Identification of Bacterial Protein Interaction Partners Points to New Intracellular Functions of Francisella tularensis Glyceraldehyde-3-Phosphate Dehydrogenase

. 2020 ; 11 () : 576618. [epub] 20200910

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33013814

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is well known for its involvement in numerous non-metabolic processes inside mammalian cells. Alternative functions of prokaryotic GAPDH are mainly deduced from its extracellular localization ability to bind to selected host proteins. Data on its participation in intracellular bacterial processes are scarce as there has been to date only one study dealing with this issue. We previously have reported several points of evidence that the GAPDH homolog of Francisella tularensis GapA might also exert additional non-enzymatic functions. Following on from our earlier observations we decided to identify GapA's interacting partners within the bacterial proteome to explore its new roles at intracellular level. The quantitative proteomics approach based on stable isotope labeling of amino acids in cell culture (SILAC) in combination with affinity purification mass spectrometry enabled us to identify 18 proteins potentially interacting with GapA. Six of those interactions were further confirmed by alternative methods. Half of the identified proteins were involved in non-metabolic processes. Further analysis together with quantitative label-free comparative analysis of proteomes isolated from the wild-type strain strain with deleted gapA gene suggests that GapA is implicated in DNA repair processes. Absence of GapA promotes secretion of its most potent interaction partner the hypothetical protein with peptidase propeptide domain (PepSY) thereby indicating that it impacts on subcellular distribution of some proteins.

Zobrazit více v PubMed

Alvarez-Dominguez C., Madrazo-Toca F., Fernandez-Prieto L., Vandekerckhove J., Pareja E., Tobes R., et al. (2008). Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic Cph. Den. 9 325–337. 10.1111/j.1600-0854.2007.00683.x PubMed DOI

Andrade J., Pearce S. T., Zhao H., Barroso M. (2004). Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules. Biochem. J. 384 327–336. 10.1042/BJ20040622 PubMed DOI PMC

Arifuzzaman M., Maeda M., Itoh A., Nishikata K., Takita C., Saito R., et al. (2006). Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 16 686–691. 10.1101/gr.4527806 PubMed DOI PMC

Arts I. S., Vertommen D., Baldin F., Laloux G., Collet J.-F. (2016). Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control. Mol. Cell. Proteomics MCP 15 2125–2140. 10.1074/mcp.M115.056440 PubMed DOI PMC

Auweter S. D., Bhavsar A. P., de Hoog C. L., Li Y., Chan Y. A., van der Heijden J., et al. (2011). Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners. J. Biol. Chem. 286 24023–24035. 10.1074/jbc.M111.224600 PubMed DOI PMC

Azam S., Jouvet N., Jilani A., Vongsamphanh R., Yang X., Yang S., et al. (2008). Human Glyceraldehyde-3-phosphate Dehydrogenase Plays a Direct Role in Reactivating Oxidized Forms of the DNA Repair Enzyme APE1. J. Biol. Chem. 283 30632–30641. 10.1074/jbc.M801401200 PubMed DOI PMC

Barel M., Charbit A. (2013). Francisella tularensis intracellular survival: to eat or to die. Microbes Infect. 15 989–997. 10.1016/j.micinf.2013.09.009 PubMed DOI

Binesse J., Lindgren H., Lindgren L., Conlan W., Sjöstedt A. (2015). Roles of Reactive Oxygen Species-Degrading Enzymes of Francisella tularensis SCHU S4. Infect. Immun. 83 2255–2263. 10.1128/IAI.02488-14 PubMed DOI PMC

Boël G., Jin H., Pancholi V. (2005). Inhibition of cell surface export of group A streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect. Immun. 73 6237–6248. 10.1128/IAI.73.10.6237-6248.2005 PubMed DOI PMC

Boradia V. M., Raje M., Raje C. I. (2014). Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem. Soc. Trans. 42 1796–1801. 10.1042/BST20140220 PubMed DOI

Brissac T., Ziveri J., Ramond E., Tros F., Kock S., Dupuis M., et al. (2015). Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella. Mol. Microbiol. 98 518–534. 10.1111/mmi.13139 PubMed DOI

Butland G., Peregrín-Alvarez J. M., Li J., Yang W., Yang X., Canadien V., et al. (2005). Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433 531–537. 10.1038/nature03239 PubMed DOI

Chamberlain R. E. (1965). Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl. Microbiol. 13 232–235. 10.1128/aem.13.2.232-235.1965 PubMed DOI PMC

Ellis J., Oyston P. C. F., Green M., Titball R. W. (2002). Tularemia. Clin. Microbiol. Rev. 15 631–646. 10.1128/cmr.15.4.631-646.2002 PubMed DOI PMC

Ferreira E., Giménez R., Aguilera L., Guzmán K., Aguilar J., Badia J., et al. (2013). Protein interaction studies point to new functions for Escherichia coli glyceraldehyde-3-phosphate dehydrogenase. Res. Microbiol. 164 145–154. 10.1016/j.resmic.2012.11.002 PubMed DOI

Ferreira E., Giménez R., Cañas M. A., Aguilera L., Aguilar J., Badia J., et al. (2015). Glyceraldehyde-3-phosphate dehydrogenase is required for efficient repair of cytotoxic DNA lesions in Escherichia coli. Int. J. Biochem. Cell Biol. 60 202–212. 10.1016/j.biocel.2015.01.008 PubMed DOI

Gingras A.-C., Gstaiger M., Raught B., Aebersold R. (2007). Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 8 645–654. 10.1038/nrm2208 PubMed DOI

Glaser P. E., Han X., Gross R. W. (2002). Tubulin is the endogenous inhibitor of the glyceraldehyde 3-phosphate dehydrogenase isoform that catalyzes membrane fusion: implications for the coordinated regulation of glycolysis and membrane fusion. Proc. Natl. Acad. Sci. U.S.A. 99 14104–14109. 10.1073/pnas.222542999 PubMed DOI PMC

Hancock J., Desikan R., Harrison J., Bright J., Hooley R., Neill S. (2006). Doing the unexpected: proteins involved in hydrogen peroxide perception. J. Exp. Bot. 57 1711–1718. 10.1093/jxb/erj180 PubMed DOI

Imber M., Huyen N. T. T., Pietrzyk-Brzezinska A. J., Loi V. V., Hillion M., Bernhardt J., et al. (2016). Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress. Antioxid. Redox Signal. 28 410–430. 10.1089/ars.2016.6897 PubMed DOI PMC

Jeffery C. J. (2009). Moonlighting proteins–an update. Mol. Biosyst. 5 345–350. 10.1039/b900658n PubMed DOI

Jin H., Agarwal S., Agarwal S., Pancholi V. (2011). Surface Export of GAPDH/SDH, a Glycolytic Enzyme, Is Essential for Streptococcus pyogenes Virulence. mBio 2:e00068-11. 10.1128/mBio.00068-11 PubMed DOI PMC

Karki H., Ham J. H. (2016). Testing the Effect of UV Radiation on the Survival of Burkholderia glumae. BIO-Protoc. 6:e1755. 10.21769/BioProtoc.1755 DOI

Klammer M., Dybowski J. N., Hoffmann D., Schaab C. (2014). Identification of significant features by the Global Mean Rank test. PLoS One 9:e104504. 10.1371/journal.pone.0104504 PubMed DOI PMC

Kopeckova M., Pavkova I., Stulik J. (2020). Diverse Localization and Protein Binding Abilities of Glyceraldehyde-3-Phosphate Dehydrogenase in pathogenic bacteria: the key to its multifunctionality? Front. Cell. Infect. Microbiol. 10:89. 10.3389/fcimb.2020.00089 PubMed DOI PMC

Kosova A. A., Khodyreva S. N., Lavrik O. I. (2017). Role of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in DNA Repair. Biochem. Biokhimiia 82 643–654. 10.1134/S0006297917060013 PubMed DOI

Kumagai H., Sakai H. (1983). A porcine brain protein (35 K protein) which bundles microtubules and its identification as glyceraldehyde 3-phosphate dehydrogenase. J. Biochem. 93 1259–1269. 10.1093/oxfordjournals.jbchem.a134260 PubMed DOI

Lindgren H., Shen H., Zingmark C., Golovliov I., Conlan W., Sjöstedt A. (2007). Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect. Immun. 75 1303–1309. 10.1128/IAI.01717-06 PubMed DOI PMC

Ma Z., Russo V. C., Rabadi S. M., Jen Y., Catlett S. V., Bakshi C. S., et al. (2016). Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain: regulation of oxidative stress resistance in Francisella tularensis. Mol. Microbiol. 101 856–878. 10.1111/mmi.13426 PubMed DOI PMC

McCrumb F. R., Snyder M. J., Woodward T. E. (1957). Studies on human infection with Pasteurella tularensis; comparison of streptomycin and chloramphenicol in the prophylaxis of clinical disease. Trans. Assoc. Am. Physicians 70 74–79. PubMed

Meibom K. L., Charbit A. (2010). The unraveling panoply of Francisella tularensis virulence attributes. Curr. Opin. Microbiol. 13 11–17. 10.1016/j.mib.2009.11.007 PubMed DOI

Modun B., Williams P. (1999). The Staphylococcal Transferrin-Binding Protein Is a Cell Wall Glyceraldehyde-3-Phosphate Dehydrogenase. Infect. Immun. 67 1086–1092. 10.1128/iai.67.3.1086-1092.1999 PubMed DOI PMC

Newton G. L., Buchmeier N., Fahey R. C. (2008). Biosynthesis and Functions of Mycothiol, the Unique Protective Thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. MMBR 72 471–494. 10.1128/MMBR.00008-08 PubMed DOI PMC

Ong S.-E., Blagoev B., Kratchmarova I., Kristensen D. B., Steen H., Pandey A., et al. (2002). Stable isotope labeling by amino acids in cell culture. SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics MCP 1 376–386. 10.1074/mcp.m200025-mcp200 PubMed DOI

Pancholi V., Chhatwal G. S. (2003). Housekeeping enzymes as virulence factors for pathogens. Int. J. Med. Microbiol. IJMM 293 391–401. 10.1078/1438-4221-00283 PubMed DOI

Pancholi V., Fischetti V. A. (1992). A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J. Exp. Med. 176 415–426. 10.1084/jem.176.2.415 PubMed DOI PMC

Pavkova I., Kopeckova M., Klimentova J., Schmidt M., Sheshko V., Sobol M., et al. (2017). The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant. Front. Cell. Infect. Microbiol. 7:503. 10.3389/fcimb.2017.00503 PubMed DOI PMC

Peng H., Zhang Y., Trinidad J. C., Giedroc D. P. (2018). Thioredoxin Profiling of Multiple Thioredoxin-Like Proteins in Staphylococcus aureus. Front. Microbiol. 9:2385. 10.3389/fmicb.2018.02385 PubMed DOI PMC

Qvit N., Joshi A. U., Cunningham A. D., Ferreira J. C. B., Mochly-Rosen D. (2016). Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death. J. Biol. Chem. 291 13608–13621. 10.1074/jbc.M115.711630 PubMed DOI PMC

Radlinski L. C., Brunton J., Steele S., Taft-Benz S., Kawula T. H. (2018). Defining the Metabolic Pathways and Host-Derived Carbon Substrates Required for Francisella tularensis Intracellular Growth. mBio 9:e01471-18. 10.1128/mBio.01471-18 PubMed DOI PMC

Raghunathan A., Shin S., Daefler S. (2010). Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis. BMC Syst. Biol. 4:118. 10.1186/1752-0509-4-118 PubMed DOI PMC

Rao V. S., Srinivas K., Sujini G. N., Kumar G. N. S. (2014). Protein-protein interaction detection: methods and analysis. Int. J. Proteomics 2014:147648. 10.1155/2014/147648 PubMed DOI PMC

Russell G., Veal D., Hancock J. T. (2020). Is Glyceraldehyde-3-Phosphate Dehydrogenase a Central Redox Mediator? React. Oxyg. Species 9 48–69.

Sambrook J. F., Russell D. (2001). Molecular Cloning: A Laboratory Manual (3-Volume Set). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Sancar A., Reardon J. T. (2004). Nucleotide excision repair in E. coli and man. Adv. Protein Chem. 69 43–71. 10.1016/S0065-3233(04)69002-4 PubMed DOI

Steiner D. J., Furuya Y., Metzger D. W. (2014). Host–pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect. Drug Resist. 7 239–251. 10.2147/IDR.S53700 PubMed DOI PMC

Terao Y., Yamaguchi M., Hamada S., Kawabata S. (2006). Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J. Biol. Chem. 281 14215–14223. 10.1074/jbc.M513408200 PubMed DOI

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13 731–740. 10.1038/nmeth.3901 PubMed DOI

Yeats C., Rawlings N. D., Bateman A. (2004). The PepSY domain: a regulator of peptidase activity in the microbial environment? Trends Biochem. Sci. 29 169–172. 10.1016/j.tibs.2004.02.004 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...