The Early Dendritic Cell Signaling Induced by Virulent Francisella tularensis Strain Occurs in Phases and Involves the Activation of Extracellular Signal-Regulated Kinases (ERKs) and p38 In the Later Stage

. 2018 Jan ; 17 (1) : 81-94. [epub] 20171018

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29046388
Odkazy

PubMed 29046388
PubMed Central PMC5750852
DOI 10.1074/mcp.ra117.000160
PII: S1535-9476(20)32285-4
Knihovny.cz E-zdroje

Dendritic cells (DCs) infected by Francisella tularensis are poorly activated and do not undergo classical maturation process. Although reasons of such unresponsiveness are not fully understood, their impact on the priming of immunity is well appreciated. Previous attempts to explain the behavior of Francisella-infected DCs were hypothesis-driven and focused on events at later stages of infection. Here, we took an alternative unbiased approach by applying methods of global phosphoproteomics to analyze the dynamics of cell signaling in primary DCs during the first hour of infection by Francisella tularensis Presented results show that the early response of DCs to Francisella occurs in phases and that ERK and p38 signaling modules induced at the later stage are differentially regulated by virulent and attenuated ΔdsbA strain. These findings imply that the temporal orchestration of host proinflammatory pathways represents the integral part of Francisella life-cycle inside hijacked DCs.

Zobrazit více v PubMed

Kubelkova K., and Macela A. (2015) Putting the Jigsaw Together - A Brief Insight Into the Tularemia. Open Life Sci. 10,

Oyston P. C. F., Sjostedt A., and Titball R. W. (2004) Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat. Rev. Microbiol. 2, 967–978 PubMed

Sharma J., Mares C. A., Li Q., Morris E. G., and Teale J. M. (2011) Features of sepsis caused by pulmonary infection with Francisella tularensis Type A strain. Microb. Pathog. 51, 39–47 PubMed PMC

Asare R., and Kwaik Y. A. (2010) Exploitation of host cell biology and evasion of immunity by Francisella tularensis. Front. Microbiol. 1, 145. PubMed PMC

Santic M., Al-Khodor S., and Abu Kwaik Y. (2010) Cell biology and molecular ecology of Francisella tularensis. Cell. Microbiol. 12, 129–139 PubMed

Fabrik I., Härtlova A., Rehulka P., and Stulik J. (2013) Serving the new masters - dendritic cells as hosts for stealth intracellular bacteria. Cell. Microbiol. 15, 1473–1483 PubMed

Cole L. E., Santiago A., Barry E., Kang T. J., Shirey K. A., Roberts Z. J., Elkins K. L., Cross A. S., and Vogel S. N. (2008) Macrophage proinflammatory response to Francisella tularensis live vaccine strain requires coordination of multiple signaling pathways. J. Immunol. 180, 6885–6891 PubMed PMC

Cremer T. J., Butchar J. P., and Tridandapani S. (2011) Francisella subverts innate immune signaling: focus on PI3K/Akt. Front. Microbiol. 5, 13. PubMed PMC

Storek K. M., Gertsvolf N. A., Ohlson M. B., and Monack D. M. (2015) cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J. Immunol. 194, 3236–3245 PubMed PMC

Jones J. W., Kayagaki N., Broz P., Henry T., Newton K., O'Rourke K., Chan S., Dong J., Qu Y., Roose-Girma M., Dixit V. M., and Monack D. M. (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. U.S.A. 107, 9771–9776 PubMed PMC

Bauler T. J., Chase J. C., and Bosio C. M. (2011) IFN-β mediates suppression of IL-12p40 in human dendritic cells following infection with virulent Francisella tularensis. J. Immunol. 187, 1845–1855 PubMed PMC

Fabrik I., Link M., Härtlova A., Dankova V., Rehulka P., and Stulik J. (2014) Application of SILAC labeling to primary bone marrow-derived dendritic cells reveals extensive GM-CSF-dependent arginine metabolism. J. Proteome Res. 13, 752–762 PubMed

Rogers L. D., Fang Y., and Foster L. J. (2010) An integrated global strategy for cell lysis, fractionation, enrichment and mass spectrometric analysis of phosphorylated peptides. Mol. Biosyst. 6, 822–829 PubMed

Yeung Y.-G., and Stanley E. R. (2010) Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr. Protoc. Protein Sci. Chapter 16, Unit 16.12 PubMed PMC

McNulty D. E., and Annan R. S. (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell. Proteomics MCP 7, 971–980 PubMed

Härtlova A., Link M., Balounova J., Benesova M., Resch U., Straskova A., Sobol M., Philimonenko A., Hozak P., Krocova Z., Gekara N., Filipp D., and Stulik J. (2014) Quantitative proteomics analysis of macrophage-derived lipid rafts reveals induction of autophagy pathway at the early time of Francisella tularensis LVS infection. J. Proteome Res. 13, 796–804 PubMed

Michalski A., Damoc E., Hauschild J.-P., Lange O., Wieghaus A., Makarov A., Nagaraj N., Cox J., Mann M., and Horning S. (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteomics MCP 10, M111.011015 PubMed PMC

Cox J., and Mann M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 PubMed

Klammer M., Dybowski J. N., Hoffmann D., and Schaab C. (2014) Identification of significant features by the Global Mean Rank test. PloS One 9:e104504, PubMed PMC

Zhou Y., Cras-Méneur C., Ohsugi M., Stormo G. D., and Permutt M. A. (2007) A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments. Bioinformation 23, 2073–2079 PubMed

Futschik M. E., and Carlisle B. (2005) Noise-robust soft clustering of gene expression time-course data. J. Bioinform. Comput. Biol. 3, 965–988 PubMed

Olsen J. V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., and Mann M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 PubMed

Sharma K., D'Souza R. C. J., Tyanova S., Schaab C., Wiśniewski J. R., Cox J., and Mann M. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 PubMed

Kumar L., and E Futschik M. (2007) Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2, 5–7 PubMed PMC

Schwämmle V., and Jensen O. N. (2010) A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformation 26, 2841–2848 PubMed

Keshava Prasad T. S., Goel R., Kandasamy K., Keerthikumar S., Kumar S., Mathivanan S., Telikicherla D., Raju R., Shafreen B., Venugopal A., Balakrishnan L., Marimuthu A., Banerjee S., Somanathan D. S., Sebastian A., Rani S., Ray S., Harrys Kishore C. J., Kanth S., Ahmed M., Kashyap M. K., Mohmood R., Ramachandra Y. L., Krishna V., Rahiman B. A., Mohan S., Ranganathan P., Ramabadran S., Chaerkady R., and Pandey A. (2009) Human Protein Reference Database–2009 update. Nucleic Acids Res. 37, D767–D772 PubMed PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., Mann M., and Cox J. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 PubMed

Breuer K., Foroushani A. K., Laird M. R., Chen C., Sribnaia A., Lo R., Winsor G. L., Hancock R. E. W., Brinkman F. S. L., and Lynn D. J. (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res. 41, D1228–D1233 PubMed PMC

Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K. P., Kuhn M., Bork P., Jensen L. J., and von Mering C. (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 PubMed PMC

Kim H. G., Kim J. Y., Gim M. G., Lee J. M., and Chung D. K. (2008) Mechanical stress induces tumor necrosis factor-α production through Ca2+ release-dependent TLR2 signaling. Am. J. Physiol. Cell Physiol. 295, C432–C439 PubMed

Qin A., Scott D. W., Thompson J. A., and Mann B. J. (2009) Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect. Immun. 77, 152–161 PubMed PMC

Straskova A., Pavkova I., Link M., Forslund A.-L., Kuoppa K., Noppa L., Kroca M., Fucikova A., Klimentova J., Krocova Z., Forsberg A., and Stulik J. (2009) Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J. Proteome Res. 8, 5336–5346 PubMed

Straskova A., Spidlova P., Mou S., Worsham P., Putzova D., Pavkova I., and Stulik J. (2015) Francisella tularensis type B ΔdsbA mutant protects against type A strain and induces strong inflammatory cytokine and Th1-like antibody response in vivo. Pathog. Dis. 73, ftv058. PubMed PMC

Straskova A., Cerveny L., Spidlova P., Dankova V., Belcic D., Santic M., and Stulik J. (2012) Deletion of IglH in virulent Francisella tularensis subsp. holarctica FSC200 strain results in attenuation and provides protection against the challenge with the parental strain. Microbes Infect. 14, 177–187 PubMed

Hashimoto M., Sagara Y., Langford D., Everall I. P., Mallory M., Everson A., Digicaylioglu M., and Masliah E. (2002) Fibroblast growth factor 1 regulates signaling via the glycogen synthase kinase-3β pathway. Implications for neuroprotection. J. Biol. Chem. 277, 32985–32991 PubMed

Manning B. D., Tee A. R., Logsdon M. N., Blenis J., and Cantley L. C. (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 PubMed

Ning J., Xi G., and Clemmons D. R. (2011) Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology 152, 3143–3154 PubMed PMC

Vander Haar E., Lee S.-I., Bandhakavi S., Griffin T. J., and Kim D.-H. (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 PubMed

Acosta-Jaquez H. A., Keller J. A., Foster K. G., Ekim B., Soliman G. A., Feener E. P., Ballif B. A., and Fingar D. C. (2009) Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol. Cell. Biol. 29, 4308–4324 PubMed PMC

Kim Y.-M., Stone M., Hwang T. H., Kim Y.-G., Dunlevy J. R., Griffin T. J., and Kim D.-H. (2012) SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Mol. Cell 46, 833–846 PubMed PMC

Dalby K. N., Morrice N., Caudwell F. B., Avruch J., and Cohen P. (1998) Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J. Biol. Chem. 273, 1496–1505 PubMed

Kang S., Dong S., Gu T.-L., Guo A., Cohen M. S., Lonial S., Khoury H. J., Fabbro D., Gilliland D. G., Bergsagel P. L., Taunton J., Polakiewicz R. D., and Chen J. (2007) FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell 12, 201–214 PubMed PMC

Engel K., Schultz H., Martin F., Kotlyarov A., Plath K., Hahn M., Heinemann U., and Gaestel M. (1995) Constitutive activation of mitogen-activated protein kinase-activated protein kinase 2 by mutation of phosphorylation sites and an A-helix motif. J. Biol. Chem. 270, 27213–27221 PubMed

Tomás-Zuber M., Mary J. L., Lamour F., Bur D., and Lesslauer W. (2001) C-terminal elements control location, activation threshold, and p38 docking of ribosomal S6 kinase B (RSKB). J. Biol. Chem. 276, 5892–5899 PubMed

Matsuura H., Nishitoh H., Takeda K., Matsuzawa A., Amagasa T., Ito M., Yoshioka K., and Ichijo H. (2002) Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J. Biol. Chem. 277, 40703–40709 PubMed

Santic M., Asare R., Skrobonja I., Jones S., and Abu Kwaik Y. (2008) Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect. Immun. 76, 2671–2677 PubMed PMC

Chong A., Wehrly T. D., Nair V., Fischer E. R., Barker J. R., Klose K. E., and Celli J. (2008) The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect. Immun. 76, 5488–5499 PubMed PMC

Clark K., Peggie M., Plater L., Sorcek R. J., Young E. R. R., Madwed J. B., Hough J., McIver E. G., and Cohen P. (2011) Novel cross-talk within the IKK family controls innate immunity. Biochem. J. 434, 93–104 PubMed

Shirane M., Hatakeyama S., Hattori K., Nakayama K., and Nakayama K. (1999) Common pathway for the ubiquitination of IκBα, IκBβ, and IκBε mediated by the F-box protein FWD1. J. Biol. Chem. 274, 28169–28174 PubMed

Leotoing L., Chereau F., Baron S., Hube F., Valencia H. J., Bordereaux D., Demmers J. A., Strouboulis J., and Baud V. (2011) A20-binding inhibitor of nuclear factor-κB (NF-κB)-2 (ABIN-2) is an activator of inhibitor of NF-κB (IκB) kinase α (IKKα)-mediated NF-κB transcriptional activity. J. Biol. Chem. 286, 32277–32288 PubMed PMC

Sanjabi S., Hoffmann A., Liou H. C., Baltimore D., and Smale S. T. (2000) Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc. Natl. Acad. Sci. U.S.A. 97, 12705–12710 PubMed PMC

Zhu C., Gagnidze K., Gemberling J. H., and Plevy S. E. (2001) Characterization of an activation protein-1-binding site in the murine interleukin-12 p40 promoter. Demonstration of novel functional elements by a reductionist approach. J. Biol. Chem. 276, 18519–18528 PubMed

Olson C. M., Hedrick M. N., Izadi H., Bates T. C., Olivera E. R., and Anguita J. (2007) p38 mitogen-activated protein kinase controls NF-κB transcriptional activation and tumor necrosis factor alpha production through RelA phosphorylation mediated by mitogen- and stress-activated protein kinase 1 in response to Borrelia burgdorferi antigens. Infect. Immun. 75, 270–277 PubMed PMC

Wen A. Y., Sakamoto K. M., and Miller L. S. (2010) The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413–6419 PubMed PMC

Screaton R. A., Conkright M. D., Katoh Y., Best J. L., Canettieri G., Jeffries S., Guzman E., Niessen S., Yates J. R., Takemori H., Okamoto M., and Montminy M. (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 PubMed

Tan Y., Rouse J., Zhang A., Cariati S., Cohen P., and Comb M. J. (1996) FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15, 4629–4642 PubMed PMC

Deak M., Clifton A. D., Lucocq L. M., and Alessi D. R. (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441 PubMed PMC

Tanaka Y., and Chen Z. J. (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20. PubMed PMC

Henry T., Brotcke A., Weiss D. S., Thompson L. J., and Monack D. M. (2007) Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med. 204, 987–994 PubMed PMC

Mashima R., Saeki K., Aki D., Minoda Y., Takaki H., Sanada T., Kobayashi T., Aburatani H., Yamanashi Y., and Yoshimura A. (2005) FLN29, a novel interferon- and LPS-inducible gene acting as a negative regulator of toll-like receptor signaling. J. Biol. Chem. 280, 41289–41297 PubMed

Sanada T., Takaesu G., Mashima R., Yoshida R., Kobayashi T., and Yoshimura A. (2008) FLN29 deficiency reveals its negative regulatory role in the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like helicase signaling pathway. J. Biol. Chem. 283, 33858–33864 PubMed PMC

Huang M. T.-H., Mortensen B. L., Taxman D. J., Craven R. R., Taft-Benz S., Kijek T. M., Fuller J. R., Davis B. K., Allen I. C., Brickey W. J., Gris D., Wen H., Kawula T. H., and Ting J. P.-Y. (2010) Deletion of ripA alleviates suppression of the inflammasome and MAPK by Francisella tularensis. J. Immunol. 185, 5476–5485 PubMed PMC

Nakayasu E. S., Tempel R., Cambronne X. A., Petyuk V. A., Jones M. B., Gritsenko M. A., Monroe M. E., Yang F., Smith R. D., Adkins J. N., and Heffron F. (2013) Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection. Mol. Cell. Proteomics MCP 12, 3297–3309 PubMed PMC

Telepnev M., Golovliov I., and Sjöstedt A. (2005) Francisella tularensis LVS initially activates but subsequently down-regulates intracellular signaling and cytokine secretion in mouse monocytic and human peripheral blood mononuclear cells. Microb. Pathog. 38, 239–247 PubMed

Parsa K. V. L., Butchar J. P., Rajaram M. V. S., Cremer T. J., and Tridandapani S. (2008) The tyrosine kinase Syk promotes phagocytosis of Francisella through the activation of Erk. Mol. Immunol. 45, 3012–3021 PubMed PMC

Edwards M. W., Aultman J. A., Harber G., Bhatt J. M., Sztul E., Xu Q., Zhang P., Michalek S. M., and Katz J. (2013) Role of mTOR downstream effector signaling molecules in Francisella tularensis internalization by murine macrophages. PloS One 8, e83226. PubMed PMC

Van den Broeke C., Radu M., Chernoff J., and Favoreel H. W. (2010) An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol. 20, 160–169 PubMed PMC

Moreau G. B., and Mann B. J. (2013) Adherence and uptake of Francisella into host cells. Virulence 4, 826–832 PubMed PMC

Thakran S., Li H., Lavine C. L., Miller M. A., Bina J. E., Bina X. R., and Re F. (2008) Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer. J. Biol. Chem. 283, 3751–3760 PubMed

Putzova D., Panda S., Härtlova A., Stulík J., and Gekara N. O. (2017) Subversion of innate immune responses by Francisella involves the disruption of TRAF3 and TRAF6 signalling complexes. Cell. Microbiol. doi: 10.1111/cmi.12769 PubMed DOI

Sukhbaatar N., Hengstschläger M., and Weichhart T. (2016) mTOR-Mediated Regulation of Dendritic Cell Differentiation and Function. Trends Immunol. 37, 778–789 PubMed PMC

Hrstka R., Stulík J., and Vojtesek B. (2005) The role of MAPK signal pathways during Francisella tularensis LVS infection-induced apoptosis in murine macrophages. Microbes Infect. 7, 619–625 PubMed

Santic M., Pavokovic G., Jones S., Asare R., and Kwaik Y. A. (2010) Regulation of apoptosis and anti-apoptosis signalling by Francisella tularensis. Microbes Infect. 12, 126–134 PubMed PMC

Brummett A. M., Navratil A. R., Bryan J. D., and Woolard M. D. (2014) Janus kinase 3 activity is necessary for phosphorylation of cytosolic phospholipase A2 and prostaglandin E2 synthesis by macrophages infected with Francisella tularensis live vaccine strain. Infect. Immun. 82, 970–982 PubMed PMC

Zhang P., Katz J., and Michalek S. M. (2009) Glycogen synthase kinase-3β (GSK3β) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice. Mol. Immunol. 46, 677–687 PubMed PMC

Corinti S., Albanesi C., la Sala A., Pastore S., and Girolomoni G. (2001) Regulatory activity of autocrine IL-10 on dendritic cell functions. J. Immunol. Baltim. Md 1950 166, 4312–4318 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Protective potential of outer membrane vesicles derived from a virulent strain of Francisella tularensis

. 2024 ; 15 () : 1355872. [epub] 20240312

Modified activities of macrophages' deubiquitinating enzymes after Francisella infection

. 2023 ; 14 () : 1252827. [epub] 20230929

Francisella tularensis Glyceraldehyde-3-Phosphate Dehydrogenase Is Relocalized during Intracellular Infection and Reveals Effect on Cytokine Gene Expression and Signaling

. 2023 Feb 13 ; 12 (4) : . [epub] 20230213

Francisella tularensis Outer Membrane Vesicles Participate in the Early Phase of Interaction With Macrophages

. 2021 ; 12 () : 748706. [epub] 20211015

Francisella and Antibodies

. 2021 Oct 12 ; 9 (10) : . [epub] 20211012

Early infection-induced natural antibody response

. 2021 Jan 15 ; 11 (1) : 1541. [epub] 20210115

Amorphous TiO2 Nanotubes as a Platform for Highly Selective Phosphopeptide Enrichment

. 2019 Jul 31 ; 4 (7) : 12156-12166. [epub] 20190715

Innate Immune Recognition: An Issue More Complex Than Expected

. 2019 ; 9 () : 241. [epub] 20190703

Radio-sensitizing effects of VE-821 and beyond: Distinct phosphoproteomic and metabolomic changes after ATR inhibition in irradiated MOLT-4 cells

. 2018 ; 13 (7) : e0199349. [epub] 20180712

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace