• This record comes from PubMed

Glutamate utilization fuels rapid production of mitochondrial ROS in dendritic cells and drives systemic inflammation during tularemia

. 2025 Aug 29 ; 11 (35) : eadu6271. [epub] 20250829

Language English Country United States Media print-electronic

Document type Journal Article

Dendritic cells (DCs) hijacked by intracellular bacteria contribute to pathogen dissemination and immunopathology. How bacteria achieve DC subversion remains largely unknown. Here, we describe the mechanism used by tularemia agent Francisella tularensis exploiting host mitochondrial anaplerosis. Shortly after internalization, Francisella associates with DC mitochondria, which leads to the rapid repurposing of their oxidative metabolism for production of mitochondrial reactive oxygen species (mtROS). Mitochondrial metabolic rewiring is orchestrated by the intramitochondrial signaling mediated by protein acetylation and involves switching to glutamate as the primary substrate for DC tricarboxylic acid cycle. Rather than killing the bacterium, glutamate-fueled mtROS production activates p38-dependent proinflammatory gene expression. Blocking of glutamate utilization prevents DC activation and bacterial dissemination and alleviates inflammation in vivo. Our findings underscore the importance of metabolic plasticity in antibacterial DC response and open up potential avenues for therapies targeting host metabolism.

See more in PubMed

Flannagan R. S., Cosío G., Grinstein S., Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7, 355–366 (2009). PubMed

Savina A., Amigorena S., Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 219, 143–156 (2007). PubMed

Kim H., Shin S. J., Pathological and protective roles of dendritic cells in PubMed PMC

Roquilly A., McWilliam H. E. G., Jacqueline C., Tian Z., Cinotti R., Rimbert M., Wakim L., Caminschi I., Lahoud M. H., Belz G. T., Kallies A., Mintern J. D., Asehnoune K., Villadangos J. A., Local modulation of antigen-presenting cell development after resolution of pneumonia induces long-term susceptibility to secondary infections. Immunity 47, 135–147.e5 (2017). PubMed

Laurent P., Yang C., Rendeiro A. F., Nilsson-Payant B. E., Carrau L., Chandar V., Bram Y., tenOever B. R., Elemento O., Ivashkiv L. B., Schwartz R. E., Barrat F. J., Sensing of SARS-CoV-2 by pDCs and their subsequent production of IFN-I contribute to macrophage-induced cytokine storm during COVID-19. Sci. Immunol. 7, eadd4906 (2022). PubMed PMC

Fabrik I., Härtlova A., Rehulka P., Stulik J., Serving the new masters – Dendritic cells as hosts for stealth intracellular bacteria. Cell. Microbiol. 15, 1473–1483 (2013). PubMed

Ozanic M., Marecic V., Abu Kwaik Y., Santic M., The divergent intracellular lifestyle of PubMed PMC

Belhocine K., Monack D. M., PubMed PMC

Bosio C. M., Dow S. W., PubMed

Chase J. C., Celli J., Bosio C. M., Direct and indirect impairment of human dendritic cell function by virulent PubMed PMC

Wickstrum J. R., Bokhari S. M., Fischer J. L., Pinson D. M., Yeh H.-W., Horvat R. T., Parmely M. J., PubMed PMC

Bauler T. J., Chase J. C., Bosio C. M., IFN-β mediates suppression of IL-12p40 in human dendritic cells following infection with virulent PubMed PMC

Periasamy S., Singh A., Sahay B., Rahman T., Feustel P. J., Pham G. H., Gosselin E. J., Sellati T. J., Development of tolerogenic dendritic cells and regulatory T cells favors exponential bacterial growth and survival during early respiratory tularemia. J. Leukoc. Biol. 90, 493–507 (2011). PubMed PMC

Bar-Haim E., Gat O., Markel G., Cohen H., Shafferman A., Velan B., Interrelationship between dendritic cell trafficking and PubMed PMC

Jones C. L., Napier B. A., Sampson T. R., Llewellyn A. C., Schroeder M. R., Weiss D. S., Subversion of host recognition and defense systems by PubMed PMC

Härtlova A., Link M., Balounova J., Benesova M., Resch U., Straskova A., Sobol M., Philimonenko A., Hozak P., Krocova Z., Gekara N., Filipp D., Stulik J., Quantitative proteomics analysis of macrophage-derived lipid rafts reveals induction of autophagy pathway at the early time of PubMed

Case E. D. R., Chong A., Wehrly T. D., Hansen B., Child R., Hwang S., Virgin H. W., Celli J., The PubMed PMC

Ray K., Marteyn B., Sansonetti P. J., Tang C. M., Life on the inside: The intracellular lifestyle of cytosolic bacteria. Nat. Rev. Microbiol. 7, 333–340 (2009). PubMed

Bröms J. E., Meyer L., Sun K., Lavander M., Sjöstedt A., Unique substrates secreted by the type VI secretion system of PubMed PMC

Eshraghi A., Kim J., Walls A. C., Ledvina H. E., Miller C. N., Ramsey K. M., Whitney J. C., Radey M. C., Peterson S. B., Ruhland B. R., Tran B. Q., Goo Y. A., Goodlett D. R., Dove S. L., Celli J., Veesler D., Mougous J. D., Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intramacrophage growth. Cell Host Microbe 20, 573–583 (2016). PubMed PMC

Jessop F., Schwarz B., Heitmann E., Buntyn R., Wehrly T., Bosio C. M., Temporal manipulation of mitochondrial function by virulent PubMed PMC

Jessop F., Buntyn R., Schwarz B., Wehrly T., Scott D., Bosio C. M., Interferon gamma reprograms host mitochondrial metabolism through inhibition of complex II to control intracellular bacterial replication. Infect. Immun. 88, e00744-19 (2020). PubMed PMC

Proksova M., Rehulkova H., Rehulka P., Lays C., Lenco J., Stulik J., Using proteomics to identify host cell interaction partners for VgrG and IglJ. Sci. Rep. 10, 14612 (2020). PubMed PMC

Ramond E., Jamet A., Coureuil M., Charbit A., Pivotal role of mitochondria in macrophage response to bacterial pathogens. Front. Immunol. 10, 2461 (2019). PubMed PMC

Arnoult D., Carneiro L., Tattoli I., Girardin S. E., The role of mitochondria in cellular defense against microbial infection. Semin. Immunol. 21, 223–232 (2009). PubMed

Tiku V., Tan M.-W., Dikic I., Mitochondrial functions in infection and immunity. Trends Cell Biol. 30, 263–275 (2020). PubMed PMC

Escoll P., Mondino S., Rolando M., Buchrieser C., Targeting of host organelles by pathogenic bacteria: A sophisticated subversion strategy. Nat. Rev. Microbiol. 14, 5–19 (2016). PubMed

Fabrik I., Link M., Putzova D., Plzakova L., Lubovska Z., Philimonenko V., Pavkova I., Rehulka P., Krocova Z., Hozak P., Santic M., Stulik J., The early dendritic cell signaling induced by virulent PubMed PMC

Crane D. D., Bauler T. J., Wehrly T. D., Bosio C. M., Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome. Front. Microbiol. 5, 438 (2014). PubMed PMC

West A. P., Brodsky I. E., Rahner C., Woo D. K., Erdjument-Bromage H., Tempst P., Walsh M. C., Choi Y., Shadel G. S., Ghosh S., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011). PubMed PMC

Mor-Vaknin N., Punturieri A., Sitwala K., Faulkner N., Legendre M., Khodadoust M. S., Kappes F., Ruth J. H., Koch A., Glass D., Petruzzelli L., Adams B. S., Markovitz D. M., The DEK nuclear autoantigen is a secreted chemotactic factor. Mol. Cell. Biol. 26, 9484–9496 (2006). PubMed PMC

Terrazas C. A., Huitron E., Vazquez A., Juarez I., Camacho G. M., Calleja E. A., Rodriguez-Sosa M., MIF synergizes with Trypanosoma cruzi antigens to promote efficient dendritic cell maturation and IL-12 production via p38 MAPK. Int. J. Biol. Sci. 7, 1298–1310 (2011). PubMed PMC

Ito K., Hirao A., Arai F., Takubo K., Matsuoka S., Miyamoto K., Ohmura M., Naka K., Hosokawa K., Ikeda Y., Suda T., Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006). PubMed

Pavkova I., Kopeckova M., Link M., Vlcak E., Filimonenko V., Lecova L., Zakova J., Laskova P., Sheshko V., Machacek M., Stulik J., PubMed PMC

Morgan M. J., Liu Z., Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103–115 (2011). PubMed PMC

D’Autréaux B., Toledano M. B., ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007). PubMed

Baeza J., Smallegan M. J., Denu J. M., Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem. Sci. 41, 231–244 (2016). PubMed PMC

Baeza J., Lawton A. J., Fan J., Smallegan M. J., Lienert I., Gandhi T., Bernhardt O. M., Reiter L., Denu J. M., Revealing dynamic protein acetylation across subcellular compartments. J. Proteome Res. 19, 2404–2418 (2020). PubMed PMC

Yang W., Nagasawa K., Münch C., Xu Y., Satterstrom K., Jeong S., Hayes S. D., Jedrychowski M. P., Vyas F. S., Zaganjor E., Guarani V., Ringel A. E., Gygi S. P., Harper J. W., Haigis M. C., Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167, 985–1000.e21 (2016). PubMed PMC

Fabrik I., Link M., Härtlova A., Dankova V., Rehulka P., Stulik J., Application of SILAC labeling to primary bone marrow-derived dendritic cells reveals extensive GM-CSF-dependent arginine metabolism. J. Proteome Res. 13, 752–762 (2014). PubMed

Han D., Williams E., Cadenas E., Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353, 411–416 (2001). PubMed PMC

Grochowska J., Czerwinska J., Borowski L. S., Szczesny R. J., Mitochondrial RNA, a new trigger of the innate immune system. Wiley Interdiscip. Rev. RNA 13, e1690 (2022). PubMed

Borowski L. S., Dziembowski A., Hejnowicz M. S., Stepien P. P., Szczesny R. J., Human mitochondrial RNA decay mediated by PNPase–hSuv3 complex takes place in distinct foci. Nucleic Acids Res. 41, 1223–1240 (2013). PubMed PMC

Chen H.-W., Rainey R. N., Balatoni C. E., Dawson D. W., Troke J. J., Wasiak S., Hong J. S., McBride H. M., Koehler C. M., Teitell M. A., French S. W., Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol. Cell. Biol. 26, 8475–8487 (2006). PubMed PMC

Hsu C. G., Li W., Sowden M., Chávez C. L., Berk B. C., Pnpt1 mediates NLRP3 inflammasome activation by MAVS and metabolic reprogramming in macrophages. Cell. Mol. Immunol. 20, 131–142 (2023). PubMed PMC

Khaw S.-L., Min-Wen C., Koh C.-G., Lim B., Shyh-Chang N., Oocyte factors suppress mitochondrial polynucleotide phosphorylase to remodel the metabolome and enhance reprogramming. Cell Rep. 12, 1080–1088 (2015). PubMed

Schölz C., Weinert B. T., Wagner S. A., Beli P., Miyake Y., Qi J., Jensen L. J., Streicher W., McCarthy A. R., Westwood N. J., Lain S., Cox J., Matthias P., Mann M., Bradner J. E., Choudhary C., Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–423 (2015). PubMed

Yoo H. C., Yu Y. C., Sung Y., Han J. M., Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020). PubMed PMC

Jha A. K., Huang S. C.-C., Sergushichev A., Lampropoulou V., Ivanova Y., Loginicheva E., Chmielewski K., Stewart K. M., Ashall J., Everts B., Pearce E. J., Driggers E. M., Artyomov M. N., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015). PubMed

McKenna M. C., Waagepetersen H. S., Schousboe A., Sonnewald U., Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: Current evidence and pharmacological tools. Biochem. Pharmacol. 71, 399–407 (2006). PubMed

Son J., Lyssiotis C. A., Ying H., Wang X., Hua S., Ligorio M., Perera R. M., Ferrone C. R., Mullarky E., Shyh-Chang N., Kang Y., Fleming J. B., Bardeesy N., Asara J. M., Haigis M. C., DePinho R. A., Cantley L. C., Kimmelman A. C., Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013). PubMed PMC

Xu T., Stewart K. M., Wang X., Liu K., Xie M., Ryu J. K., Li K., Ma T., Wang H., Ni L., Zhu S., Cao N., Zhu D., Zhang Y., Akassoglou K., Dong C., Driggers E. M., Ding S., Metabolic control of T PubMed PMC

D’Elia R. V., Harrison K., Oyston P. C., Lukaszewski R. A., Clark G. C., Targeting the “cytokine storm” for therapeutic benefit. Clin. Vaccine Immunol. 20, 319–327 (2013). PubMed PMC

Xu Y., Zhan Y., Lew A. M., Naik S. H., Kershaw M. H., Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J. Immunol. 179, 7577–7584 (2007). PubMed

Jenkins M. M., Bachus H., Botta D., Schultz M. D., Rosenberg A. F., León B., Ballesteros-Tato A., Lung dendritic cells migrate to the spleen to prime long-lived TCF1 PubMed PMC

Chiavolini D., Alroy J., King C. A., Jorth P., Weir S., Madico G., Murphy J. R., Wetzler L. M., Identification of immunologic and pathologic parameters of death versus survival in respiratory tularemia. Infect. Immun. 76, 486–496 (2008). PubMed PMC

Wu T. H., Hutt J. A., Garrison K. A., Berliba L. S., Zhou Y., Lyons C. R., Intranasal vaccination induces protective immunity against intranasal infection with virulent PubMed PMC

Hato T., Maier B., Syed F., Myslinski J., Zollman A., Plotkin Z., Eadon M. T., Dagher P. C., Bacterial sepsis triggers an antiviral response that causes translation shutdown. J. Clin. Invest. 129, 296–309 (2019). PubMed PMC

Silwal P., Kim J. K., Kim Y. J., Jo E.-K., Mitochondrial reactive oxygen species: Double-edged weapon in host defense and pathological inflammation during infection. Front. Immunol. 11, 1649 (2020). PubMed PMC

Rocha M., Herance R., Rovira S., Hernández-Mijares A., Victor V. M., Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect. Disord. Drug Targets 12, 161–178 (2012). PubMed

Reis e Sousa C., Hieny S., Scharton-Kersten T., Jankovic D., Charest H., Germain R. N., Sher A., In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997). PubMed PMC

Darkwah S., Nago N., Appiah M. G., Myint P. K., Kawamoto E., Shimaoka M., Park E. J., Differential roles of dendritic cells in expanding CD4 T cells in sepsis. Biomedicine 7, 52 (2019). PubMed PMC

Santiago-Tirado F. H., Doering T. L., False friends: Phagocytes as Trojan horses in microbial brain infections. PLOS Pathog. 13, e1006680 (2017). PubMed PMC

Svensson K., Sjödin A., Byström M., Granberg M., Brittnacher M. J., Rohmer L., Jacobs M. A., Sims-Day E. H., Levy R., Zhou Y., Hayden H. S., Lim R., Chang J., Guenthener D., Kang A., Haugen E., Gillett W., Kaul R., Forsman M., Larsson P., Johansson A., Genome sequence of PubMed PMC

Lindgren H., Shen H., Zingmark C., Golovliov I., Conlan W., Sjöstedt A., Resistance of PubMed PMC

Lindgren H., Honn M., Salomonsson E., Kuoppa K., Forsberg Å., Sjöstedt A., Iron content differs between PubMed PMC

Brand M. D., Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 100, 14–31 (2016). PubMed

Tao R., Vassilopoulos A., Parisiadou L., Yan Y., Gius D., Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid. Redox Signal. 20, 1646–1654 (2014). PubMed PMC

Robin E., Guzy R. D., Loor G., Iwase H., Waypa G. B., Marks J. D., Hoek T. L. V., Schumacker P. T., Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion. J. Biol. Chem. 282, 19133–19143 (2007). PubMed

Tannahill G. M., Curtis A. M., Adamik J., Palsson-McDermott E. M., McGettrick A. F., Goel G., Frezza C., Bernard N. J., Kelly B., Foley N. H., Zheng L., Gardet A., Tong Z., Jany S. S., Corr S. C., Haneklaus M., Caffrey B. E., Pierce K., Walmsley S., Beasley F. C., Cummins E., Nizet V., Whyte M., Taylor C. T., Lin H., Masters S. L., Gottlieb E., Kelly V. P., Clish C., Auron P. E., Xavier R. J., O’Neill L. A. J., Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). PubMed PMC

Mills E. L., Kelly B., Logan A., Costa A. S. H., Varma M., Bryant C. E., Tourlomousis P., Däbritz J. H. M., Gottlieb E., Latorre I., Corr S. C., McManus G., Ryan D., Jacobs H. T., Szibor M., Xavier R. J., Braun T., Frezza C., Murphy M. P., O’Neill L. A., Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016). PubMed PMC

Mills E. L., Ryan D. G., Prag H. A., Dikovskaya D., Menon D., Zaslona Z., Jedrychowski M. P., Costa A. S. H., Higgins M., Hams E., Szpyt J., Runtsch M. C., King M. S., McGouran J. F., Fischer R., Kessler B. M., McGettrick A. F., Hughes M. M., Carroll R. G., Booty L. M., Knatko E. V., Meakin P. J., Ashford M. L. J., Modis L. K., Brunori G., Sévin D. C., Fallon P. G., Caldwell S. T., Kunji E. R. S., Chouchani E. T., Frezza C., Dinkova-Kostova A. T., Hartley R. C., Murphy M. P., O’Neill L. A., Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018). PubMed PMC

Garaude J., Acín-Pérez R., Martínez-Cano S., Enamorado M., Ugolini M., Nistal-Villán E., Hervás-Stubbs S., Pelegrín P., Sander L. E., Enríquez J. A., Sancho D., Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat. Immunol. 17, 1037–1045 (2016). PubMed PMC

Williams N. C., O’Neill L. A. J., A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 9, 141 (2018). PubMed PMC

Randolph G. J., Angeli V., Swartz M. A., Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617–628 (2005). PubMed

Beal M. F., Swartz K. J., Hyman B. T., Storey E., Finn S. F., Koroshetz W., Aminooxyacetic acid results in excitotoxin lesions by a novel indirect mechanism. J. Neurochem. 57, 1068–1073 (1991). PubMed

Jiang Q., Qiu Y., Kurland I. J., Drlica K., Subbian S., Tyagi S., Shi L., Glutamine is required for M1-like polarization of macrophages in response to PubMed PMC

Zhao T., Zhang Z., Li Y., Sun Z., Liu L., Deng X., Guo J., Zhu D., Cao S., Chai Y., Nikolaevna U. V., Maratbek S., Wang Z., Zhang H., PubMed PMC

Cox J., Mann M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed

Kong A. T., Leprevost F. V., Avtonomov D. M., Mellacheruvu D., Nesvizhskii A. I., MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods 14, 513–520 (2017). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...