Francisella and Antibodies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VJ01030003
Ministry of Interior of the Czech Republic
PubMed
34683457
PubMed Central
PMC8538966
DOI
10.3390/microorganisms9102136
PII: microorganisms9102136
Knihovny.cz E-zdroje
- Klíčová slova
- B cells, Francisella tularensis, intracellular pathogen, natural antibodies, natural immunity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Immune responses to intracellular pathogens depend largely upon the activation of T helper type 1-dependent mechanisms. The contribution of B cells to establishing protective immunity has long been underestimated. Francisella tularensis, including a number of subspecies, provides a suitable model for the study of immune responses against intracellular bacterial pathogens. We previously demonstrated that Francisella infects B cells and activates B-cell subtypes to produce a number of cytokines and express the activation markers. Recently, we documented the early production of natural antibodies as a consequence of Francisella infection in mice. Here, we summarize current knowledge on the innate and acquired humoral immune responses initiated by Francisella infection and their relationships with the immune defense systems.
Zobrazit více v PubMed
Elkins K.L., Cowley S.C., Bosio C.M. Innate and adaptive immunity to Francisella. Ann. N. Y. Acad. Sci. 2007;1105:284–324. doi: 10.1196/annals.1409.014. PubMed DOI
Meunier E., Wallet P., Dreier R.F., Costanzo S., Anton L., Rühl S., Dussurgey S., Dick M., Kistner A., Rigard M., et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 2015;16:476–484. doi: 10.1038/ni.3119. PubMed DOI PMC
Wallet P., Lagrange B., Henry T. Francisella Inflammasomes: Integrated Responses to a Cytosolic Stealth Bacterium. Curr. Top. Microbiol. Immunol. 2016;397:229–256. PubMed
Krocova Z., Macela A., Kubelkova K. Innate Immune Recognition: Implications for the Interaction of Francisella tularensis with the Host Immune System. Front. Cell Infect. Microbiol. 2017;7:446. doi: 10.3389/fcimb.2017.00446. PubMed DOI PMC
Lagrange B., Benaoudia S., Wallet P., Magnotti F., Provost A., Michal F., Martin A., Di Lorenzo F., Py B., Molinaro A., et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat. Commun. 2018;9:242. doi: 10.1038/s41467-017-02682-y. PubMed DOI PMC
Kubelkova K., Macela A. Innate Immune Recognition: An Issue More Complex than Expected [Internet] Front. Cell Infect. Microbiol. 2019;9:241. doi: 10.3389/fcimb.2019.00241. PubMed DOI PMC
Kinkead L.C., Allen L.-A.H. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol. Rev. 2016;273:266–281. doi: 10.1111/imr.12445. PubMed DOI PMC
Kinkead L.C., Fayram D.C., Allen L.H. Francisella novicida inhibits spontaneous apoptosis and extends human neutrophil lifespan. J. Leukoc. Biol. 2017;102:815–828. doi: 10.1189/jlb.4MA0117-014R. PubMed DOI PMC
Pulavendran S., Prasanthi M., Ramachandran A., Grant R., Snider T.A., Chow V.T.K., Malayer J.R., Teluguakula N. Production of Neutrophil Extracellular Traps Contributes to the Pathogenesis of Francisella tularemia. Front. Immunol. 2020;11:679. doi: 10.3389/fimmu.2020.00679. PubMed DOI PMC
Fink A., Hassan M.A., Okan N.A., Sheffer M., Camejo A., Saeij J.P., Kasper D.L. Early Interactions of Murine Macrophages with Francisella tularensis Map to Mouse Chromosome 19. mBio. 2016;7:e02243. doi: 10.1128/mBio.02243-15. PubMed DOI PMC
Steiner D.J., Furuya Y., Jordan M.B., Metzger D.W. Protective Role for Macrophages in Respiratory Francisella tularensis Infection. Infect. Immun. 2017;85:e00064-17. doi: 10.1128/IAI.00064-17. PubMed DOI PMC
Steiner D.J., Furuya Y., Metzger D.W. Detrimental Influence of Alveolar Macrophages on Protective Humoral Immunity during Francisella tularensis SchuS4 Pulmonary Infection. Infect. Immun. 2018;86:e00787-17. doi: 10.1128/IAI.00787-17. PubMed DOI PMC
Bradford M.K., Elkins K.I. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci. Rep. 2020;10:12023. doi: 10.1038/s41598-020-68798-2. PubMed DOI PMC
Fabrik I., Härtlova A., Rehulka P., Stulik J. Serving the new masters—Dendritic cells as hosts for stealth intracellular bacteria. Cell. Microbiol. 2013;15:1473–1483. doi: 10.1111/cmi.12160. PubMed DOI
Fabrik I., Link M., Putzova D., Plzakova L., Lubovska Z., Philimonenko V., Pavkova I., Rehulka P., Krocova Z., Hozak P., et al. The early dendritic cell signaling induced by virulent Francisella tularensis strain occurs in phases and involves the activation of extracellular signal-regulated kinases (ERKs) and p38 in the later stage. Mol. Cell. Proteom. MCP. 2018;17:81–94. doi: 10.1074/mcp.RA117.000160. PubMed DOI PMC
Nelson N.L.J., Zajd C.M., Lennartz M.R., Gosselin E.J. Fcγ receptors and toll-like receptor 9 synergize to drive immune complex-induced dendritic cell maturation. Cell. Immunol. 2019;345:103962. doi: 10.1016/j.cellimm.2019.103962. PubMed DOI PMC
De Pascalis R., Rossi A.P., Mittereder L., Takeda K., Akue A., Kurtz S.L., Elkins K.L. Production of IFN-γ by splenic dendritic cells during innate immune responses against Francisella tularensis LVS depends on MyD88, but not TLR2, TLR4, or TLR9. PLoS ONE. 2020;15:e0237034. doi: 10.1371/journal.pone.0237034. PubMed DOI PMC
Krocova Z., Härtlova A., Souckova D., Zivna L., Kroca M., Rudolf E., Macela A., Stulik J. Interaction of B cells with intracellular pathogen Francisella tularensis. Microb. Pathog. 2008;45:79–85. doi: 10.1016/j.micpath.2008.01.010. PubMed DOI
Plzakova L., Kubelkova K., Krocova Z., Zarybnicka L., Sinkorova Z., Macela A. B cell subsets are activated and produce cytokines during early phases of Francisella tularensis LVS infection. Microb. Pathog. 2014;75:49–58. doi: 10.1016/j.micpath.2014.08.009. PubMed DOI
Plzakova L., Krocova Z., Kubelkova K., Macela A. Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors. PLoS ONE. 2015;10:e0132571. doi: 10.1371/journal.pone.0132571. PubMed DOI PMC
García-Gil A., Lopez-Bailon L.U., Ortiz-Navarrete V. Beyond the antibody: B cells as a target for bacterial infection. J. Leukoc. Biol. 2019;105:905–913. doi: 10.1002/JLB.MR0618-225R. PubMed DOI
Kelava. I., Marecic V., Fucak P., Ivek E., Kolaric D., Ozanic M., Mihelcic M., Santic M. Optimisation of External Factors for the Growth of Francisella novicida within Dictyostelium discoideum. BioMed Res. Int. 2020;2020:6826983. doi: 10.1155/2020/6826983. PubMed DOI PMC
Zellner B., Huntley J.F. Ticks and Tularemia: Do We Know What We Don’t Know? Front. Cell. Infect. Microbiol. 2019;9:146. doi: 10.3389/fcimb.2019.00146. PubMed DOI PMC
Abdellahoum Z., Maurin M., Bitam I. Tularemia as a Mosquito-Borne Disease. Microorganisms. 2020;9:26. doi: 10.3390/microorganisms9010026. PubMed DOI PMC
Lewisch E., Menanteau-Ledouble S., Tichy A., El-Matbouli M. Susceptibility of common carp and sunfish to a strain of Francisella noatunensis subsp. orientalis in a challenge experiment. Dis. Aquat. Organ. 2016;121:161–166. doi: 10.3354/dao03044. PubMed DOI
Mörner T. The ecology of tularaemia. Rev. Sci. Tech. Int. Off. Epizoot. 1992;11:1123–1130. doi: 10.20506/rst.11.4.657. PubMed DOI
Hopla C.E. The ecology of tularemia. Adv. Vet. Sci. Comp. Med. 1974;18:25–53. PubMed
Mörner T., Mattsson R. Experimental infection of five species of raptors and of hooded crows with Francisella tularensis biovar palaearctica. J. Wildl. Dis. 1988;24:15–21. doi: 10.7589/0090-3558-24.1.15. PubMed DOI
McKeever S., Schubert J.H., Moody M.D., Gorman G.W., Chapman J.F. Natural occurrence of tularemia in marsupials, carnivores, lagomorphs, and large rodents in southwestern Georgia and northwestern Florida. J. Infect. Dis. 1958;103:120–126. doi: 10.1093/infdis/103.2.120. PubMed DOI
Mätz-Rensing K., Floto A., Schrod A., Becker T., Finke E.J., Seibold E., Splettstoesser W.D., Kaup F.J. Epizootic of tularemia in an outdoor housed group of cynomolgus monkeys (Macaca fascicularis) Vet. Pathol. 2007;44:327–334. PubMed
Yeni D.K., Büyük F., Ashraf A., Shah M.S.U.D. Tularemia: A re-emerging tick-borne infectious disease. Folia Microbiol. 2021;66:1–14. doi: 10.1007/s12223-020-00827-z. PubMed DOI PMC
Cowley S.C., Elkins K.L. Immunity to francisella. Front. Microbiol. 2011;2:26. doi: 10.3389/fmicb.2011.00026. PubMed DOI PMC
Bártová E., Kučerová H.L., Žákovská A., Budíková M., Nejezchlebová H. Coxiella burnetii and Francisella tularensis in wild small mammals from the Czech Republic. Ticks Tick Borne Dis. 2020;11:101350. doi: 10.1016/j.ttbdis.2019.101350. PubMed DOI
Hestvik G., Uhlhorn H., Koene M., Åkerström S., Malmsten A., Dahl F., Åhlén P.-A., Dalin A.-M., Gavier-Widén D. Francisella tularensis in Swedish predators and scavengers. Epidemiol. Infect. 2019;147:e293. doi: 10.1017/S0950268819001808. PubMed DOI PMC
Al Dahouk S., Nöckler K., Tomaso H., Splettstoesser W.D., Jungersen G., Riber U., Petry T., Hoffmann D., Scholz H.C., Hensel A., et al. Seroprevalence of brucellosis, tularemia, and yersiniosis in wild boars (Sus scrofa) from north-eastern Germany. J. Vet. Med. B Infect. Dis. Vet. Public Health. 2005;52:444–455. doi: 10.1111/j.1439-0450.2005.00898.x. PubMed DOI
Jacob D., Barduhn A., Tappe D., Rauch J., Heuner K., Hierhammer D., Vom Berge K., Riehm J.M., Hanczaruk M., Böhm S., et al. Outbreak of Tularemia in a Group of Hunters in Germany in 2018-Kinetics of Antibody and Cytokine Responses. Microorganisms. 2020;8:1645. doi: 10.3390/microorganisms8111645. PubMed DOI PMC
Otto P., Chaignat V., Klimpel D., Diller R., Melzer F., Müller W., Tomaso H. Serological investigation of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicator animals for circulation of Francisella tularensis in Germany. Vector Borne Zoonotic Dis. 2014;14:46–51. doi: 10.1089/vbz.2013.1321. PubMed DOI PMC
Gürcan S., Otkun M.T., Otkun M., Arikan O.K., Ozer B. An outbreak of tularemia in Western Black Sea region of Turkey. Yonsei Med. J. 2004;45:17–22. doi: 10.3349/ymj.2004.45.1.17. PubMed DOI
Gürcan S., Eskiocak M., Varol G., Uzun C., Tatman-Otkun M., Sakru N., Karadenizli A., Karagöl C., Otkun M. Tularemia re-emerging in European part of Turkey after 60 years. Jpn. J. Infect. Dis. 2006;59:391–393. PubMed
Hemati M., Khalili M., Rohani M., Sadeghi B., Esmaeili S., Ghasemi A., Mahmoudi A., Gyuranecz M., Mostafavi E. A serological and molecular study on Francisella tularensis in rodents from Hamadan province, Western Iran. Comp. Immunol. Microbiol. Infect. Dis. 2020;68:101379. doi: 10.1016/j.cimid.2019.101379. PubMed DOI
Hotta A., Tanabayashi K., Yamamoto Y., Fujita O., Uda A., Mizoguchi T., Yamada A. Seroprevalence of tularemia in wild bears and hares in Japan. Zoonoses Public Health. 2012;59:89–95. doi: 10.1111/j.1863-2378.2011.01422.x. PubMed DOI
Sharma N., Hotta A., Yamamoto Y., Uda A., Fujita O., Mizoguchi T., Shindo J., Park C.-H., Kudo N., Hatai H., et al. Serosurveillance for Francisella tularensis among wild animals in Japan using a newly developed competitive enzyme-linked immunosorbent assay. Vector Borne Zoonotic Dis. 2014;14:234–239. doi: 10.1089/vbz.2013.1349. PubMed DOI PMC
Gromov A.I., Timofeeva N.S., Trukhmanov M.M., Veide A.A., Golovina T.I., Dobroliubova R.P., Lazarev O.P., Merzliakov A.P., Rafailov M.G., Timofeeva A.A., et al. [On the establishment of a natural focus of tularemia on Sakhalin] Zh. Mikrobiol. Epidemiol. Immunobiol. 1969;46:125–127. PubMed
Egorov I.E., Mironchuk Y.V., Maramovich A.S., Chesnokova M.V., Botvinkin A.D., Makeev S.M., Ochirov I.D., Vershinin E.A., Tugutov L.D., Cherniavskiĭ V.F., et al. [Zoonotic infections in the central and southern ulusy of the Republic of Sakha] Zh. Mikrobiol. Epidemiol. Immunobiol. 1997;2:38–43. PubMed
Podobedova Y.S., Demidova T.N., Kormilitsyna M.I., Meshcheriakova I.S. [Natural foci of tularemia on the Wrangel island] Med. Parazitol. 2006;4:32–34. PubMed
Dobrokhotov B.P., Mnatsakanian A.G., Meshcheriakova I.S., Rudnev M.M. [Exploration of natural foci of tularemia and plague in Armenia using the serological examination of bird droppings and excrements of predatory mammals] Zh. Mikrobiol. Epidemiol. Immunobiol. 1978;2:111–115. PubMed
Ditchfield J., Meads E.B., Julian R.J. Tularemia of muskrats in Eastern Ontario. Can. J. Public Health. 1960;51:474–478. PubMed
Hoff G.l., Yuill T.M., Iversen J.O., Hanson R.P. Selected microbial agents in snowshoe hares and other vertebrates of Alberta. J. Wildl. Dis. 1970;6:472–478. doi: 10.7589/0090-3558-6.4.472. PubMed DOI
Akerman M.B., Embil J.A. Antibodies to Francisella tularensis in the snowshoe hare (Lepus americanus struthopus) populations of Nova Scotia and Prince Edward Island and in the moose (Alces alces americana Clinton) population of Nova Scotia. Can. J. Microbiol. 1982;28:403–405. doi: 10.1139/m82-061. PubMed DOI
Wobeser G., Campbell G.D., Dallaire A., McBurney S. Tularemia, plague, yersiniosis, and Tyzzer’s disease in wild rodents and lagomorphs in Canada: A review. Can. Vet. J. Rev. Vét. Can. 2009;50:1251–1256. PubMed PMC
Gabriele-Rivet V., Ogden N., Massé A., Antonation K., Corbett C., Dibernardo A., Lindsay L.R., Leighton P.A., Arsenault J. Eco-epizootiologic study of Francisella tularensis, the agent of tularemia, in Québec wildlife. J. Wildl. Dis. 2016;52:217–229. doi: 10.7589/2015-04-096. PubMed DOI
Kwit N.A., Middaugh N.A., VinHatton E.S., Melman S.D., Onischuk L., Aragon A.S., Nelson C.A., Mead P.S., Ettestad P.J. Francisella tularensis infection in dogs: 88 cases (2014–2016) J. Am. Vet. Med. Assoc. 2020;256:220–225. doi: 10.2460/javma.256.2.220. PubMed DOI
Petersen J.M., Schriefer M.E., Carter L.G., Zhou Y., Sealy T., Bawiec D., Yockey B., Urich S., Zeidner N.S., Avashia S., et al. Laboratory analysis of tularemia in wild-trapped, commercially traded prairie dogs, Texas, 2002. Emerg. Infect. Dis. 2004;10:419–425. doi: 10.3201/eid1003.030504. PubMed DOI PMC
Hansen C.M., Vogler A.J., Keim P., Wagner D.M., Hueffer K. Tularemia in Alaska, 1938–2010. Acta Vet. Scand. 2011;53:61. doi: 10.1186/1751-0147-53-61. PubMed DOI PMC
Beest J.T., Cushing A., McClean M., Hsu W., Bildfell R. Disease Surveillance of California Ground Squirrels (Spermophilus beecheyi) in a Drive-through Zoo in Oregon, USA. J. Wildl. Dis. 2017;53:667–670. doi: 10.7589/2016-05-119. PubMed DOI
Berrada Z.L., Goethert H.K., Telford S.R. Raccoons and skunks as sentinels for enzootic tularemia. Emerg. Infect. Dis. 2006;12:1019–1021. PubMed PMC
Feldman K.A., Stiles-Enos D., Julian K., Matyas B.T., Telford S.R., III, Chu M.C., Petersen L.R., Hayes E.B. Tularemia on Martha’s Vineyard: Seroprevalence and occupational risk. Emerg. Infect. Dis. 2003;9:350–354. doi: 10.3201/eid0903.020462. PubMed DOI PMC
Siret V., Barataud D., Prat M., Vaillant V., Ansart S., Le Coustumier A., Vaissaire J., Raffi F., Garré M., Capek I. An outbreak of airborne tularaemia in France, August 2004. Eurosurveillance. 2006;11:3–4. doi: 10.2807/esm.11.02.00598-en. PubMed DOI
Leblebicioglu. H., Esen S., Turan D., Tanyeri Y., Karadenizli A., Ziyagil F., Goral G. Outbreak of tularemia: A case-control study and environmental investigation in Turkey. Int. J. Infect. Dis. 2008;12:265–269. doi: 10.1016/j.ijid.2007.06.013. PubMed DOI
Grunow R., Kalaveshi A., Kühn A., Mulliqi-Osmani G., Ramadani N. Surveillance of tularaemia in Kosovo, 2001 to 2010. Eurosurveillance. 2012;17:20217. doi: 10.2807/ese.17.28.20217-en. PubMed DOI
Raghavan R.K., Harrington J., Anderson G.A., Hutchinson J.M., Debey B.M. Environmental, climatic, and residential neighborhood determinants of feline tularemia. Vector Borne Zoonotic Dis. 2013;13:449–456. doi: 10.1089/vbz.2012.1234. PubMed DOI
Akhvlediani. N., Burjanadze I., Baliashvili D., Tushishvili T., Broladze M., Navdarashvili A., Dolbadze S., Chitadze N., Topuridze M., Imnadze P., et al. Tularemia transmission to humans: A multifaceted surveillance approach. Epidemiol. Infect. 2018;146:2139–2145. doi: 10.1017/S0950268818002492. PubMed DOI PMC
Maurin M. Francisella tularensis, Tularemia and Serological Diagnosis. Front. Cell. Infect. Microbiol. 2020;10:512090. doi: 10.3389/fcimb.2020.512090. PubMed DOI PMC
Viljanen M.K., Nurmi T., Salminen A. Enzyme-linked immunosorbent assay (ELISA) with bacterial sonicate antigen for IgM, IgA, and IgG antibodies to Francisella tularensis: Comparison with bacterial agglutination test and ELISA with lipopolysaccharide antigen. J. Infect. Dis. 1983;148:715–720. doi: 10.1093/infdis/148.4.715. PubMed DOI
Koskela P., Salminen A. Humoral immunity against Francisella tularensis after natural infection. J. Clin. Microbiol. 1985;22:973–979. doi: 10.1128/jcm.22.6.973-979.1985. PubMed DOI PMC
Rastawicki W., Rokosz-Chudziak N., Wolaniuk N. [Serum immunoglobulin IgG subclass distribution of antibody responses to Francisella tularensis in patients with tularemia] Med. Dosw. Mikrobiol. 2014;66:11–15. PubMed
Koskela P., Herva E. Cell-mediated and humoral immunity induced by a live Francisella tularensis vaccine. Infect. Immun. 1982;36:983–989. doi: 10.1128/iai.36.3.983-989.1982. PubMed DOI PMC
Ericsson M., Sandström G., Sjöstedt A., Tärnvik A. Persistence of cell-mediated immunity and decline of humoral immunity to the intracellular bacterium Francisella tularensis 25 years after natural infection. J. Infect. Dis. 1994;170:110–114. doi: 10.1093/infdis/170.1.110. PubMed DOI
Sandström G., Tärnvik A., Wolf-Watz H., Löfgren S. Antigen from Francisella tularensis: Nonidentity between determinants participating in cell-mediated and humoral reactions. Infect. Immun. 1984;45:101–106. doi: 10.1128/iai.45.1.101-106.1984. PubMed DOI PMC
Okan N.A., Kasper D.L. The atypical lipopolysaccharide of Francisella. Carbohydr. Res. 2013;378:79–83. doi: 10.1016/j.carres.2013.06.015. PubMed DOI PMC
Jones B.D., Faron M., Rasmussen J.A., Fletcher J.R. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front. Cell. Infect. Microbiol. 2014;4:32. doi: 10.3389/fcimb.2014.00032. PubMed DOI PMC
Rahhal R.M., Vanden Bush T.J., McLendon M.K., Apicella M.A., Bishop G.A. Differential effects of Francisella tularensis lipopolysaccharide on B lymphocytes. J. Leukoc. Biol. 2007;82:813–820. doi: 10.1189/jlb.1206765. PubMed DOI
Fulton K.M., Zhao X., Petit M.D., Kilmury S.L., Wolfraim L.A., House R.V., Sjostedt A., Twine S.M. Immunoproteomic analysis of the human antibody response to natural tularemia infection with Type A or Type B strains or LVS vaccination. Int. J. Med. Microbiol. IJMM. 2011;301:591–601. doi: 10.1016/j.ijmm.2011.07.002. PubMed DOI PMC
Gaur R., Alam S.I., Kamboj D.V. Immunoproteomic Analysis of Antibody Response of Rabbit Host Against Heat-Killed Francisella tularensis Live Vaccine Strain. Curr. Microbiol. 2017;74:499–507. doi: 10.1007/s00284-017-1217-y. PubMed DOI
Saslaw S., Eigelsbach H.T., Wilson H.E., Prior J.A., Carhart S. Tularemia vaccine study. I. Intracutaneous challenge. Arch. Intern. Med. 1961;107:689–701. doi: 10.1001/archinte.1961.03620050055006. PubMed DOI
Saslaw S., Carhart S. Studies with tularemia vaccines in volunteers. III. Serologic aspects following intracutaneous or respiratory challenge in both vaccinated and nonvaccinated volunteers. Am. J. Med. Sci. 1961;241:689–699. doi: 10.1097/00000441-196106000-00001. PubMed DOI
Havlasová J., Hernychová L., Halada P., Pellantová V., Krejsek J., Stulík J., Macela A., Jungblut P.R., Larsson P., Forsman M. Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics. 2002;2:857–867. doi: 10.1002/1615-9861(200207)2:7<857::AID-PROT857>3.0.CO;2-L. PubMed DOI
Twine S.M., Petit M.D., Shen H., Mykytczuk N.C., Kelly J.F., Conlan J.W. Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-Francisella vaccines. Biochem. Biophys. Res. Commun. 2006;346:999–1008. doi: 10.1016/j.bbrc.2006.06.008. PubMed DOI
Havlasová J., Hernychová L., Brychta M., Hubálek M., Lenco J., Larsson P., Lundqvist M., Forsman M., Kročová Z., Stulík J., et al. Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics. 2005;5:2090–2103. doi: 10.1002/pmic.200401123. PubMed DOI
Pasetti M.F., Cuberos L., Horn T.L., Shearer J.D., Matthews S.J., House R.V., Sztein M.B. An improved Francisella tularensis live vaccine strain (LVS) is well tolerated and highly immunogenic when administered to rabbits in escalating doses using various immunization routes. Vaccine. 2008;26:1773–1785. doi: 10.1016/j.vaccine.2008.01.005. PubMed DOI PMC
Nutter J.E. Effect of vaccine, route, and schedule on antibody response of rabbits to Pasteurella tularensis. Appl. Microbiol. 1969;17:355–359. doi: 10.1128/am.17.3.355-359.1969. PubMed DOI PMC
Tulis J.J., Eigelsbach H.T., Kerpsack R.W. Host-parasite relationship in monkeys administered live tularemia vaccine. Am. J. Pathol. 1970;58:329–336. PubMed PMC
Stinson E., Smith L.P., Cole K.S., Barry E.M., Reed D.S. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model. Pathog. Dis. 2016;74:ftw079. doi: 10.1093/femspd/ftw079. PubMed DOI PMC
Sunagar R., Kumar S., Namjoshi P., Rosa S.J., Hazlett K.R.O., Gosselin E.J. Evaluation of an outbred mouse model for Francisella tularensis vaccine development and testing. PLoS ONE. 2018;13:e0207587. doi: 10.1371/journal.pone.0207587. PubMed DOI PMC
Mara-Koosham G., Hutt J.A., Lyons C.R., Wu T.H. Antibodies contribute to effective vaccination against respiratory infection by type A Francisella tularensis strains. Infect. Immun. 2011;79:1770–1778. doi: 10.1128/IAI.00605-10. PubMed DOI PMC
Avrameas S. Natural autoantibodies: From “horror autotoxicus” to “gnothi seauton”. Immunol. Today. 1991;12:154–159. PubMed
Coutinho A., Kazatchkine M.D., Avrameas S. Natural autoantibodies. Curr. Opin. Immunol. 1995;7:812–818. doi: 10.1016/0952-7915(95)80053-0. PubMed DOI
Ménoret A., Chandawarkar R.Y., Srivastava P.K. Natural autoantibodies against heat-shock proteins hsp70 and gp96: Implications for immunotherapy using heat-shock proteins. Immunology. 2000;101:364–370. doi: 10.1046/j.1365-2567.2000.00127.x. PubMed DOI PMC
Dragon-Durey M.A., Blanc C., Marinozzi M.C., van Schaarenburg R.A., Trouw L.A. Autoantibodies against complement components and functional consequences. Mol. Immunol. 2013;56:213–221. doi: 10.1016/j.molimm.2013.05.009. PubMed DOI
Sauerborn M., van de Vosse E., Delawi D., van Dissel J.T., Brinks V., Schellekens H. Natural antibodies against bone morphogenic proteins and interferons in healthy donors and in patients with infections linked to type-1 cytokine responses. J. Interferon Cytokine Res. 2011;31:661–669. doi: 10.1089/jir.2010.0075. PubMed DOI
Huflejt M.E., Vuskovic M., Vasiliu D., Xu H., Obukhova P., Shilova N., Tuzikov A., Galanina O., Arun B., Lu K., et al. Anti-carbohydrate antibodies of normal sera: Findings, surprises and challenges. Mol. Immunol. 2009;46:3037–3049. doi: 10.1016/j.molimm.2009.06.010. PubMed DOI
Shilova N., Huflejt M.E., Vuskovic M., Obukhova P., Navakouski M., Khasbiullina N., Pazynina G., Galanina O., Bazhenov A., Bovin N. Natural Antibodies Against Sialoglycans. Top. Curr. Chem. 2015;366:169–181. PubMed
Prieto J.M.B., Felippe M.J.B. Development, phenotype, and function of non-conventional B cells. Comp. Immunol. Microbiol. Infect. Dis. 2017;54:38–44. doi: 10.1016/j.cimid.2017.08.002. PubMed DOI
Smith F.L., Baumgarth N. B-1 cell responses to infections. Curr. Opin. Immunol. 2019;57:23–31. doi: 10.1016/j.coi.2018.12.001. PubMed DOI PMC
Yang Y., Tung J.W., Ghosn E.E., Herzenberg L.A., Herzenberg L.A. Division and differentiation of natural antibody-producing cells in mouse spleen. Proc. Natl. Acad. Sci. USA. 2007;104:4542–4546. doi: 10.1073/pnas.0700001104. PubMed DOI PMC
Yang Y., Ghosn E.E., Cole L.E., Obukhanych T.V., Sadate-Ngatchou P., Vogel S.N., Herzenberg L.A., Herzenberg L.A. Antigen-specific antibody responses in B-1a and their relationship to natural immunity. Proc. Natl. Acad. Sci. USA. 2012;109:5382–5387. doi: 10.1073/pnas.1121631109. PubMed DOI PMC
Yang Y., Ghosn E.E., Cole L.E., Obukhanych T.V., Sadate-Ngatchou P., Vogel S.N., Herzenberg L.A., Herzenberg L.A. Antigen-specific memory in B-1a and its relationship to natural immunity. Proc. Natl. Acad. Sci. USA. 2012;109:5388–5393. doi: 10.1073/pnas.1121627109. PubMed DOI PMC
Kubelkova K., Hudcovic T., Kozakova H., Pejchal J., Macela A. Early infection-induced natural antibody response. Sci. Rep. 2021;11:1541. doi: 10.1038/s41598-021-81083-0. PubMed DOI PMC
Madar M., Bencurova E., Mlynarcik P., Almeida A.M., Soares R., Bhide K., Pulzova L., Kovac A., Coelho A.V., Bhide M. Exploitation of complement regulatory proteins by Borrelia and Francisella. Mol. Biosyst. 2015;11:1684–1695. doi: 10.1039/C5MB00027K. PubMed DOI
Cowley S.C., Gray C.J., Nano F.E. Isolation and characterization of Francisella novicida mutants defective in lipopolysaccharide biosynthesis. FEMS Microbiol. Lett. 2000;182:63–67. doi: 10.1111/j.1574-6968.2000.tb08874.x. PubMed DOI
Li J., Ryder C., Mandal M., Ahmed F., Azadi P., Snyder D.S., Pechous R.D., Zahrt T., Inzana T.J. Attenuation and protective efficacy of an O-antigen-deficient mutant of Francisella tularensis LVS. Pt 9Microbiology. 2007;153:3141–3153. doi: 10.1099/mic.0.2007/006460-0. PubMed DOI
Thomas R.M., Titball R.W., Oyston P.C.F., Griffin K., Waters E., Hitchen P.G., Michell S.L., Grice I.D., Wilson J.C., Prior J.L. The Immunologically Distinct O Antigens from Francisella tularensis Subspecies tularensis and Francisella novicida Are both Virulence Determinants and Protective Antigens. Infect. Immun. 2007;75:371–378. doi: 10.1128/IAI.01241-06. PubMed DOI PMC
Mdluli K.E., Anthony L.S., Baron G.S., McDonald M.K., Myltseva S.V., Nano F.E. Serum-sensitive mutation of Francisella novicida: Association with an ABC transporter gene. Pt 12Microbiology. 1994;140:3309–3318. doi: 10.1099/13500872-140-12-3309. PubMed DOI
Ben Nasr A., Klimpel G.R. Subversion of complement activation at the bacterial surface promotes serum resistance and opsonophagocytosis of Francisella tularensis. J. Leukoc. Biol. 2008;84:77–85. doi: 10.1189/jlb.0807526. PubMed DOI
Parente R., Clark S.J., Inforzato A., Day A.J. Complement factor H in host defense and immune evasion. Cell. Mol. Life Sci. 2017;74:1605–1624. doi: 10.1007/s00018-016-2418-4. PubMed DOI PMC
Kreizinger Z., Bhide M., Bencurova E., Dolinska S., Gyuranecz M. Complement sensitivity and factor H binding of European Francisella tularensis ssp. holarctica strains in selected animal species. Acta Vet. Hung. 2015;63:275–284. doi: 10.1556/004.2015.026. PubMed DOI
Clay C.D., Soni S., Gunn J.S., Schlesinger L.S. Evasion of complement-mediated lysis and complement C3 deposition are regulated by Francisella tularensis lipopolysaccharide O antigen. J. Immunol. 2008;181:5568–5578. doi: 10.4049/jimmunol.181.8.5568. PubMed DOI PMC
Janeway C.A., Jr., Travers P., Walport M., Shlomchik M.J. Immunobiology: The Immune System in Health and Disease. 5th ed. Garland Science; New York, NY, USA: 2020. The complement system and innate immunity.
Kubagawa H., Oka S., Kubagawa Y., Torii I., Takayama E., Kang D.-W., Gartland G.L., Bertoli L.F., Mori H., Takatsu H., et al. Identity of the elusive IgM Fc receptor (FcμR) in humans. J. Exp. Med. 2009;206:2779–2793. doi: 10.1084/jem.20091107. PubMed DOI PMC
Honjo K., Kubagawa Y., Jones D.M., Dizon B., Zhu Z., Ohno H., Izui S., Kearney J.F., Kubagawa H. Altered Ig levels and antibody responses in mice deficient for the Fc receptor for IgM (FcμR) Proc. Natl. Acad. Sci. USA. 2012;109:15882–15887. doi: 10.1073/pnas.1206567109. PubMed DOI PMC
Lang K.S., Lang P.A., Meryk A., Pandyra A.A., Boucher L.-M., Pozdeev V.I., Tusche M.W., Göthert J.R., Haight J., Wakeham A., et al. Involvement of Toso in activation of monocytes, macrophages, and granulocytes. Proc. Natl. Acad. Sci. USA. 2013;110:2593–2598. doi: 10.1073/pnas.1222264110. PubMed DOI PMC
Liu J., Zhu H., Qian J., Xiong E., Zhang L., Wang Y.-Q., Chu Y., Kubagawa H., Tsubata T., Wang J.-Y. Fcµ Receptor Promotes the Survival and Activation of Marginal Zone B Cells and Protects Mice against Bacterial Sepsis. Front. Immunol. 2018;9:160. doi: 10.3389/fimmu.2018.00160. PubMed DOI PMC
Liu J., Wang Y., Xiong E., Hong R., Lu Q., Ohno H., Wang J.Y. Role of the IgM Fc Receptor in Immunity and Tolerance. Front. Immunol. 2019;10:529. doi: 10.3389/fimmu.2019.00529. PubMed DOI PMC
Schwartz J.T., Barker J.H., Long M.E., Kaufman J., McCracken J., Allen L.-A. Natural IgM mediates complement-dependent uptake of Francisella tularensis by human neutrophils via complement receptors 1 and 3 in nonimmune serum. J. Immunol. 2012;189:3064–3077. doi: 10.4049/jimmunol.1200816. PubMed DOI PMC
Geier H., Celli J. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect Immun. 2011;79:2204–2214. doi: 10.1128/IAI.01382-10. PubMed DOI PMC
Kitamura D., Roes J., Kühn R., Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991;350:423–426. doi: 10.1038/350423a0. PubMed DOI
Elkins K.L., MacIntyre A.T., Rhinehart-Jones T.R. Nonspecific early protective immunity in Francisella and Listeria infections can be dependent on lymphocytes. Infect. Immun. 1998;66:3467–3469. doi: 10.1128/IAI.66.7.3467-3469.1998. PubMed DOI PMC
Crane D.D., Scott D.P., Bosio C.M. Generation of a convalescent model of virulent Francisella tularensis infection for assessment of host requirements for survival of tularemia. PLoS ONE. 2012;7:e33349. doi: 10.1371/journal.pone.0033349. PubMed DOI PMC
Ding Z., Bergman A., Rutemark C., Ouchida R., Ohno H., Wang J.-Y., Heyman B. Complement-Activating IgM Enhances the Humoral but Not the T Cell Immune Response in Mice. PLoS ONE. 2013;8:e81299. doi: 10.1371/journal.pone.0081299. PubMed DOI PMC
Sörman A., Zhang L., Ding Z., Heyman B. How antibodies use complement to regulate antibody responses. Mol. Immunol. 2014;61:79–88. doi: 10.1016/j.molimm.2014.06.010. PubMed DOI
Zivna L., Krocova Z., Härtlova A., Kubelkova K., Zakova J., Rudolf E., Hrstka R., Macela A., Stulík J. Activation of B cell apoptotic pathways in the course of Francisella tularensis infection. Microb. Pathog. 2010;49:226–236. doi: 10.1016/j.micpath.2010.06.003. PubMed DOI
Li Z., Woo C.J., Iglesias-Ussel M.D., Ronai D., Scharff M.D. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 2004;18:1–11. doi: 10.1101/gad.1161904. PubMed DOI
Bournazos S., Wang T.T., Dahan R., Maamary J., Ravetch J.V. Signaling by Antibodies: Recent Progress. Annu. Rev. Immunol. 2017;35:285–311. doi: 10.1146/annurev-immunol-051116-052433. PubMed DOI PMC
Pincetic A., Bournazos S., DiLillo D.J., Maamary J., Wang T.T., Dahan R., Fiebiger B.M., Ravetch J.V. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 2014;15:707–716. doi: 10.1038/ni.2939. PubMed DOI PMC
Wang T.T., Ravetch J.V. Functional diversification of IgGs through Fc glycosylation. J. Clin. Investig. 2019;129:3492–3498. doi: 10.1172/JCI130029. PubMed DOI PMC
Lu L.L., Suscovich T.J., Fortune S.M., Alter G. Beyond binding: Antibody effector functions in infectious diseases. Nat. Rev. Immunol. 2018;18:46–61. doi: 10.1038/nri.2017.106. PubMed DOI PMC
Cole L.E., Yang Y., Elkins K.L., Fernandez E.T., Qureshi N., Shlomchik M.J., Herzenberg L.A., Herzenberg L.A., Vogel S.N. Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc. Natl. Acad. Sci. USA. 2009;106:4343–4348. doi: 10.1073/pnas.0813411106. PubMed DOI PMC
Furuya Y., Kirimanjeswara G.S., Roberts S., Metzger D.W. Increased susceptibility of IgA-deficient mice to pulmonary Francisella tularensis live vaccine strain infection. Infect. Immun. 2013;81:3434–3441. doi: 10.1128/IAI.00408-13. PubMed DOI PMC
Conlan W.J., Shen H., Kuolee R., Zhao X., Chen W. Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an alphabeta T cell-and interferon gamma- dependent mechanism. Vaccine. 2005;23:2477–2485. PubMed
Wu T.H., Hutt J.A., Garrison K.A., Berliba L.S., Zhou Y., Lyons C.R. Intranasal vaccination induces protective immunity against intranasal infection with virulent Francisella tularensis biovar A. Infect. Immun. 2005;73:2644–2654. doi: 10.1128/IAI.73.5.2644-2654.2005. PubMed DOI PMC
Furuya Y., Kirimanjeswara G.S., Roberts S., Racine R., Wilson-Welder J., Sanfilippo A.M., Salmon S.I., Metzger D.W. Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice. Vaccine. 2017;35:4997–5005. doi: 10.1016/j.vaccine.2017.07.071. PubMed DOI PMC
Rawool D.B., Bitsaktsis C., Li Y., Gosselin D.R., Lin Y., Kurkure N.V., Metzger D.W., Gosselinet E.J. Utilization of Fc receptors as a mucosal vaccine strategy against an intracellular bacterium, Francisella tularensis. J. Immunol. 2008;180:5548–5557. doi: 10.4049/jimmunol.180.8.5548. PubMed DOI PMC
Iglesias B.V., Bitsaktsis C., Pham G., Drake J.R., Hazlett K.R.O., Porter K., Gosselin E.J. Multiple mechanisms mediate enhanced immunity generated by mAb-inactivated F. tularensis immunogen. Immunol. Cell Biol. 2013;91:139–148. doi: 10.1038/icb.2012.66. PubMed DOI PMC
Kirimanjeswara G.S., Golden J.M., Bakshi C.S., Metzger D.W. Prophylactic and therapeutic use of antibodies for protection against respiratory infection with Francisella tularensis. J. Immunol. 2007;179:532–539. doi: 10.4049/jimmunol.179.1.532. PubMed DOI
Bermudez L.E., Kolonoski P., Young L.S. Natural killer cell activity and macrophage-dependent inhibition of growth or killing of Mycobacterium avium complex in a mouse model. J. Leukoc. Biol. 1990;47:135–141. doi: 10.1002/jlb.47.2.135. PubMed DOI
Galdiero F., Romano Carratelli C., Nuzzo I., Folgore A. Cytotoxic antibody dependent cells in mice experimentally infected with Brucella abortus. Microbiologica. 1985;8:217–224. PubMed
Taylor D.W. Schistosome vaccines. Experientia. 1991;47:152–157. doi: 10.1007/BF01945416. PubMed DOI
Tagliabue A., Boraschi D., Villa L., Keren D.F., Lowell G.H., Rappuoli R., Nencioni L. IgA-dependent cell-mediated activity against enteropathogenic bacteria: Distribution, specificity, and characterization of the effector cells. J. Immunol. 1984;133:988–992. PubMed
Sanapala S., Yu J.J., Murthy A.K., Li W., Guentzel M.N., Chambers J.P., Klose K.E., Arulanandamet B.P. Perforin- and granzyme-mediated cytotoxic effector functions are essential for protection against Francisella tularensis following vaccination by the defined F. tularensis subsp. novicida ΔfopC vaccine strain. Infect. Immun. 2012;80:2177–2185. doi: 10.1128/IAI.00036-12. PubMed DOI PMC
Francis E., Felton L. Antitularemic serum. Public Health Rep. 1942;57:44–50. doi: 10.2307/4583978. DOI
Foshay L., Ruchman I., Nicholes P.S. Antitularense serum: Correlation between protective capacity for white rats and precipitable antibody content. J. Clin. Investig. 1947;26:756–760. doi: 10.1172/JCI101858. PubMed DOI PMC
Foshay L. Tularemia. Annu. Rev. Microbiol. 1950;4:313–330. doi: 10.1146/annurev.mi.04.100150.001525. PubMed DOI
Tärnvik A. Nature of protective immunity to Francisella tularensis. Rev. Infect. Dis. 1989;11:440–451. doi: 10.1093/clinids/11.3.440. PubMed DOI
Lu Z., Roche M.I., Hui J.H., Unal B., Felgner P.L., Gulati S., Madico G., Sharon J. Generation and characterization of hybridoma antibodies for immunotherapy of tularemia. Immunol. Lett. 2007;112:92–103. doi: 10.1016/j.imlet.2007.07.006. PubMed DOI PMC
Rhinehart-Jones T.R., Fortier A.H., Elkins K.L. Transfer of immunity against lethal murine Francisella infection by specific antibody depends on host gamma interferon and T cells. Infect. Immun. 1994;62:3129–3137. doi: 10.1128/iai.62.8.3129-3137.1994. PubMed DOI PMC
Culkin S.J., Rhinehart-Jones T., Elkins K.L. A novel role for B cells in early protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J. Immunol. 1997;158:3277–3284. PubMed
Fulop M., Mastroeni P., Green M., Titball R.W. Role of antibody to lipopolysaccharide in protection against low-and high-virulence strains of Francisella tularensis. Vaccine. 2001;19:4465–4472. doi: 10.1016/S0264-410X(01)00189-X. PubMed DOI
Stenmark S., Lindgren H., Tärnvik A., Sjöstedt A. Specific antibodies contribute to the host protection against strains of Francisella tularensis subspecies holarctica. Microb. Pathog. 2003;35:73–80. doi: 10.1016/S0882-4010(03)00095-0. PubMed DOI
Stenmark S., Sjöstedt A. Transfer of specific antibodies results in increased expression of TNF-alpha and IL12 and recruitment of neutrophils to the site of a cutaneous Francisella tularensis infection. Pt 6J. Med. Microbiol. 2004;53:501–504. doi: 10.1099/jmm.0.05352-0. PubMed DOI
Kirimanjeswara G.S., Olmos S., Bakshi C.S., Metzger D.W. Humoral and cell-mediated immunity to the intracellular pathogen Francisella tularensis. Immunol. Rev. 2008;225:244–255. doi: 10.1111/j.1600-065X.2008.00689.x. PubMed DOI PMC
Kubelkova K., Krocova Z., Balonova L., Pejchal J., Stulik J., Macela A. Specific antibodies protect gamma-irradiated mice against Francisella tularensis infection. Microb. Pathog. 2012;53:259–268. doi: 10.1016/j.micpath.2012.07.006. PubMed DOI
Kubelkova K., Benuchova M., Kozakova H., Sinkora M., Krocova Z., Pejchal J., Macela A. Gnotobiotic mouse model’s contribution to understanding host-pathogen interactions. Cell. Mol. Life Sci. 2016;73:3961–3969. doi: 10.1007/s00018-016-2341-8. PubMed DOI PMC
Chou A.Y., Kennett N.J., Melillo A.A., Elkins K.L. Murine survival of infection with Francisella novicida and protection against secondary challenge is critically dependent on B lymphocytes. Microbes Infect. 2017;19:91–100. doi: 10.1016/j.micinf.2016.12.001. PubMed DOI
Sebastian S., Pinkham J.T., Lynch J.G., Ross R.A., Reinap B., Blalock L.T., Conlan J.W., Kasper D.L. Cellular and humoral immunity are synergistic in protection against types A and B Francisella tularensis. Vaccine. 2009;27:597–605. doi: 10.1016/j.vaccine.2008.10.079. PubMed DOI PMC
Del Barrio L., Sahoo M., Lantier L., Reynolds J.M., Ceballos-Olvera I., Re F. Production of anti-LPS IgM by B1a B cells depends on IL-1β and is protective against lung infection with Francisella tularensis LVS. PLoS Pathog. 2015;11:e1004706. doi: 10.1371/journal.ppat.1004706. PubMed DOI PMC
Lu Z., Rynkiewicz M.J., Madico G., Li S., Yang C.Y., Perkins H.M., Sompuram S.R., Kodela V., Liu T., Morris T., et al. B-cell epitopes in GroEL of Francisella tularensis. PLoS ONE. 2014;9:e99847. doi: 10.1371/journal.pone.0099847. PubMed DOI PMC
Holland-Tummillo K.M., Shoudy L.E., Steiner D., Kumar S., Rosa S.J., Namjoshi P., Singh A., Sellati T.J., Gosselin E.J., Hazlett K.R. Autotransporter-Mediated Display of Complement Receptor Ligands by Gram-Negative Bacteria Increases Antibody Responses and Limits Disease Severity. Pathogens. 2020;9:375. doi: 10.3390/pathogens9050375. PubMed DOI PMC