The Early Dendritic Cell Signaling Induced by Virulent Francisella tularensis Strain Occurs in Phases and Involves the Activation of Extracellular Signal-Regulated Kinases (ERKs) and p38 In the Later Stage
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29046388
PubMed Central
PMC5750852
DOI
10.1074/mcp.ra117.000160
PII: S1535-9476(20)32285-4
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- dendritické buňky metabolismus mikrobiologie MeSH
- extracelulárním signálem regulované MAP kinasy metabolismus MeSH
- fosforylace MeSH
- Francisella tularensis * MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- myši inbrední C57BL MeSH
- tularemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- extracelulárním signálem regulované MAP kinasy MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
Dendritic cells (DCs) infected by Francisella tularensis are poorly activated and do not undergo classical maturation process. Although reasons of such unresponsiveness are not fully understood, their impact on the priming of immunity is well appreciated. Previous attempts to explain the behavior of Francisella-infected DCs were hypothesis-driven and focused on events at later stages of infection. Here, we took an alternative unbiased approach by applying methods of global phosphoproteomics to analyze the dynamics of cell signaling in primary DCs during the first hour of infection by Francisella tularensis Presented results show that the early response of DCs to Francisella occurs in phases and that ERK and p38 signaling modules induced at the later stage are differentially regulated by virulent and attenuated ΔdsbA strain. These findings imply that the temporal orchestration of host proinflammatory pathways represents the integral part of Francisella life-cycle inside hijacked DCs.
Zobrazit více v PubMed
Kubelkova K., and Macela A. (2015) Putting the Jigsaw Together - A Brief Insight Into the Tularemia. Open Life Sci. 10,
Oyston P. C. F., Sjostedt A., and Titball R. W. (2004) Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat. Rev. Microbiol. 2, 967–978 PubMed
Sharma J., Mares C. A., Li Q., Morris E. G., and Teale J. M. (2011) Features of sepsis caused by pulmonary infection with Francisella tularensis Type A strain. Microb. Pathog. 51, 39–47 PubMed PMC
Asare R., and Kwaik Y. A. (2010) Exploitation of host cell biology and evasion of immunity by Francisella tularensis. Front. Microbiol. 1, 145. PubMed PMC
Santic M., Al-Khodor S., and Abu Kwaik Y. (2010) Cell biology and molecular ecology of Francisella tularensis. Cell. Microbiol. 12, 129–139 PubMed
Fabrik I., Härtlova A., Rehulka P., and Stulik J. (2013) Serving the new masters - dendritic cells as hosts for stealth intracellular bacteria. Cell. Microbiol. 15, 1473–1483 PubMed
Cole L. E., Santiago A., Barry E., Kang T. J., Shirey K. A., Roberts Z. J., Elkins K. L., Cross A. S., and Vogel S. N. (2008) Macrophage proinflammatory response to Francisella tularensis live vaccine strain requires coordination of multiple signaling pathways. J. Immunol. 180, 6885–6891 PubMed PMC
Cremer T. J., Butchar J. P., and Tridandapani S. (2011) Francisella subverts innate immune signaling: focus on PI3K/Akt. Front. Microbiol. 5, 13. PubMed PMC
Storek K. M., Gertsvolf N. A., Ohlson M. B., and Monack D. M. (2015) cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J. Immunol. 194, 3236–3245 PubMed PMC
Jones J. W., Kayagaki N., Broz P., Henry T., Newton K., O'Rourke K., Chan S., Dong J., Qu Y., Roose-Girma M., Dixit V. M., and Monack D. M. (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. U.S.A. 107, 9771–9776 PubMed PMC
Bauler T. J., Chase J. C., and Bosio C. M. (2011) IFN-β mediates suppression of IL-12p40 in human dendritic cells following infection with virulent Francisella tularensis. J. Immunol. 187, 1845–1855 PubMed PMC
Fabrik I., Link M., Härtlova A., Dankova V., Rehulka P., and Stulik J. (2014) Application of SILAC labeling to primary bone marrow-derived dendritic cells reveals extensive GM-CSF-dependent arginine metabolism. J. Proteome Res. 13, 752–762 PubMed
Rogers L. D., Fang Y., and Foster L. J. (2010) An integrated global strategy for cell lysis, fractionation, enrichment and mass spectrometric analysis of phosphorylated peptides. Mol. Biosyst. 6, 822–829 PubMed
Yeung Y.-G., and Stanley E. R. (2010) Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr. Protoc. Protein Sci. Chapter 16, Unit 16.12 PubMed PMC
McNulty D. E., and Annan R. S. (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell. Proteomics MCP 7, 971–980 PubMed
Härtlova A., Link M., Balounova J., Benesova M., Resch U., Straskova A., Sobol M., Philimonenko A., Hozak P., Krocova Z., Gekara N., Filipp D., and Stulik J. (2014) Quantitative proteomics analysis of macrophage-derived lipid rafts reveals induction of autophagy pathway at the early time of Francisella tularensis LVS infection. J. Proteome Res. 13, 796–804 PubMed
Michalski A., Damoc E., Hauschild J.-P., Lange O., Wieghaus A., Makarov A., Nagaraj N., Cox J., Mann M., and Horning S. (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteomics MCP 10, M111.011015 PubMed PMC
Cox J., and Mann M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 PubMed
Klammer M., Dybowski J. N., Hoffmann D., and Schaab C. (2014) Identification of significant features by the Global Mean Rank test. PloS One 9:e104504, PubMed PMC
Zhou Y., Cras-Méneur C., Ohsugi M., Stormo G. D., and Permutt M. A. (2007) A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments. Bioinformation 23, 2073–2079 PubMed
Futschik M. E., and Carlisle B. (2005) Noise-robust soft clustering of gene expression time-course data. J. Bioinform. Comput. Biol. 3, 965–988 PubMed
Olsen J. V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., and Mann M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 PubMed
Sharma K., D'Souza R. C. J., Tyanova S., Schaab C., Wiśniewski J. R., Cox J., and Mann M. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 PubMed
Kumar L., and E Futschik M. (2007) Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2, 5–7 PubMed PMC
Schwämmle V., and Jensen O. N. (2010) A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformation 26, 2841–2848 PubMed
Keshava Prasad T. S., Goel R., Kandasamy K., Keerthikumar S., Kumar S., Mathivanan S., Telikicherla D., Raju R., Shafreen B., Venugopal A., Balakrishnan L., Marimuthu A., Banerjee S., Somanathan D. S., Sebastian A., Rani S., Ray S., Harrys Kishore C. J., Kanth S., Ahmed M., Kashyap M. K., Mohmood R., Ramachandra Y. L., Krishna V., Rahiman B. A., Mohan S., Ranganathan P., Ramabadran S., Chaerkady R., and Pandey A. (2009) Human Protein Reference Database–2009 update. Nucleic Acids Res. 37, D767–D772 PubMed PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., Mann M., and Cox J. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 PubMed
Breuer K., Foroushani A. K., Laird M. R., Chen C., Sribnaia A., Lo R., Winsor G. L., Hancock R. E. W., Brinkman F. S. L., and Lynn D. J. (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res. 41, D1228–D1233 PubMed PMC
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K. P., Kuhn M., Bork P., Jensen L. J., and von Mering C. (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 PubMed PMC
Kim H. G., Kim J. Y., Gim M. G., Lee J. M., and Chung D. K. (2008) Mechanical stress induces tumor necrosis factor-α production through Ca2+ release-dependent TLR2 signaling. Am. J. Physiol. Cell Physiol. 295, C432–C439 PubMed
Qin A., Scott D. W., Thompson J. A., and Mann B. J. (2009) Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect. Immun. 77, 152–161 PubMed PMC
Straskova A., Pavkova I., Link M., Forslund A.-L., Kuoppa K., Noppa L., Kroca M., Fucikova A., Klimentova J., Krocova Z., Forsberg A., and Stulik J. (2009) Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J. Proteome Res. 8, 5336–5346 PubMed
Straskova A., Spidlova P., Mou S., Worsham P., Putzova D., Pavkova I., and Stulik J. (2015) Francisella tularensis type B ΔdsbA mutant protects against type A strain and induces strong inflammatory cytokine and Th1-like antibody response in vivo. Pathog. Dis. 73, ftv058. PubMed PMC
Straskova A., Cerveny L., Spidlova P., Dankova V., Belcic D., Santic M., and Stulik J. (2012) Deletion of IglH in virulent Francisella tularensis subsp. holarctica FSC200 strain results in attenuation and provides protection against the challenge with the parental strain. Microbes Infect. 14, 177–187 PubMed
Hashimoto M., Sagara Y., Langford D., Everall I. P., Mallory M., Everson A., Digicaylioglu M., and Masliah E. (2002) Fibroblast growth factor 1 regulates signaling via the glycogen synthase kinase-3β pathway. Implications for neuroprotection. J. Biol. Chem. 277, 32985–32991 PubMed
Manning B. D., Tee A. R., Logsdon M. N., Blenis J., and Cantley L. C. (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 PubMed
Ning J., Xi G., and Clemmons D. R. (2011) Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology 152, 3143–3154 PubMed PMC
Vander Haar E., Lee S.-I., Bandhakavi S., Griffin T. J., and Kim D.-H. (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 PubMed
Acosta-Jaquez H. A., Keller J. A., Foster K. G., Ekim B., Soliman G. A., Feener E. P., Ballif B. A., and Fingar D. C. (2009) Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol. Cell. Biol. 29, 4308–4324 PubMed PMC
Kim Y.-M., Stone M., Hwang T. H., Kim Y.-G., Dunlevy J. R., Griffin T. J., and Kim D.-H. (2012) SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Mol. Cell 46, 833–846 PubMed PMC
Dalby K. N., Morrice N., Caudwell F. B., Avruch J., and Cohen P. (1998) Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J. Biol. Chem. 273, 1496–1505 PubMed
Kang S., Dong S., Gu T.-L., Guo A., Cohen M. S., Lonial S., Khoury H. J., Fabbro D., Gilliland D. G., Bergsagel P. L., Taunton J., Polakiewicz R. D., and Chen J. (2007) FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell 12, 201–214 PubMed PMC
Engel K., Schultz H., Martin F., Kotlyarov A., Plath K., Hahn M., Heinemann U., and Gaestel M. (1995) Constitutive activation of mitogen-activated protein kinase-activated protein kinase 2 by mutation of phosphorylation sites and an A-helix motif. J. Biol. Chem. 270, 27213–27221 PubMed
Tomás-Zuber M., Mary J. L., Lamour F., Bur D., and Lesslauer W. (2001) C-terminal elements control location, activation threshold, and p38 docking of ribosomal S6 kinase B (RSKB). J. Biol. Chem. 276, 5892–5899 PubMed
Matsuura H., Nishitoh H., Takeda K., Matsuzawa A., Amagasa T., Ito M., Yoshioka K., and Ichijo H. (2002) Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J. Biol. Chem. 277, 40703–40709 PubMed
Santic M., Asare R., Skrobonja I., Jones S., and Abu Kwaik Y. (2008) Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect. Immun. 76, 2671–2677 PubMed PMC
Chong A., Wehrly T. D., Nair V., Fischer E. R., Barker J. R., Klose K. E., and Celli J. (2008) The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect. Immun. 76, 5488–5499 PubMed PMC
Clark K., Peggie M., Plater L., Sorcek R. J., Young E. R. R., Madwed J. B., Hough J., McIver E. G., and Cohen P. (2011) Novel cross-talk within the IKK family controls innate immunity. Biochem. J. 434, 93–104 PubMed
Shirane M., Hatakeyama S., Hattori K., Nakayama K., and Nakayama K. (1999) Common pathway for the ubiquitination of IκBα, IκBβ, and IκBε mediated by the F-box protein FWD1. J. Biol. Chem. 274, 28169–28174 PubMed
Leotoing L., Chereau F., Baron S., Hube F., Valencia H. J., Bordereaux D., Demmers J. A., Strouboulis J., and Baud V. (2011) A20-binding inhibitor of nuclear factor-κB (NF-κB)-2 (ABIN-2) is an activator of inhibitor of NF-κB (IκB) kinase α (IKKα)-mediated NF-κB transcriptional activity. J. Biol. Chem. 286, 32277–32288 PubMed PMC
Sanjabi S., Hoffmann A., Liou H. C., Baltimore D., and Smale S. T. (2000) Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc. Natl. Acad. Sci. U.S.A. 97, 12705–12710 PubMed PMC
Zhu C., Gagnidze K., Gemberling J. H., and Plevy S. E. (2001) Characterization of an activation protein-1-binding site in the murine interleukin-12 p40 promoter. Demonstration of novel functional elements by a reductionist approach. J. Biol. Chem. 276, 18519–18528 PubMed
Olson C. M., Hedrick M. N., Izadi H., Bates T. C., Olivera E. R., and Anguita J. (2007) p38 mitogen-activated protein kinase controls NF-κB transcriptional activation and tumor necrosis factor alpha production through RelA phosphorylation mediated by mitogen- and stress-activated protein kinase 1 in response to Borrelia burgdorferi antigens. Infect. Immun. 75, 270–277 PubMed PMC
Wen A. Y., Sakamoto K. M., and Miller L. S. (2010) The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413–6419 PubMed PMC
Screaton R. A., Conkright M. D., Katoh Y., Best J. L., Canettieri G., Jeffries S., Guzman E., Niessen S., Yates J. R., Takemori H., Okamoto M., and Montminy M. (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 PubMed
Tan Y., Rouse J., Zhang A., Cariati S., Cohen P., and Comb M. J. (1996) FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15, 4629–4642 PubMed PMC
Deak M., Clifton A. D., Lucocq L. M., and Alessi D. R. (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441 PubMed PMC
Tanaka Y., and Chen Z. J. (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20. PubMed PMC
Henry T., Brotcke A., Weiss D. S., Thompson L. J., and Monack D. M. (2007) Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med. 204, 987–994 PubMed PMC
Mashima R., Saeki K., Aki D., Minoda Y., Takaki H., Sanada T., Kobayashi T., Aburatani H., Yamanashi Y., and Yoshimura A. (2005) FLN29, a novel interferon- and LPS-inducible gene acting as a negative regulator of toll-like receptor signaling. J. Biol. Chem. 280, 41289–41297 PubMed
Sanada T., Takaesu G., Mashima R., Yoshida R., Kobayashi T., and Yoshimura A. (2008) FLN29 deficiency reveals its negative regulatory role in the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like helicase signaling pathway. J. Biol. Chem. 283, 33858–33864 PubMed PMC
Huang M. T.-H., Mortensen B. L., Taxman D. J., Craven R. R., Taft-Benz S., Kijek T. M., Fuller J. R., Davis B. K., Allen I. C., Brickey W. J., Gris D., Wen H., Kawula T. H., and Ting J. P.-Y. (2010) Deletion of ripA alleviates suppression of the inflammasome and MAPK by Francisella tularensis. J. Immunol. 185, 5476–5485 PubMed PMC
Nakayasu E. S., Tempel R., Cambronne X. A., Petyuk V. A., Jones M. B., Gritsenko M. A., Monroe M. E., Yang F., Smith R. D., Adkins J. N., and Heffron F. (2013) Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection. Mol. Cell. Proteomics MCP 12, 3297–3309 PubMed PMC
Telepnev M., Golovliov I., and Sjöstedt A. (2005) Francisella tularensis LVS initially activates but subsequently down-regulates intracellular signaling and cytokine secretion in mouse monocytic and human peripheral blood mononuclear cells. Microb. Pathog. 38, 239–247 PubMed
Parsa K. V. L., Butchar J. P., Rajaram M. V. S., Cremer T. J., and Tridandapani S. (2008) The tyrosine kinase Syk promotes phagocytosis of Francisella through the activation of Erk. Mol. Immunol. 45, 3012–3021 PubMed PMC
Edwards M. W., Aultman J. A., Harber G., Bhatt J. M., Sztul E., Xu Q., Zhang P., Michalek S. M., and Katz J. (2013) Role of mTOR downstream effector signaling molecules in Francisella tularensis internalization by murine macrophages. PloS One 8, e83226. PubMed PMC
Van den Broeke C., Radu M., Chernoff J., and Favoreel H. W. (2010) An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol. 20, 160–169 PubMed PMC
Moreau G. B., and Mann B. J. (2013) Adherence and uptake of Francisella into host cells. Virulence 4, 826–832 PubMed PMC
Thakran S., Li H., Lavine C. L., Miller M. A., Bina J. E., Bina X. R., and Re F. (2008) Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer. J. Biol. Chem. 283, 3751–3760 PubMed
Putzova D., Panda S., Härtlova A., Stulík J., and Gekara N. O. (2017) Subversion of innate immune responses by Francisella involves the disruption of TRAF3 and TRAF6 signalling complexes. Cell. Microbiol. doi: 10.1111/cmi.12769 PubMed DOI
Sukhbaatar N., Hengstschläger M., and Weichhart T. (2016) mTOR-Mediated Regulation of Dendritic Cell Differentiation and Function. Trends Immunol. 37, 778–789 PubMed PMC
Hrstka R., Stulík J., and Vojtesek B. (2005) The role of MAPK signal pathways during Francisella tularensis LVS infection-induced apoptosis in murine macrophages. Microbes Infect. 7, 619–625 PubMed
Santic M., Pavokovic G., Jones S., Asare R., and Kwaik Y. A. (2010) Regulation of apoptosis and anti-apoptosis signalling by Francisella tularensis. Microbes Infect. 12, 126–134 PubMed PMC
Brummett A. M., Navratil A. R., Bryan J. D., and Woolard M. D. (2014) Janus kinase 3 activity is necessary for phosphorylation of cytosolic phospholipase A2 and prostaglandin E2 synthesis by macrophages infected with Francisella tularensis live vaccine strain. Infect. Immun. 82, 970–982 PubMed PMC
Zhang P., Katz J., and Michalek S. M. (2009) Glycogen synthase kinase-3β (GSK3β) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice. Mol. Immunol. 46, 677–687 PubMed PMC
Corinti S., Albanesi C., la Sala A., Pastore S., and Girolomoni G. (2001) Regulatory activity of autocrine IL-10 on dendritic cell functions. J. Immunol. Baltim. Md 1950 166, 4312–4318 PubMed
Modified activities of macrophages' deubiquitinating enzymes after Francisella infection
Early infection-induced natural antibody response
Amorphous TiO2 Nanotubes as a Platform for Highly Selective Phosphopeptide Enrichment
Innate Immune Recognition: An Issue More Complex Than Expected