Diverse Localization and Protein Binding Abilities of Glyceraldehyde-3-Phosphate Dehydrogenase in Pathogenic Bacteria: The Key to its Multifunctionality?

. 2020 ; 10 () : 89. [epub] 20200303

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32195198

Bacterial proteins exhibiting two or more unrelated functions, referred to as moonlighting proteins, are suggested to contribute to full virulence manifestation in pathogens. An expanding number of published studies have revealed the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to be a multitasking protein with virulence impact in a number of pathogenic bacteria. This protein can be detected on the bacterial surface or outside the bacterial cell, where it interacts with host proteins. In this way, GAPDH is able to modulate various pathogenic processes. Moreover, it has been shown to be involved in non-enzymatic processes inside the bacterial cell. In this mini review, we summarize main findings concerning the multiple localization and protein interactions of GAPDH derived from bacterial pathogens of humans. We also briefly discuss problems associated with using GAPDH as a vaccine antigen and endeavor to inspire further research to fill gaps in the existing knowledge.

Zobrazit více v PubMed

Aguilera L., Ferreira E., Giménez R., Fernández F. J., Taulés M., Aguilar J., et al. . (2012). Secretion of the housekeeping protein glyceraldehyde-3-phosphate dehydrogenase by the LEE-encoded type iii secretion system in enteropathogenic Escherichia coli. Int. J. Biochem. Cell Biol. 44, 955–962. 10.1016/j.biocel.2012.03.002 PubMed DOI

Alvarez R. A., Blaylock M. W., Baseman J. B. (2003). Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol. Microbiol. 48, 1417–1425. 10.1046/j.1365-2958.2003.03518.x PubMed DOI

Alvarez-Dominguez C., Madrazo-Toca F., Fernandez-Prieto L., Vandekerckhove J., Pareja E., Tobes R., et al. . (2008). Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic 9, 325–337. 10.1111/j.1600-0854.2007.00683.x PubMed DOI

Argiro L. L., Kohlstädt S. S., Henri S. S., Dessein H. H., Matabiau V. V., Paris P. P., et al. . (2000). Identification of a candidate vaccine peptide on the 37 KDa Schistosoma mansoni GAPDH. Vaccine 18, 2039–2048. 10.1016/S0264-410X(99)00521-6 PubMed DOI

Arifuzzaman M., Maeda M., Itoh A., Nishikata K., Takita C., Saito R., et al. . (2006). Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 16, 686–691. 10.1101/gr.4527806 PubMed DOI PMC

Banerjee S., Farhana A., Ehtesham N., Hasnain S. E. (2011). Iron acquisition, assimilation and regulation in mycobacteria. Infect. Genet. Evol. 11, 825–838. 10.1016/j.meegid.2011.02.016 PubMed DOI

Bergmann S., Rohde M., Hammerschmidt S. (2004). Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect. Immun. 72, 2416–2419. 10.1128/IAI.72.4.2416-2419.2004 PubMed DOI PMC

Bhattacharya S., Ploplis V. A., Castellino F. J. (2012). Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J. Biomed. Biotechnol. 2012:482096. 10.1155/2012/482096 PubMed DOI PMC

Bhuin T., Roy J. K. (2014). Rab proteins: the key regulators of intracellular vesicle transport. Exp. Cell Res. 328, 1–19. 10.1016/j.yexcr.2014.07.027 PubMed DOI

Boël G., Jin H., Pancholi V. (2005). Inhibition of cell surface export of group A streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect. Immun. 73, 6237–6248. 10.1128/IAI.73.10.6237-6248.2005 PubMed DOI PMC

Boradia V. M., Malhotra H., Thakkar J. S., Tillu V. A., Vuppala B., Patil P., et al. . (2014a). Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin. Nat. Commun. 5:4730. 10.1038/ncomms5730 PubMed DOI

Boradia V. M., Raje M., Raje C. I. (2014b). Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem. Soc. Trans. 42, 1796–1801. 10.1042/BST20140220 PubMed DOI

Butland G., Peregrín-Alvarez J. M., Li J., Yang W., Yang X., Canadien V., et al. . (2005). Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537. 10.1038/nature03239 PubMed DOI

Calderon-Gonzalez R. E, Frande-Cabanes L., Bronchalo-Vicente M., Jesus Lecea-Cuello E., Pareja A., Bosch-Martinez M., et al. . (2014). Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH. Front. Cell. Infect. Microbiol. 4:22. 10.3389/fcimb.2014.00022 PubMed DOI PMC

Cornelissen C. N., Sparling P. F. (1994). Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol. Microbiol. 14, 843–850. 10.1111/j.1365-2958.1994.tb01320.x PubMed DOI

D'Costa S. S., Boyle M. D. (2000). Interaction of group A streptococci with human plasmin(ogen) under physiological conditions. Methods 21, 165–177. 10.1006/meth.2000.0988 PubMed DOI

De Voss J. J., Rutter K., Schroeder B. G., Su H., Zhu Y., Barry C. E. (2000). The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl Acad. Sci. U.S.A. 97, 1252–1257. 10.1073/pnas.97.3.1252 PubMed DOI PMC

Dumke R., Hausner M., Jacobs E. (2011). Role of Mycoplasma pneumoniae glyceraldehyde-3-phosphate dehydrogenase (gapdh) in mediating interactions with the human extracellular matrix. Microbiology 157, 2328–2338. 10.1099/mic.0.048298-0 PubMed DOI

Ebner P., Rinker J., Nguyen M. T., Popella P., Nega M., Luqman A., et al. . (2016). Excreted cytoplasmic proteins contribute to pathogenicity in Staphylococcus aureus. Infect. Immun. 84, 1672–1681. 10.1128/IAI.00138-16 PubMed DOI PMC

Egea L., Aguilera L., Giménez R., Sorolla M. A., Aguilar J., Badía J., et al. . (2007). Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int. J. Biochem. Cell Biol. 39, 1190–1203. 10.1016/j.biocel.2007.03.008 PubMed DOI

Ferreira E., Giménez R., Aguilera L., Guzmán K., Aguilar J., Badia J., et al. . (2013). Protein interaction studies point to new functions for Escherichia coli glyceraldehyde-3-phosphate dehydrogenase. Res. Microbiol. 164, 145–154. 10.1016/j.resmic.2012.11.002 PubMed DOI

Ferreira E., Giménez R., Cañas M. A., Aguilera L., Aguilar J., Badia J., et al. . (2015). Glyceraldehyde-3-phosphate dehydrogenase is required for efficient repair of cytotoxic DNA lesions in Escherichia coli. Int. J. Biochem. Cell Biol. 60, 202–212. 10.1016/j.biocel.2015.01.008 PubMed DOI

Franco-Serrano L., Cedano J., Perez-Pons J. A., Mozo-Villarias A., Piñol J., Amela I., et al. . (2018). A hypothesis explaining why so many pathogen virulence proteins are moonlighting proteins. Pathog. Dis. 76:5. 10.1093/femspd/fty046 PubMed DOI PMC

Fugier E., Salcedo S. P., de Chastellier C., Pophillat M., Muller A., Arce-Gorvel V., et al. . (2009). The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog. 5:6.e1000487. 10.1371/journal.ppat.1000487 PubMed DOI PMC

Ganapathy-Kanniappan S. (2017). “Analysis of GAPDH posttranslational modifications,” in Advances in GAPDH Protein Analysis: A Functional and Biochemical Approach, ed Ganapathy-Kanniappan S. (Singapore: Springer; ), 85–94. 10.1007/978-981-10-7342-7_8 DOI

Gao J. Y., Ye C, L., Zhu L. L., Tian Z. Y., Yang Z. B. (2014). A homolog of glyceraldehyde-3-phosphate dehydrogenase from Riemerella anatipestifer is an extracellular protein and exhibits biological activity. J. Zhejiang Univ. Sci. B. 15, 776–787. 10.1631/jzus.B1400023 PubMed DOI PMC

Green E. R., Mecsas J. (2016). Bacterial secretion systems: an overview. Microbiol. Spectr. 4:1. 10.1128/microbiolspec.VMBF-0012-2015 PubMed DOI PMC

Grimmer J., Dumke R. (2019). Organization of multi-binding to host proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Mycoplasma pneumoniae. Int. J. Med. Microbiol. 218, 22–31. 10.1016/j.micres.2018.09.006 PubMed DOI

Gründel A., Jacobs E., Dumke R. (2016). Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix. Int. J. Med. Microbiol. 306, 675–685. 10.1016/j.ijmm.2016.09.001 PubMed DOI

Henderson B., Martin A. (2011). Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect. Immun. 79, 3476–3491. 10.1128/IAI.00179-11 PubMed DOI PMC

Hong J., Agarwal S., Agarwal S., Pancholi V. (2011). Surface export of GAPDH/SDH, a glycolytic enzyme, is essential for Streptococcus pyogenes virulence. mBio 2:3 10.1128/mBio.00068-11 PubMed DOI PMC

Jeffery C. J. (2009). Moonlighting proteins–an update. Mol. BioSyst. 5, 345–350. 10.1039/b900658n PubMed DOI

Kajita T., Hugli T. E. (1990). C5a-induced neutrophilia. A primary humoral mechanism for recruitment of neutrophils. Am. J. Pathol. 137, 467–477. PubMed PMC

Ling E., Feldman G., Portnoi M., Dagan R., Overweg K., Mulholland F., et al. . (2004). Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin. Exp. Immunol. 138, 290–298. 10.1111/j.1365-2249.2004.02628.x PubMed DOI PMC

Liu Y., Oshima S., Kurohara K., Ohnishi K., Kawai K. (2005). Vaccine efficacy of recombinant GAPDH of Edwardsiella tarda against Edwardsiellosis. Microbiol. Immunol. 49, 605–612. 10.1111/j.1348-0421.2005.tb03652.x PubMed DOI

Madureira P., Andrade E. B., Gama B., Oliveira L., Moreira S., Ribeiro A., et al. . (2011). Inhibition of IL-10 production by maternal antibodies against Group B Streptococcus GAPDH confers immunity to offspring by favoring neutrophil recruitment. PLoS Pathog. 7:11.e1002363. 10.1371/journal.ppat.1002363 PubMed DOI PMC

Madureira P., Baptista M., Vieira M., Magalhães V., Camelo A., Oliveira L., et al. . (2007). Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J. Immunol. 178, 1379–1387. 10.4049/jimmunol.178.3.1379 PubMed DOI

Magalhães V., Veiga-Malta I., Almeida M. R., Baptista M., Ribeiro A., Trieu-Cuot P., et al. . (2007). Interaction with human plasminogen system turns on proteolytic activity in Streptococcus agalactiae and enhances its virulence in a mouse model. Microbes Infect. 9, 1276–1284. 10.1016/j.micinf.2007.06.001 PubMed DOI

Malhotra H., Patidar A., Boradia V. M., Kumar R., Nimbalkar R. D., Kumar A., et al. . (2017). Mycobacterium tuberculosis glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a receptor for human lactoferrin. Front. Cell. Infect. Microbiol. 7:245. 10.3389/fcimb.2017.00245 PubMed DOI PMC

Matta S. K., Agarwal S., Bhatnagar R. (2010). Surface localized and extracellular glyceraldehyde-3-phosphate dehydrogenase of Bacillus anthracis is a plasminogen binding protein. Biochim. Biophys. Acta 1804, 2111–2120. 10.1016/j.bbapap.2010.08.004 PubMed DOI

Modun B., Williams P. (1999). The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect. Immun. 6, 1086–1092. 10.1128/IAI.67.3.1086-1092.1999 PubMed DOI PMC

Nagarajan R., Sankar S., Ponnuraj K. (2019). Crystal structure of GAPDH of Streptococcus agalactiae and characterization of its interaction with extracellular matrix molecules. Microb. Pathog. 127, 359–367. 10.1016/j.micpath.2018.12.020 PubMed DOI

Oliveira L., Madureira P., Andrade E. B., Bouaboud A., Morello E., Ferreira P., et al. . (2012). Group B Streptococcus GAPDH is released upon cell lysis, associates with bacterial surface, and induces apoptosis in murine macrophages. PLoS ONE 7:1.e29963. 10.1371/journal.pone.0029963 PubMed DOI PMC

Pancholi V., Chhatwal G. S. (2003). Housekeeping enzymes as virulence factors for pathogens. Int. J. Med. Microbiol. 293, 391–401. 10.1078/1438-4221-00283 PubMed DOI

Pancholi V., Fischetti V. A. (1992). A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J. Exp. Med. 176, 415–426. 10.1084/jem.176.2.415 PubMed DOI PMC

Pasztor L., Ziebandt A. K., Nega M., Schlag M., Haase S., Franz-Wachtel M., et al. . (2010). Staphylococcal major autolysin (Atl) is involved in excretion of cytoplasmic proteins. J. Biol. Chem. 285, 36794–36803. 10.1074/jbc.M110.167312 PubMed DOI PMC

Pavkova I., Kopeckova M., Klimentova S. J., Sheshko V., Sheshko V., Sobol M., et al. . (2017). The multiple localized glyceraldehyde-3-phosphate dehydrogenase contributes to the attenuation of the Francisella tularensis dsbA deletion mutant. Front. Cell. Infect. Microbiol. 7:503. 10.3389/fcimb.2017.00503 PubMed DOI PMC

Peetermans M., Vanassche T., Liesenborghs L., Lijnen R.H., Verhamme P. (2016). Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit. Rev. Microbiol. 42, 866–882. 10.3109/1040841X.2015.1080214 PubMed DOI

Pellicer M. T., Nuñez M. F., Aguilar J., Badia J., Baldoma L. (2003). Role of 2-phosphoglycolate phosphatase of Escherichia coli in metabolism of the 2-phosphoglycolate formed in DNA repair. J. Bacteriol. 185, 5815–5821. 10.1128/JB.185.19.5815-5821.2003 PubMed DOI PMC

Perez-Casal J., Potter A. A. (2016). Glyceradehyde-3-phosphate dehydrogenase as a suitable vaccine candidate for protection against bacterial and parasitic diseases. Vaccine 34, 1012–1017. 10.1016/j.vaccine.2015.11.072 PubMed DOI

Povirk L. F. (1996). DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutat. Res. 355, 71–89. 10.1016/0027-5107(96)00023-1 PubMed DOI

Querol-García J., Fernández F. J., Marin A. M., Gómez S., Fullà D., Melchor-Tafur C., et al. . (2017). Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from the Gram-positive bacterial pathogen A. vaginae, an immunoevasive factor that interacts with the human C5a anaphylatoxin. Front. Microbiol. 8:541. 10.3389/fmicb.2017.00541 PubMed DOI PMC

Rao V. S., Srinivas K., Sujini G. N., Kumar G. N. (2014). Protein-protein interaction detection: methods and analysis. Int. J. Proteomics 2014:147648. 10.1155/2014/147648 PubMed DOI PMC

Razim A., Pacyga K., Aptekorz M., Martirosian G., Szuba A., Pawlak-Adamska E., et al. . (2018). Epitopes identified in GAPDH from Clostridium difficile recognized as common antigens with potential autoimmunizing properties. Sci. Rep. 8:1. 10.1038/s41598-018-32193-9 PubMed DOI PMC

Rodriguez G. M., Smith I. (2003). Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol. Microbiol. 47, 1485–1494. 10.1046/j.1365-2958.2003.03384.x PubMed DOI

Ryndak M. B., Wang S., Smith I., Rodriguez G. M. (2010). The Mycobacterium uberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain. J. Bacteriol. 192, 861–869. 10.1128/JB.00223-09 PubMed DOI PMC

Seidler K. A., Seidler N. W. (2013). Role of extracellular GAPDH in Streptococcus pyogenes virulence. Mo. Med. 110, 236–240. PubMed PMC

Sirover M. A. (2011). On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim. Biophys. Acta 1810, 741–751. 10.1016/j.bbagen.2011.05.010 PubMed DOI

Stone E. M., Rothblum K. N., Alevy M. C., Kuo T. M., Schwartz R. J. (1985). Complete sequence of the chicken glyceraldehyde-3-phosphate dehydrogenase gene. Proc. Natl. Acad. Sci. U.S.A. 82, 1628–1632. 10.1073/pnas.82.6.1628 PubMed DOI PMC

Sun X., Ge F., Xiao C. L., Yin X. F., Ge R., Zhang L. H., et al. . (2010). Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J. Proteome Res. 9, 275–282. 10.1021/pr900612v PubMed DOI

Sun X., Wang J., Zhou J., Wang H., Wang X., Wu J., et al. . (2017). Subcutaneous immunization with Streptococcus pneumoniae GAPDH confers effective protection in mice via TLR2 and TLR4. Mol. Immunol. 83, 1–12. 10.1016/j.molimm.2017.01.002 PubMed DOI

Taylor J. M., Heinrichs D. E. (2002). Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein. Mol. Microbiol. 43, 1603–1614. 10.1046/j.1365-2958.2002.02850.x PubMed DOI

Terao Y., Yamaguchi N., Hamada S., Kawabata S. (2006). Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J. Biol. Chem. 281, 14215–14223. 10.1074/jbc.M513408200 PubMed DOI

Terrasse R., Tacnet-Delorme P., Moriscot C., Pérard J., Schoehn G., Vernet T., et al. . (2012). Human and pneumococcal cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins are both ligands of human c1q protein. J. Biol. Chem. 287, 42620–42633. 10.1074/jbc.M112.423731 PubMed DOI PMC

Tullius M. V., Harmston C. A., Owens C. P., Chim N., Morse R. P., McMath L. M., et al. . (2011). Discovery and characterization of a unique mycobacterial heme acquisition system. Proc. Natl Acad. Sci. U.S.A. 108, 5051–5056. 10.1073/pnas.1009516108 PubMed DOI PMC

Vázquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Domínguez-Bernal G., Goebel W., et al. . (2001). Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640. 10.1128/CMR.14.3.584-640.2001 PubMed DOI PMC

Vázquez-Zamorano Z. E., González-López M. A., Romero-Espejel M. E., Azuara-Liceaga E. I., López-Casamichana M., Olivares-Trejo Jde J. (2014). Streptococcus pneumoniae secretes a glyceraldehyde-3-phosphate dehydrogenase, which binds haemoglobin and haem. Biometals 27, 683–693. 10.1007/s10534-014-9757-0 PubMed DOI

Wang G., Xia Y., Cui J., Gu Z., Song Y., Chen Y. Q., et al. . (2014). The roles of moonlighting proteins in bacteria. Curr. Issues Mol. Biol. 16, 15–22. PubMed

Winram S. B., Lottenberg R. (1996). The plasmin-binding protein Plr of group S streptococci is identified as glyceraldehyde-3-phosphate dehydrogenase. Microbiology 142, 2311–2320. 10.1099/13500872-142-8-2311 PubMed DOI

Yang X. Y., He K., Du G., Wu X., Yu G., Pan Y., et al. . (2016). Integrated translatomics with proteomics to identify novel iron–transporting proteins in Streptococcus pneumoniae. Front. Microbiol. 7:78. 10.3389/fmicb.2016.00078 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...