Glutamate utilization fuels rapid production of mitochondrial ROS in dendritic cells and drives systemic inflammation during tularemia
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40880474
PubMed Central
PMC12396335
DOI
10.1126/sciadv.adu6271
Knihovny.cz E-resources
- MeSH
- Dendritic Cells * metabolism immunology microbiology MeSH
- Francisella tularensis * pathogenicity MeSH
- Glutamic Acid * metabolism MeSH
- Humans MeSH
- Mitochondria * metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Reactive Oxygen Species * metabolism MeSH
- Tularemia * metabolism microbiology pathology immunology MeSH
- Inflammation * metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glutamic Acid * MeSH
- Reactive Oxygen Species * MeSH
Dendritic cells (DCs) hijacked by intracellular bacteria contribute to pathogen dissemination and immunopathology. How bacteria achieve DC subversion remains largely unknown. Here, we describe the mechanism used by tularemia agent Francisella tularensis exploiting host mitochondrial anaplerosis. Shortly after internalization, Francisella associates with DC mitochondria, which leads to the rapid repurposing of their oxidative metabolism for production of mitochondrial reactive oxygen species (mtROS). Mitochondrial metabolic rewiring is orchestrated by the intramitochondrial signaling mediated by protein acetylation and involves switching to glutamate as the primary substrate for DC tricarboxylic acid cycle. Rather than killing the bacterium, glutamate-fueled mtROS production activates p38-dependent proinflammatory gene expression. Blocking of glutamate utilization prevents DC activation and bacterial dissemination and alleviates inflammation in vivo. Our findings underscore the importance of metabolic plasticity in antibacterial DC response and open up potential avenues for therapies targeting host metabolism.
See more in PubMed
Flannagan R. S., Cosío G., Grinstein S., Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7, 355–366 (2009). PubMed
Savina A., Amigorena S., Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 219, 143–156 (2007). PubMed
Kim H., Shin S. J., Pathological and protective roles of dendritic cells in PubMed PMC
Roquilly A., McWilliam H. E. G., Jacqueline C., Tian Z., Cinotti R., Rimbert M., Wakim L., Caminschi I., Lahoud M. H., Belz G. T., Kallies A., Mintern J. D., Asehnoune K., Villadangos J. A., Local modulation of antigen-presenting cell development after resolution of pneumonia induces long-term susceptibility to secondary infections. Immunity 47, 135–147.e5 (2017). PubMed
Laurent P., Yang C., Rendeiro A. F., Nilsson-Payant B. E., Carrau L., Chandar V., Bram Y., tenOever B. R., Elemento O., Ivashkiv L. B., Schwartz R. E., Barrat F. J., Sensing of SARS-CoV-2 by pDCs and their subsequent production of IFN-I contribute to macrophage-induced cytokine storm during COVID-19. Sci. Immunol. 7, eadd4906 (2022). PubMed PMC
Fabrik I., Härtlova A., Rehulka P., Stulik J., Serving the new masters – Dendritic cells as hosts for stealth intracellular bacteria. Cell. Microbiol. 15, 1473–1483 (2013). PubMed
Ozanic M., Marecic V., Abu Kwaik Y., Santic M., The divergent intracellular lifestyle of PubMed PMC
Belhocine K., Monack D. M., PubMed PMC
Bosio C. M., Dow S. W., PubMed
Chase J. C., Celli J., Bosio C. M., Direct and indirect impairment of human dendritic cell function by virulent PubMed PMC
Wickstrum J. R., Bokhari S. M., Fischer J. L., Pinson D. M., Yeh H.-W., Horvat R. T., Parmely M. J., PubMed PMC
Bauler T. J., Chase J. C., Bosio C. M., IFN-β mediates suppression of IL-12p40 in human dendritic cells following infection with virulent PubMed PMC
Periasamy S., Singh A., Sahay B., Rahman T., Feustel P. J., Pham G. H., Gosselin E. J., Sellati T. J., Development of tolerogenic dendritic cells and regulatory T cells favors exponential bacterial growth and survival during early respiratory tularemia. J. Leukoc. Biol. 90, 493–507 (2011). PubMed PMC
Bar-Haim E., Gat O., Markel G., Cohen H., Shafferman A., Velan B., Interrelationship between dendritic cell trafficking and PubMed PMC
Jones C. L., Napier B. A., Sampson T. R., Llewellyn A. C., Schroeder M. R., Weiss D. S., Subversion of host recognition and defense systems by PubMed PMC
Härtlova A., Link M., Balounova J., Benesova M., Resch U., Straskova A., Sobol M., Philimonenko A., Hozak P., Krocova Z., Gekara N., Filipp D., Stulik J., Quantitative proteomics analysis of macrophage-derived lipid rafts reveals induction of autophagy pathway at the early time of PubMed
Case E. D. R., Chong A., Wehrly T. D., Hansen B., Child R., Hwang S., Virgin H. W., Celli J., The PubMed PMC
Ray K., Marteyn B., Sansonetti P. J., Tang C. M., Life on the inside: The intracellular lifestyle of cytosolic bacteria. Nat. Rev. Microbiol. 7, 333–340 (2009). PubMed
Bröms J. E., Meyer L., Sun K., Lavander M., Sjöstedt A., Unique substrates secreted by the type VI secretion system of PubMed PMC
Eshraghi A., Kim J., Walls A. C., Ledvina H. E., Miller C. N., Ramsey K. M., Whitney J. C., Radey M. C., Peterson S. B., Ruhland B. R., Tran B. Q., Goo Y. A., Goodlett D. R., Dove S. L., Celli J., Veesler D., Mougous J. D., Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intramacrophage growth. Cell Host Microbe 20, 573–583 (2016). PubMed PMC
Jessop F., Schwarz B., Heitmann E., Buntyn R., Wehrly T., Bosio C. M., Temporal manipulation of mitochondrial function by virulent PubMed PMC
Jessop F., Buntyn R., Schwarz B., Wehrly T., Scott D., Bosio C. M., Interferon gamma reprograms host mitochondrial metabolism through inhibition of complex II to control intracellular bacterial replication. Infect. Immun. 88, e00744-19 (2020). PubMed PMC
Proksova M., Rehulkova H., Rehulka P., Lays C., Lenco J., Stulik J., Using proteomics to identify host cell interaction partners for VgrG and IglJ. Sci. Rep. 10, 14612 (2020). PubMed PMC
Ramond E., Jamet A., Coureuil M., Charbit A., Pivotal role of mitochondria in macrophage response to bacterial pathogens. Front. Immunol. 10, 2461 (2019). PubMed PMC
Arnoult D., Carneiro L., Tattoli I., Girardin S. E., The role of mitochondria in cellular defense against microbial infection. Semin. Immunol. 21, 223–232 (2009). PubMed
Tiku V., Tan M.-W., Dikic I., Mitochondrial functions in infection and immunity. Trends Cell Biol. 30, 263–275 (2020). PubMed PMC
Escoll P., Mondino S., Rolando M., Buchrieser C., Targeting of host organelles by pathogenic bacteria: A sophisticated subversion strategy. Nat. Rev. Microbiol. 14, 5–19 (2016). PubMed
Fabrik I., Link M., Putzova D., Plzakova L., Lubovska Z., Philimonenko V., Pavkova I., Rehulka P., Krocova Z., Hozak P., Santic M., Stulik J., The early dendritic cell signaling induced by virulent PubMed PMC
Crane D. D., Bauler T. J., Wehrly T. D., Bosio C. M., Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome. Front. Microbiol. 5, 438 (2014). PubMed PMC
West A. P., Brodsky I. E., Rahner C., Woo D. K., Erdjument-Bromage H., Tempst P., Walsh M. C., Choi Y., Shadel G. S., Ghosh S., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011). PubMed PMC
Mor-Vaknin N., Punturieri A., Sitwala K., Faulkner N., Legendre M., Khodadoust M. S., Kappes F., Ruth J. H., Koch A., Glass D., Petruzzelli L., Adams B. S., Markovitz D. M., The DEK nuclear autoantigen is a secreted chemotactic factor. Mol. Cell. Biol. 26, 9484–9496 (2006). PubMed PMC
Terrazas C. A., Huitron E., Vazquez A., Juarez I., Camacho G. M., Calleja E. A., Rodriguez-Sosa M., MIF synergizes with Trypanosoma cruzi antigens to promote efficient dendritic cell maturation and IL-12 production via p38 MAPK. Int. J. Biol. Sci. 7, 1298–1310 (2011). PubMed PMC
Ito K., Hirao A., Arai F., Takubo K., Matsuoka S., Miyamoto K., Ohmura M., Naka K., Hosokawa K., Ikeda Y., Suda T., Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006). PubMed
Pavkova I., Kopeckova M., Link M., Vlcak E., Filimonenko V., Lecova L., Zakova J., Laskova P., Sheshko V., Machacek M., Stulik J., PubMed PMC
Morgan M. J., Liu Z., Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103–115 (2011). PubMed PMC
D’Autréaux B., Toledano M. B., ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007). PubMed
Baeza J., Smallegan M. J., Denu J. M., Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem. Sci. 41, 231–244 (2016). PubMed PMC
Baeza J., Lawton A. J., Fan J., Smallegan M. J., Lienert I., Gandhi T., Bernhardt O. M., Reiter L., Denu J. M., Revealing dynamic protein acetylation across subcellular compartments. J. Proteome Res. 19, 2404–2418 (2020). PubMed PMC
Yang W., Nagasawa K., Münch C., Xu Y., Satterstrom K., Jeong S., Hayes S. D., Jedrychowski M. P., Vyas F. S., Zaganjor E., Guarani V., Ringel A. E., Gygi S. P., Harper J. W., Haigis M. C., Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167, 985–1000.e21 (2016). PubMed PMC
Fabrik I., Link M., Härtlova A., Dankova V., Rehulka P., Stulik J., Application of SILAC labeling to primary bone marrow-derived dendritic cells reveals extensive GM-CSF-dependent arginine metabolism. J. Proteome Res. 13, 752–762 (2014). PubMed
Han D., Williams E., Cadenas E., Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353, 411–416 (2001). PubMed PMC
Grochowska J., Czerwinska J., Borowski L. S., Szczesny R. J., Mitochondrial RNA, a new trigger of the innate immune system. Wiley Interdiscip. Rev. RNA 13, e1690 (2022). PubMed
Borowski L. S., Dziembowski A., Hejnowicz M. S., Stepien P. P., Szczesny R. J., Human mitochondrial RNA decay mediated by PNPase–hSuv3 complex takes place in distinct foci. Nucleic Acids Res. 41, 1223–1240 (2013). PubMed PMC
Chen H.-W., Rainey R. N., Balatoni C. E., Dawson D. W., Troke J. J., Wasiak S., Hong J. S., McBride H. M., Koehler C. M., Teitell M. A., French S. W., Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol. Cell. Biol. 26, 8475–8487 (2006). PubMed PMC
Hsu C. G., Li W., Sowden M., Chávez C. L., Berk B. C., Pnpt1 mediates NLRP3 inflammasome activation by MAVS and metabolic reprogramming in macrophages. Cell. Mol. Immunol. 20, 131–142 (2023). PubMed PMC
Khaw S.-L., Min-Wen C., Koh C.-G., Lim B., Shyh-Chang N., Oocyte factors suppress mitochondrial polynucleotide phosphorylase to remodel the metabolome and enhance reprogramming. Cell Rep. 12, 1080–1088 (2015). PubMed
Schölz C., Weinert B. T., Wagner S. A., Beli P., Miyake Y., Qi J., Jensen L. J., Streicher W., McCarthy A. R., Westwood N. J., Lain S., Cox J., Matthias P., Mann M., Bradner J. E., Choudhary C., Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–423 (2015). PubMed
Yoo H. C., Yu Y. C., Sung Y., Han J. M., Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020). PubMed PMC
Jha A. K., Huang S. C.-C., Sergushichev A., Lampropoulou V., Ivanova Y., Loginicheva E., Chmielewski K., Stewart K. M., Ashall J., Everts B., Pearce E. J., Driggers E. M., Artyomov M. N., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015). PubMed
McKenna M. C., Waagepetersen H. S., Schousboe A., Sonnewald U., Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: Current evidence and pharmacological tools. Biochem. Pharmacol. 71, 399–407 (2006). PubMed
Son J., Lyssiotis C. A., Ying H., Wang X., Hua S., Ligorio M., Perera R. M., Ferrone C. R., Mullarky E., Shyh-Chang N., Kang Y., Fleming J. B., Bardeesy N., Asara J. M., Haigis M. C., DePinho R. A., Cantley L. C., Kimmelman A. C., Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013). PubMed PMC
Xu T., Stewart K. M., Wang X., Liu K., Xie M., Ryu J. K., Li K., Ma T., Wang H., Ni L., Zhu S., Cao N., Zhu D., Zhang Y., Akassoglou K., Dong C., Driggers E. M., Ding S., Metabolic control of T PubMed PMC
D’Elia R. V., Harrison K., Oyston P. C., Lukaszewski R. A., Clark G. C., Targeting the “cytokine storm” for therapeutic benefit. Clin. Vaccine Immunol. 20, 319–327 (2013). PubMed PMC
Xu Y., Zhan Y., Lew A. M., Naik S. H., Kershaw M. H., Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J. Immunol. 179, 7577–7584 (2007). PubMed
Jenkins M. M., Bachus H., Botta D., Schultz M. D., Rosenberg A. F., León B., Ballesteros-Tato A., Lung dendritic cells migrate to the spleen to prime long-lived TCF1 PubMed PMC
Chiavolini D., Alroy J., King C. A., Jorth P., Weir S., Madico G., Murphy J. R., Wetzler L. M., Identification of immunologic and pathologic parameters of death versus survival in respiratory tularemia. Infect. Immun. 76, 486–496 (2008). PubMed PMC
Wu T. H., Hutt J. A., Garrison K. A., Berliba L. S., Zhou Y., Lyons C. R., Intranasal vaccination induces protective immunity against intranasal infection with virulent PubMed PMC
Hato T., Maier B., Syed F., Myslinski J., Zollman A., Plotkin Z., Eadon M. T., Dagher P. C., Bacterial sepsis triggers an antiviral response that causes translation shutdown. J. Clin. Invest. 129, 296–309 (2019). PubMed PMC
Silwal P., Kim J. K., Kim Y. J., Jo E.-K., Mitochondrial reactive oxygen species: Double-edged weapon in host defense and pathological inflammation during infection. Front. Immunol. 11, 1649 (2020). PubMed PMC
Rocha M., Herance R., Rovira S., Hernández-Mijares A., Victor V. M., Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect. Disord. Drug Targets 12, 161–178 (2012). PubMed
Reis e Sousa C., Hieny S., Scharton-Kersten T., Jankovic D., Charest H., Germain R. N., Sher A., In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997). PubMed PMC
Darkwah S., Nago N., Appiah M. G., Myint P. K., Kawamoto E., Shimaoka M., Park E. J., Differential roles of dendritic cells in expanding CD4 T cells in sepsis. Biomedicine 7, 52 (2019). PubMed PMC
Santiago-Tirado F. H., Doering T. L., False friends: Phagocytes as Trojan horses in microbial brain infections. PLOS Pathog. 13, e1006680 (2017). PubMed PMC
Svensson K., Sjödin A., Byström M., Granberg M., Brittnacher M. J., Rohmer L., Jacobs M. A., Sims-Day E. H., Levy R., Zhou Y., Hayden H. S., Lim R., Chang J., Guenthener D., Kang A., Haugen E., Gillett W., Kaul R., Forsman M., Larsson P., Johansson A., Genome sequence of PubMed PMC
Lindgren H., Shen H., Zingmark C., Golovliov I., Conlan W., Sjöstedt A., Resistance of PubMed PMC
Lindgren H., Honn M., Salomonsson E., Kuoppa K., Forsberg Å., Sjöstedt A., Iron content differs between PubMed PMC
Brand M. D., Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 100, 14–31 (2016). PubMed
Tao R., Vassilopoulos A., Parisiadou L., Yan Y., Gius D., Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid. Redox Signal. 20, 1646–1654 (2014). PubMed PMC
Robin E., Guzy R. D., Loor G., Iwase H., Waypa G. B., Marks J. D., Hoek T. L. V., Schumacker P. T., Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion. J. Biol. Chem. 282, 19133–19143 (2007). PubMed
Tannahill G. M., Curtis A. M., Adamik J., Palsson-McDermott E. M., McGettrick A. F., Goel G., Frezza C., Bernard N. J., Kelly B., Foley N. H., Zheng L., Gardet A., Tong Z., Jany S. S., Corr S. C., Haneklaus M., Caffrey B. E., Pierce K., Walmsley S., Beasley F. C., Cummins E., Nizet V., Whyte M., Taylor C. T., Lin H., Masters S. L., Gottlieb E., Kelly V. P., Clish C., Auron P. E., Xavier R. J., O’Neill L. A. J., Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). PubMed PMC
Mills E. L., Kelly B., Logan A., Costa A. S. H., Varma M., Bryant C. E., Tourlomousis P., Däbritz J. H. M., Gottlieb E., Latorre I., Corr S. C., McManus G., Ryan D., Jacobs H. T., Szibor M., Xavier R. J., Braun T., Frezza C., Murphy M. P., O’Neill L. A., Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016). PubMed PMC
Mills E. L., Ryan D. G., Prag H. A., Dikovskaya D., Menon D., Zaslona Z., Jedrychowski M. P., Costa A. S. H., Higgins M., Hams E., Szpyt J., Runtsch M. C., King M. S., McGouran J. F., Fischer R., Kessler B. M., McGettrick A. F., Hughes M. M., Carroll R. G., Booty L. M., Knatko E. V., Meakin P. J., Ashford M. L. J., Modis L. K., Brunori G., Sévin D. C., Fallon P. G., Caldwell S. T., Kunji E. R. S., Chouchani E. T., Frezza C., Dinkova-Kostova A. T., Hartley R. C., Murphy M. P., O’Neill L. A., Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018). PubMed PMC
Garaude J., Acín-Pérez R., Martínez-Cano S., Enamorado M., Ugolini M., Nistal-Villán E., Hervás-Stubbs S., Pelegrín P., Sander L. E., Enríquez J. A., Sancho D., Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat. Immunol. 17, 1037–1045 (2016). PubMed PMC
Williams N. C., O’Neill L. A. J., A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 9, 141 (2018). PubMed PMC
Randolph G. J., Angeli V., Swartz M. A., Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617–628 (2005). PubMed
Beal M. F., Swartz K. J., Hyman B. T., Storey E., Finn S. F., Koroshetz W., Aminooxyacetic acid results in excitotoxin lesions by a novel indirect mechanism. J. Neurochem. 57, 1068–1073 (1991). PubMed
Jiang Q., Qiu Y., Kurland I. J., Drlica K., Subbian S., Tyagi S., Shi L., Glutamine is required for M1-like polarization of macrophages in response to PubMed PMC
Zhao T., Zhang Z., Li Y., Sun Z., Liu L., Deng X., Guo J., Zhu D., Cao S., Chai Y., Nikolaevna U. V., Maratbek S., Wang Z., Zhang H., PubMed PMC
Cox J., Mann M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed
Kong A. T., Leprevost F. V., Avtonomov D. M., Mellacheruvu D., Nesvizhskii A. I., MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods 14, 513–520 (2017). PubMed PMC