrd3954. PubMed DOI

Marlo J.E., Niswender C.M., Days E.L., Bridges T.M., Xiang Y., Rodriguez A.L., Shirey J.K., Brady A.E., Nalywajko T., Luo Q., et al. Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol. Pharmacol. 2009;75:577–588. doi: 10.1124/mol.108.052886. PubMed DOI PMC

Van der Westhuizen E.T., Spathis A., Khajehali E., Jörg M., Mistry S.N., Capuano B., Tobin A.B., Sexton P.M., Scammells P.J., Valant C., et al. Assessment of the Molecular Mechanisms of Action of Novel 4-Phenylpyridine-2-One and 6-Phenylpyrimidin-4-One Allosteric Modulators at the M1 Muscarinic Acetylcholine Receptors. Mol. Pharmacol. 2018;94:770–783. doi: 10.1124/mol.118.111633. PubMed DOI PMC

Wacker D., Stevens R.C., Roth B.L. How Ligands Illuminate GPCR Molecular Pharmacology. Cell. 2017;170:414–427. doi: 10.1016/j.cell.2017.07.009. PubMed DOI PMC

Bermudez M., Bock A. Does Divergent Binding Pocket Closure Drive Ligand Bias for Class A GPCRs? Trends Pharmacol. Sci. 2019;40:236–239. doi: 10.1016/j.tips.2019.02.005. PubMed DOI

Jakubik J., El-Fakahany E.E., Tucek S. Evidence for a tandem two-site model of ligand binding to muscarinic acetylcholine receptors. J. Biol. Chem. 2000;275:18836–18844. doi: 10.1074/jbc.M000112200. PubMed DOI

Järv J., Hedlund B., Bartfai T. Isomerization of the muscarinic receptor. antagonist complex. J. Biol. Chem. 1979;254:5595–5598. PubMed

Järv J., Hedlund B., Bartfai T. Kinetic studies on muscarinic antagonist-agonist competition. J. Biol. Chem. 1980;255:2649–2651. PubMed

Redka D.S., Pisterzi L.F., Wells J.W. Binding of orthosteric ligands to the allosteric site of the M(2) muscarinic cholinergic receptor. Mol. Pharmacol. 2008;74:834–843. doi: 10.1124/mol.108.048074. PubMed DOI

Jakubík J., Randáková A., Zimčík P., El-Fakahany E.E., Doležal V. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors. Sci. Rep. 2017;7:40381. doi: 10.1038/srep40381. PubMed DOI PMC

Kistemaker L.E.M., Elzinga C.R.S., Tautermann C.S., Pieper M.P., Seeliger D., Alikhil S., Schmidt M., Meurs H., Gosens R. Second M3 muscarinic receptor binding site contributes to bronchoprotection by tiotropium. Br. J. Pharmacol. 2019;176:2864–2876. doi: 10.1111/bph.14707. PubMed DOI PMC

Jakubík J., Zimčík P., Randáková A., Fuksová K., El-Fakahany E.E., Doležal V. Molecular mechanisms of methoctramine binding and selectivity at muscarinic acetylcholine receptors. Mol. Pharmacol. 2014;86:180–192. doi: 10.1124/mol.114.093310. PubMed DOI

Bock A., Bermudez M., Krebs F., Matera C., Chirinda B., Sydow D., Dallanoce C., Holzgrabe U., De Amici M., Lohse M.J., et al. Ligand binding ensembles determine graded agonist efficacies at a G protein-coupled receptor. J. Biol. Chem. 2016;291:16375–16389. doi: 10.1074/jbc.M116.735431. PubMed DOI PMC

Schmitz J., Van Der Mey D., Bermudez M., Klöckner J., Schrage R., Kostenis E., Tränkle C., Wolber G., Mohr K., Holzgrabe U. Dualsteric muscarinic antagonists-orthosteric binding pose controls allosteric subtype selectivity. J. Med. Chem. 2014;57:6739–6750. doi: 10.1021/jm500790x. PubMed DOI

Avlani V.A., Langmead C.J., Guida E., Wood M.D., Tehan B.G., Herdon H.J., Watson J.M., Sexton P.M., Christopoulos A. Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 2010;78:94–104. doi: 10.1124/mol.110.064345. PubMed DOI

Keov P., Valant C., Devine S.M., Lane J.R., Scammells P.J., Sexton P.M., Christopoulos A. Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M₁ muscarinic acetylcholine receptor. Mol. Pharmacol. 2013;84:425–437. doi: 10.1124/mol.113.087320. PubMed DOI

Gregory K.J., Hall N.E., Tobin A.B., Sexton P.M., Christopoulos A. Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J. Biol. Chem. 2010;285:7459–7474. doi: 10.1074/jbc.M109.094011. PubMed DOI PMC

Valant C., Gregory K.J., Hall N.E., Scammells P.J., Lew M.J., Sexton P.M., Christopoulos A. A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol Chem. 2008;283:29312–29321. doi: 10.1074/jbc.M803801200. PubMed DOI PMC

Agnetta L., Kauk M., Canizal M.C.A., Messerer R., Holzgrabe U., Hoffmann C., Decker M. A Photoswitchable Dualsteric Ligand Controlling Receptor Efficacy. Angew. Chem. Int. Ed. 2017;56:7282–7287. doi: 10.1002/anie.201701524. PubMed DOI

Matera C., Flammini L., Quadri M., Vivo V., Ballabeni V., Holzgrabe U., Mohr K., De Amici M., Barocelli E., Bertoni S., et al. Bis(ammonio)alkane-type agonists of muscarinic acetylcholine receptors: synthesis, in vitro functional characterization, and in vivo evaluation of their analgesic activity. Eur. J. Med. Chem. 2014;75:222–232. doi: 10.1016/j.ejmech.2014.01.032. PubMed DOI

Cristofaro I., Spinello Z., Matera C., Fiore M., Conti L., De Amici M., Dallanoce C., Tata A.M. Activation of M2 muscarinic acetylcholine receptors by a hybrid agonist enhances cytotoxic effects in GB7 glioblastoma cancer stem cells. Neurochem. Int. 2018;118:52–60. doi: 10.1016/j.neuint.2018.04.010. PubMed DOI

Jakubík J., Bacáková L., El-Fakahany E.E., Tucek S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 1997;52:172–179. doi: 10.1124/mol.52.1.172. PubMed DOI

Birdsall N.J., Farries T., Gharagozloo P., Kobayashi S., Kuonen D., Lazareno S., Popham A., Sugimoto M. Selective allosteric enhancement of the binding and actions of acetylcholine at muscarinic receptor subtypes. Life Sci. 1997;60:1047–1052. doi: 10.1016/S0024-3205(97)00046-5. PubMed DOI

Bridges T.M., Marlo J.E., Niswender C.M., Jones C.K., Jadhav S.B., Gentry P.R., Plumley H.C., Weaver C.D., Conn P.J., Lindsley C.W. Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J. Med. Chem. 2009;52:3445–3448. doi: 10.1021/jm900286j. PubMed DOI PMC

Kuduk S.D., Chang R.K., Di Marco C.N., Pitts D.R., Greshock T.J., Ma L., Wittmann M., Seager M.A., Koeplinger K.A., Thompson C.D., et al. Discovery of a selective allosteric M1 receptor modulator with suitable development properties based on a quinolizidinone carboxylic acid scaffold. J. Med. Chem. 2011;54:4773–4780. doi: 10.1021/jm200400m. PubMed DOI

Davie B.J., Valant C., White J.M., Sexton P.M., Capuano B., Christopoulos A., Scammells P.J. Synthesis and pharmacological evaluation of analogues of benzyl quinolone carboxylic acid (BQCA) designed to bind irreversibly to an allosteric site of the M ₁ muscarinic acetylcholine receptor. J. Med. Chem. 2014;57:5405–5418. doi: 10.1021/jm500556a. PubMed DOI

Pancani T., Foster D.J., Moehle M.S., Bichell T.J., Bradley E., Bridges T.M., Klar R., Poslusney M., Rook J.M., Daniels J.S., et al. Allosteric activation of M4 muscarinic receptors improve behavioral and physiological alterations in early symptomatic YAC128 mice. Proc. Natl. Acad. Sci. USA. 2015;112:14078–14083. doi: 10.1073/pnas.1512812112. PubMed DOI PMC

Dallagnol J.C.C., Khajehali E., Van Der Westhuizen E.T., Jörg M., Valant C., Gonçalves A.G., Capuano B., Christopoulos A., Scammells P.J. Synthesis and Pharmacological Evaluation of Heterocyclic Carboxamides: Positive Allosteric Modulators of the M1Muscarinic Acetylcholine Receptor with Weak Agonist Activity and Diverse Modulatory Profiles. J. Med. Chem. 2018;61:2875–2894. doi: 10.1021/acs.jmedchem.7b01812. PubMed DOI

Mistry S.N., Jörg M., Lim H., Vinh N.B., Sexton P.M., Capuano B., Christopoulos A., Lane J.R., Scammells P.J. 4-Phenylpyridin-2-one Derivatives: A Novel Class of Positive Allosteric Modulator of the M1 Muscarinic Acetylcholine Receptor. J. Med. Chem. 2016;59:388–409. doi: 10.1021/acs.jmedchem.5b01562. PubMed DOI

Miao Y., Goldfeld D.A., Von Moo E., Sexton P.M., Christopoulos A., McCammon J.A., Valant C. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proc. Natl. Acad. Sci. USA. 2016;113:E5675–E5684. doi: 10.1073/pnas.1612353113. PubMed DOI PMC

Korczynska M., Clark M.J., Valant C., Xu J., Von Moo E., Albold S., Weiss D.R., Torosyan H., Huang W., Kruse A.C., et al. Structure-based discovery of selective positive allosteric modulators of antagonists for the M2 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA. 2018;115:E2419–E2428. doi: 10.1073/pnas.1718037115. PubMed DOI PMC

Goldberg J.A., Ding J.B., Surmeier D.J. Muscarinic modulation of striatal function and circuitry. Handb. Exp. Pharmacol. 2012;208:223–241. PubMed

Choy K.H.C., Shackleford D.M., Malone D.T., Mistry S.N., Patil R.T., Scammells P.J., Langmead C.J., Pantelis C., Sexton P.M., Lane J.R., et al. Positive Allosteric Modulation of the Muscarinic M1 Receptor Improves Efficacy of Antipsychotics in Mouse Glutamatergic Deficit Models of Behavior. J. Pharmacol. Exp. Ther. 2016;359:354–365. doi: 10.1124/jpet.116.235788. PubMed DOI

Nickols H.H., Conn J.P. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis. 2014;61:55–71. doi: 10.1016/j.nbd.2013.09.013. PubMed DOI PMC

Hopper S., Pavey G.M., Gogos A., Dean B. Widespread Changes in Positive Allosteric Modulation of the Muscarinic M1 Receptor in Some Participants With Schizophrenia. Int. J. Neuropsychopharmacol. 2019;22:640–650. doi: 10.1093/ijnp/pyz045. PubMed DOI PMC

Tzavara E.T., Bymaster F.P., Davis R.J., Wade M.R., Perry K.W., Wess J., McKinzie D.L., Felder C., Nomikos G.G. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 2004;18:1410–1412. doi: 10.1096/fj.04-1575fje. PubMed DOI

Brady A.E., Jones C.K., Bridges T.M., Kennedy J.P., Thompson A.D., Heiman J.U., Breininger M.L., Gentry P.R., Yin H., Jadhav S.B., et al. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J. Pharmacol. Exp. Ther. 2008;327:941–953. doi: 10.1124/jpet.108.140350. PubMed DOI PMC

Yeomans J.S. Muscarinic receptors in brain stem and mesopontine cholinergic arousal functions. Handb. Exp. Pharmacol. 2012;208:243–259. PubMed

Gentry P.R., Kokubo M., Bridges T.M., Kett N.R., Harp J.M., Cho H.P., Smith E., Chase P., Hodder P.S., Niswender C.M., et al. Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1H-imidazo [2,1-a]isoindol-5(9bH)-one (ML375) J. Med. Chem. 2013;56:9351–9355. doi: 10.1021/jm4013246. PubMed DOI PMC

Gunter B.W., Gould R.W., Bubser M., McGowan K.M., Lindsley C.W., Jones C.K. Selective inhibition of M5 muscarinic acetylcholine receptors attenuates cocaine self-administration in rats. Addict. Biol. 2018;23:1106–1116. doi: 10.1111/adb.12567. PubMed DOI PMC

Gilon P., Henquin J.C. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr. Rev. 2001;22:565–604. PubMed

Duttaroy A., Zimliki C.L., Gautam D., Cui Y., Mears D., Wess J. Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in M3 muscarinic acetylcholine receptor-deficient mice. Diabetes. 2004;53:1714–1720. doi: 10.2337/diabetes.53.7.1714. PubMed DOI

Zhu L., Rossi M., Cohen A., Pham J., Zheng H., Dattaroy D., Mukaibo T., Melvin J.E., Langel J.L., Hattar S., et al. Allosteric modulation of β-cell M3 muscarinic acetylcholine receptors greatly improves glucose homeostasis in lean and obese mice. Proc. Natl. Acad. Sci. USA. 2019;116:18684–18690. doi: 10.1073/pnas.1904943116. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...