Francisella tularensis Glyceraldehyde-3-Phosphate Dehydrogenase Is Relocalized during Intracellular Infection and Reveals Effect on Cytokine Gene Expression and Signaling
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36831274
PubMed Central
PMC9954481
DOI
10.3390/cells12040607
PII: cells12040607
Knihovny.cz E-zdroje
- Klíčová slova
- Francisella, glyceraldehyde-3-phosphate dehydrogenase, infection, interacting partners, multitasking, pleiotropy, secretion,
- MeSH
- cytokiny metabolismus MeSH
- exprese genu MeSH
- Francisella tularensis * genetika metabolismus MeSH
- glyceraldehyd-3-fosfátdehydrogenasy genetika metabolismus MeSH
- proteomika MeSH
- virulence genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- glyceraldehyd-3-fosfátdehydrogenasy MeSH
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known for its multifunctionality in several pathogenic bacteria. Our previously reported data suggest that the GAPDH homologue of Francisella tularensis, GapA, might also be involved in other processes beyond metabolism. In the present study, we explored GapA's potential implication in pathogenic processes at the host cell level. Using immunoelectron microscopy, we demonstrated the localization of this bacterial protein inside infected macrophages and its peripheral distribution in bacterial cells increasing with infection time. A quantitative proteomic approach based on stable isotope labeling of amino acids in cell culture (SILAC) combined with pull-down assay enabled the identification of several of GapA's potential interacting partners within the host cell proteome. Two of these partners were further confirmed by alternative methods. We also investigated the impact of gapA deletion on the transcription of selected cytokine genes and the activation of the main signaling pathways. Our results show that ∆gapA-induced transcription of genes encoding several cytokines whose expressions were not affected in cells infected with a fully virulent wild-type strain. That might be caused, at least in part, by the detected differences in ERK/MAPK signaling activation. The experimental observations together demonstrate that the F. tularensis GAPDH homologue is directly implicated in multiple host cellular processes and, thereby, that it participates in several molecular mechanisms of pathogenesis.
Zobrazit více v PubMed
White M.R., Garcin E.D. D-Glyceraldehyde-3-Phosphate Dehydrogenase Structure and Function. Subcell. Biochem. 2017;83:413–453. doi: 10.1007/978-3-319-46503-6_15. PubMed DOI
Seidler N.W. Functional Diversity. Adv. Exp. Med. Biol. 2013;985:103–147. doi: 10.1007/978-94-007-4716-6_4. PubMed DOI
Sirover M.A. The Role of Posttranslational Modification in Moonlighting Glyceraldehyde-3-Phosphate Dehydrogenase Structure and Function. Amino Acids. 2021;53:507–515. doi: 10.1007/s00726-021-02959-z. PubMed DOI
Tristan C., Shahani N., Sedlak T.W., Sawa A. The Diverse Functions of GAPDH: Views from Different Subcellular Compartments. Cell. Signal. 2011;23:317–323. doi: 10.1016/j.cellsig.2010.08.003. PubMed DOI PMC
Seidler N.W. GAPDH, as a Virulence Factor. Adv. Exp. Med. Biol. 2013;985:149–178. doi: 10.1007/978-94-007-4716-6_5. PubMed DOI
Kopeckova M., Pavkova I., Stulik J. Diverse Localization and Protein Binding Abilities of Glyceraldehyde-3-Phosphate Dehydrogenase in Pathogenic Bacteria: The Key to Its Multifunctionality? Front. Cell. Infect. Microbiol. 2020;10:89. doi: 10.3389/fcimb.2020.00089. PubMed DOI PMC
Giménez R., Aguilera L., Ferreira E., Aguilar J., Baldoma L., Badia J. Glyceraldehyde-3-Phosphate Dehydrogenase as a Moonlighting Protein in Bacteria. In: Munoz-Torrero D., Vazquez-Carrera M., Estelrich J., editors. Recent Advances in Pharmaceutical Sciences IV. Research Signpost; Thiruvananthapuram, India: 2014. pp. 165–180.
Boradia V.M., Malhotra H., Thakkar J.S., Tillu V.A., Vuppala B., Patil P., Sheokand N., Sharma P., Chauhan A.S., Raje M., et al. Mycobacterium Tuberculosis Acquires Iron by Cell-Surface Sequestration and Internalization of Human Holo-Transferrin. Nat. Commun. 2014;5:4730. doi: 10.1038/ncomms5730. PubMed DOI
Malhotra H., Patidar A., Boradia V.M., Kumar R., Nimbalkar R.D., Kumar A., Gani Z., Kaur R., Garg P., Raje M., et al. Mycobacterium Tuberculosis Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Functions as a Receptor for Human Lactoferrin. Front. Cell. Infect. Microbiol. 2017;7:245. doi: 10.3389/fcimb.2017.00245. PubMed DOI PMC
Terao Y., Yamaguchi M., Hamada S., Kawabata S. Multifunctional Glyceraldehyde-3-Phosphate Dehydrogenase of Streptococcus Pyogenes Is Essential for Evasion from Neutrophils. J. Biol. Chem. 2006;281:14215–14223. doi: 10.1074/jbc.M513408200. PubMed DOI
Madureira P., Baptista M., Vieira M., Magalhães V., Camelo A., Oliveira L., Ribeiro A., Tavares D., Trieu-Cuot P., Vilanova M., et al. Streptococcus Agalactiae GAPDH Is a Virulence-Associated Immunomodulatory Protein. J. Immunol. 2007;178:1379–1387. doi: 10.4049/jimmunol.178.3.1379. PubMed DOI
Madureira P., Andrade E.B., Gama B., Oliveira L., Moreira S., Ribeiro A., Correia-Neves M., Trieu-Cuot P., Vilanova M., Ferreira P. Inhibition of IL-10 Production by Maternal Antibodies against Group B Streptococcus GAPDH Confers Immunity to Offspring by Favoring Neutrophil Recruitment. PLoS Pathog. 2011;7:e1002363. doi: 10.1371/journal.ppat.1002363. PubMed DOI PMC
Alvarez-Dominguez C., Madrazo-Toca F., Fernandez-Prieto L., Vandekerckhove J., Pareja E., Tobes R., Gomez-Lopez M.T., Del Cerro-Vadillo E., Fresno M., Leyva-Cobián F., et al. Characterization of a Listeria Monocytogenes Protein Interfering with Rab5a. Traffic Cph. Den. 2008;9:325–337. doi: 10.1111/j.1600-0854.2007.00683.x. PubMed DOI
Pechous R.D., McCarthy T.R., Zahrt T.C. Working toward the Future: Insights into Francisella Tularensis Pathogenesis and Vaccine Development. Microbiol. Mol. Biol. Rev. MMBR. 2009;73:684–711. doi: 10.1128/MMBR.00028-09. PubMed DOI PMC
Oyston P.C.F., Sjostedt A., Titball R.W. Tularaemia: Bioterrorism Defence Renews Interest in Francisella Tularensis. Nat. Rev. Microbiol. 2004;2:967–978. doi: 10.1038/nrmicro1045. PubMed DOI
Tärnvik A., Priebe H.-S., Grunow R. Tularaemia in Europe: An Epidemiological Overview. Scand. J. Infect. Dis. 2004;36:350–355. doi: 10.1080/00365540410020442. PubMed DOI
Celli J., Zahrt T.C. Mechanisms of Francisella Tularensis Intracellular Pathogenesis. Cold Spring Harb. Perspect. Med. 2013;3:a010314. doi: 10.1101/cshperspect.a010314. PubMed DOI PMC
Clemens D.L., Horwitz M.A. Uptake and Intracellular Fate of Francisella Tularensis in Human Macrophages. Ann. N. Y. Acad. Sci. 2007;1105:160–186. doi: 10.1196/annals.1409.001. PubMed DOI
Clemens D.L., Lee B.-Y., Horwitz M.A. Virulent and Avirulent Strains of Francisella Tularensis Prevent Acidification and Maturation of Their Phagosomes and Escape into the Cytoplasm in Human Macrophages. Infect. Immun. 2004;72:3204–3217. doi: 10.1128/IAI.72.6.3204-3217.2004. PubMed DOI PMC
Chong A., Celli J. The Francisella Intracellular Life Cycle: Toward Molecular Mechanisms of Intracellular Survival and Proliferation. Front. Microbiol. 2010;1:138. doi: 10.3389/fmicb.2010.00138. PubMed DOI PMC
Wallet P., Lagrange B., Henry T. Francisella Inflammasomes: Integrated Responses to a Cytosolic Stealth Bacterium. In: Backert S., editor. Inflammasome Signaling and Bacterial Infections. Current Topics in Microbiology and Immunology; Springer International Publishing; Cham, Switzerland: 2016. pp. 229–256. PubMed
Kingry L.C., Petersen J.M. Comparative Review of Francisella Tularensis and Francisella Novicida. Front. Cell. Infect. Microbiol. 2014;4:35. doi: 10.3389/fcimb.2014.00035. PubMed DOI PMC
Platz G.J., Bublitz D.C., Mena P., Benach J.L., Furie M.B., Thanassi D.G. A TolC Mutant of Francisella Tularensis Is Hypercytotoxic Compared to the Wild Type and Elicits Increased Proinflammatory Responses from Host Cells. Infect. Immun. 2010;78:1022–1031. doi: 10.1128/IAI.00992-09. PubMed DOI PMC
Peng K., Broz P., Jones J., Joubert L.-M., Monack D. Elevated AIM2-Mediated Pyroptosis Triggered by Hypercytotoxic Francisella Mutant Strains Is Attributed to Increased Intracellular Bacteriolysis. Cell. Microbiol. 2011;13:1586–1600. doi: 10.1111/j.1462-5822.2011.01643.x. PubMed DOI PMC
Pavkova I., Kopeckova M., Klimentova J., Schmidt M., Sheshko V., Sobol M., Zakova J., Hozak P., Stulik J. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella Tularensis DsbA Deletion Mutant. Front. Cell. Infect. Microbiol. 2017;7:503. doi: 10.3389/fcimb.2017.00503. PubMed DOI PMC
Kopeckova M., Pavkova I., Link M., Rehulka P., Stulik J. Identification of Bacterial Protein Interaction Partners Points to New Intracellular Functions of Francisella Tularensis Glyceraldehyde-3-Phosphate Dehydrogenase. Front. Microbiol. 2020;11:576618. doi: 10.3389/fmicb.2020.576618. PubMed DOI PMC
Johansson A., Ibrahim A., Göransson I., Eriksson U., Gurycova D., Clarridge J.E., Sjöstedt A. Evaluation of PCR-Based Methods for Discrimination of Francisella Species and Subspecies and Development of a Specific PCR That Distinguishes the Two Major Subspecies of Francisella Tularensis. J. Clin. Microbiol. 2000;38:4180–4185. doi: 10.1128/JCM.38.11.4180-4185.2000. PubMed DOI PMC
Celli J. Intracellular Localization of Brucella Abortus and Francisella Tularensis in Primary Murine Macrophages. Methods Mol. Biol. 2008;431:133–145. doi: 10.1007/978-1-60327-032-8_11. PubMed DOI
Strádalová V., Gaplovská-Kyselá K., Hozák P. Ultrastructural and Nuclear Antigen Preservation after High-Pressure Freezing/Freeze-Substitution and Low-Temperature LR White Embedding of HeLa Cells. Histochem. Cell Biol. 2008;130:1047–1052. doi: 10.1007/s00418-008-0504-x. PubMed DOI
Bendall S.C., Hughes C., Stewart M.H., Doble B., Bhatia M., Lajoie G.A. Prevention of Amino Acid Conversion in SILAC Experiments with Embryonic Stem Cells. Mol. Cell. Proteom. MCP. 2008;7:1587–1597. doi: 10.1074/mcp.M800113-MCP200. PubMed DOI PMC
Klammer M., Dybowski J.N., Hoffmann D., Schaab C. Identification of Significant Features by the Global Mean Rank Test. PLoS ONE. 2014;9:e104504. doi: 10.1371/journal.pone.0104504. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus Computational Platform for Comprehensive Analysis of (Prote)Omics Data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Meibom K.L., Charbit A. Francisella Tularensis Metabolism and Its Relation to Virulence. Front. Microbiol. 2010;1:140. doi: 10.3389/fmicb.2010.00140. PubMed DOI PMC
Raghunathan A., Shin S., Daefler S. Systems Approach to Investigating Host-Pathogen Interactions in Infections with the Biothreat Agent Francisella. Constraints-Based Model of Francisella Tularensis. BMC Syst. Biol. 2010;4:118. doi: 10.1186/1752-0509-4-118. PubMed DOI PMC
Bermudez L.E., Petrofsky M., Shelton K. Epidermal Growth Factor-Binding Protein in Mycobacterium Avium and Mycobacterium Tuberculosis: A Possible Role in the Mechanism of Infection. Infect. Immun. 1996;64:2917–2922. doi: 10.1128/iai.64.8.2917-2922.1996. PubMed DOI PMC
Henderson B., Martin A. Bacterial Virulence in the Moonlight: Multitasking Bacterial Moonlighting Proteins Are Virulence Determinants in Infectious Disease. Infect. Immun. 2011;79:3476–3491. doi: 10.1128/IAI.00179-11. PubMed DOI PMC
Auweter S.D., Bhavsar A.P., de Hoog C.L., Li Y., Chan Y.A., van der Heijden J., Lowden M.J., Coombes B.K., Rogers L.D., Stoynov N., et al. Quantitative Mass Spectrometry Catalogues Salmonella Pathogenicity Island-2 Effectors and Identifies Their Cognate Host Binding Partners. J. Biol. Chem. 2011;286:24023–24035. doi: 10.1074/jbc.M111.224600. PubMed DOI PMC
Glaser P.E., Han X., Gross R.W. Tubulin Is the Endogenous Inhibitor of the Glyceraldehyde 3-Phosphate Dehydrogenase Isoform That Catalyzes Membrane Fusion: Implications for the Coordinated Regulation of Glycolysis and Membrane Fusion. Proc. Natl. Acad. Sci. USA. 2002;99:14104–14109. doi: 10.1073/pnas.222542999. PubMed DOI PMC
Parsyan A., Svitkin Y., Shahbazian D., Gkogkas C., Lasko P., Merrick W.C., Sonenberg N. MRNA Helicases: The Tacticians of Translational Control. Nat. Rev. Mol. Cell Biol. 2011;12:235–245. doi: 10.1038/nrm3083. PubMed DOI
Fiume G., Rossi A., de Laurentiis A., Falcone C., Pisano A., Vecchio E., Pontoriero M., Scala I., Scialdone A., Masci F.F., et al. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of P65/NF-ΚB. PloS ONE. 2013;8:e66087. doi: 10.1371/journal.pone.0066087. PubMed DOI PMC
Soto-Rifo R., Rubilar P.S., Limousin T., de Breyne S., Décimo D., Ohlmann T. DEAD-Box Protein DDX3 Associates with EIF4F to Promote Translation of Selected MRNAs. EMBO J. 2012;31:3745–3756. doi: 10.1038/emboj.2012.220. PubMed DOI PMC
Mo J., Liang H., Su C., Li P., Chen J., Zhang B. DDX3X: Structure, Physiologic Functions and Cancer. Mol. Cancer. 2021;20:38. doi: 10.1186/s12943-021-01325-7. PubMed DOI PMC
Ku Y.-C., Lai M.-H., Lo C.-C., Cheng Y.-C., Qiu J.-T., Tarn W.-Y., Lai M.-C. DDX3 Participates in Translational Control of Inflammation Induced by Infections and Injuries. Mol. Cell. Biol. 2019;39:e00285-18. doi: 10.1128/MCB.00285-18. PubMed DOI PMC
Szappanos D., Tschismarov R., Perlot T., Westermayer S., Fischer K., Platanitis E., Kallinger F., Novatchkova M., Lassnig C., Müller M., et al. The RNA Helicase DDX3X Is an Essential Mediator of Innate Antimicrobial Immunity. PLoS Pathog. 2018;14:e1007397. doi: 10.1371/journal.ppat.1007397. PubMed DOI PMC
Wang X., Wang R., Luo M., Li C., Wang H.-X., Huan C.-C., Qu Y.-R., Liao Y., Mao X. (DEAD)-Box RNA Helicase 3 Modulates NF-ΚB Signal Pathway by Controlling the Phosphorylation of PP2A-C Subunit. Oncotarget. 2017;8:33197–33213. doi: 10.18632/oncotarget.16593. PubMed DOI PMC
Filipek A., Gerke V., Weber K., Kuźnicki J. Characterization of the Cell-Cycle-Regulated Protein Calcyclin from Ehrlich Ascites Tumor Cells. Identification of Two Binding Proteins Obtained by Ca2(+)-Dependent Affinity Chromatography. Eur. J. Biochem. 1991;195:795–800. doi: 10.1111/j.1432-1033.1991.tb15768.x. PubMed DOI
Donato R., Sorci G., Giambanco I. S100A6 Protein: Functional Roles. Cell. Mol. Life Sci. CMLS. 2017;74:2749–2760. doi: 10.1007/s00018-017-2526-9. PubMed DOI PMC
Leśniak W., Wilanowski T., Filipek A. S100A6—Focus on Recent Developments. Biol. Chem. 2017;398:1087–1094. doi: 10.1515/hsz-2017-0125. PubMed DOI
Wang Y., Liu C., Fang Y., Liu X., Li W., Liu S., Liu Y., Liu Y., Charreyre C., Audonnet J.-C., et al. Transcription Analysis on Response of Porcine Alveolar Macrophages to Haemophilus Parasuis. BMC Genom. 2012;13:68. doi: 10.1186/1471-2164-13-68. PubMed DOI PMC
Zhou X., Wang P., Michal J.J., Wang Y., Zhao J., Jiang Z., Liu B. Molecular Characterization of the Porcine S100A6 Gene and Analysis of Its Expression in Pigs Infected with Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV) J. Appl. Genet. 2015;56:355–363. doi: 10.1007/s13353-014-0260-7. PubMed DOI
Zhou L.-J., Peng J., Chen M., Yao L.-J., Zou W.H., He C.Y., Peng H.-J. Toxoplasma Gondii SAG1 Targeting Host Cell S100A6 for Parasite Invasion and Host Immunity. iScience. 2021;24:103514. doi: 10.1016/j.isci.2021.103514. PubMed DOI PMC
Shirey K.A., Cole L.E., Keegan A.D., Vogel S.N. Francisella Tularensis Live Vaccine Strain Induces Macrophage Alternative Activation as a Survival Mechanism. J. Immunol. 2008;181:4159–4167. doi: 10.4049/jimmunol.181.6.4159. PubMed DOI PMC
Fabrik I., Link M., Putzova D., Plzakova L., Lubovska Z., Philimonenko V., Pavkova I., Rehulka P., Krocova Z., Hozak P., et al. The Early Dendritic Cell Signaling Induced by Virulent Francisella Tularensis Strain Occurs in Phases and Involves the Activation of Extracellular Signal-Regulated Kinases (ERKs) and P38 In the Later Stage. Mol. Cell. Proteom. MCP. 2018;17:81–94. doi: 10.1074/mcp.RA117.000160. PubMed DOI PMC
Henry T., Brotcke A., Weiss D.S., Thompson L.J., Monack D.M. Type I Interferon Signaling Is Required for Activation of the Inflammasome during Francisella Infection. J. Exp. Med. 2007;204:987–994. doi: 10.1084/jem.20062665. PubMed DOI PMC
Cole L.E., Santiago A., Barry E., Kang T.J., Shirey K.A., Roberts Z.J., Elkins K.L., Cross A.S., Vogel S.N. Macrophage Proinflammatory Response to Francisella Tularensis Live Vaccine Strain Requires Coordination of Multiple Signaling Pathways. J. Immunol. 2008;180:6885–6891. doi: 10.4049/jimmunol.180.10.6885. PubMed DOI PMC
Jones J., Broz P., Monack D. Innate Immune Recognition of Francisella Tularensis: Activation of Type-I Interferons and the Inflammasome. Front. Microbiol. 2011;2:16. doi: 10.3389/fmicb.2011.00016. PubMed DOI PMC
Cornejo E., Schlaermann P., Mukherjee S. How to Rewire the Host Cell: A Home Improvement Guide for Intracellular Bacteria. J. Cell Biol. 2017;216:3931–3948. doi: 10.1083/jcb.201701095. PubMed DOI PMC
Butchar J.P., Cremer T.J., Clay C.D., Gavrilin M.A., Wewers M.D., Marsh C.B., Schlesinger L.S., Tridandapani S. Microarray Analysis of Human Monocytes Infected with Francisella Tularensis Identifies New Targets of Host Response Subversion. PloS ONE. 2008;3:e2924. doi: 10.1371/journal.pone.0002924. PubMed DOI PMC
Bröms J.E., Sjöstedt A., Lavander M. The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front. Microbiol. 2010;1:136. doi: 10.3389/fmicb.2010.00136. PubMed DOI PMC
Telepnev M., Golovliov I., Grundström T., Tärnvik A., Sjöstedt A. Francisella Tularensis Inhibits Toll-like Receptor-Mediated Activation of Intracellular Signalling and Secretion of TNF-α and IL-1 from Murine Macrophages. Cell. Microbiol. 2003;5:41–51. doi: 10.1046/j.1462-5822.2003.00251.x. PubMed DOI
Telepnev M., Golovliov I., Sjöstedt A. Francisella Tularensis LVS Initially Activates but Subsequently Down-Regulates Intracellular Signaling and Cytokine Secretion in Mouse Monocytic and Human Peripheral Blood Mononuclear Cells. Microb. Pathog. 2005;38:239–247. doi: 10.1016/j.micpath.2005.02.003. PubMed DOI
Melillo A.A., Bakshi C.S., Melendez J.A. Francisella Tularensis Antioxidants Harness Reactive Oxygen Species to Restrict Macrophage Signaling and Cytokine Production. J. Biol. Chem. 2010;285:27553–27560. doi: 10.1074/jbc.M110.144394. PubMed DOI PMC
Rabadi S.M., Sanchez B.C., Varanat M., Ma Z., Catlett S.V., Melendez J.A., Malik M., Bakshi C.S. Antioxidant Defenses of Francisella Tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines. J. Biol. Chem. 2016;291:5009–5021. doi: 10.1074/jbc.M115.681478. PubMed DOI PMC
Huang M.T.-H., Mortensen B.L., Taxman D.J., Craven R.R., Taft-Benz S., Kijek T.M., Fuller J.R., Davis B.K., Allen I.C., Brickey W.J., et al. Deletion of RipA Alleviates Suppression of the Inflammasome and MAPK by Francisella Tularensis. J. Immunol. 2010;185:5476–5485. doi: 10.4049/jimmunol.1002154. PubMed DOI PMC
Mahawar M., Atianand M.K., Dotson R.J., Mora V., Rabadi S.M., Metzger D.W., Huntley J.F., Harton J.A., Malik M., Bakshi C.S. Identification of a Novel Francisella Tularensis Factor Required for Intramacrophage Survival and Subversion of Innate Immune Response. J. Biol. Chem. 2012;287:25216–25229. doi: 10.1074/jbc.M112.367672. PubMed DOI PMC
Krachler A.M., Woolery A.R., Orth K. Manipulation of Kinase Signaling by Bacterial Pathogens. J. Cell Biol. 2011;195:1083–1092. doi: 10.1083/jcb.201107132. PubMed DOI PMC
Millet P., Vachharajani V., McPhail L., Yoza B., McCall C.E. GAPDH Binding to TNF-α MRNA Contributes to Posttranscriptional Repression in Monocytes: A Novel Mechanism of Communication between Inflammation and Metabolism. J. Immunol. 2016;196:2541–2551. doi: 10.4049/jimmunol.1501345. PubMed DOI PMC
Galván-Peña S., Carroll R.G., Newman C., Hinchy E.C., Palsson-McDermott E., Robinson E.K., Covarrubias S., Nadin A., James A.M., Haneklaus M., et al. Malonylation of GAPDH Is an Inflammatory Signal in Macrophages. Nat. Commun. 2019;10:338. doi: 10.1038/s41467-018-08187-6. PubMed DOI PMC
Das P., Mukherjee A., Adak S. Glyceraldehyde-3-Phosphate Dehydrogenase Present in Extracellular Vesicles from Leishmania Major Suppresses Host TNF-Alpha Expression. J. Biol. Chem. 2021;297:101198. doi: 10.1016/j.jbc.2021.101198. PubMed DOI PMC
Rahman M.M., McFadden G. Modulation of NF-ΚB Signalling by Microbial Pathogens. Nat. Rev. Microbiol. 2011;9:291–306. doi: 10.1038/nrmicro2539. PubMed DOI PMC