Using proteomics to identify host cell interaction partners for VgrG and IglJ
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32884055
PubMed Central
PMC7471685
DOI
10.1038/s41598-020-71641-3
PII: 10.1038/s41598-020-71641-3
Knihovny.cz E-zdroje
- MeSH
- adaptivní imunita fyziologie MeSH
- bakteriální proteiny metabolismus MeSH
- Francisella tularensis metabolismus MeSH
- genomové ostrovy * MeSH
- hmotnostní spektrometrie MeSH
- přirozená imunita fyziologie MeSH
- proteomika MeSH
- regulace genové exprese u bakterií * MeSH
- tularemie mikrobiologie MeSH
- virulence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
Francisella tularensis is a highly virulent intracellular bacterium and the causative agent of tularemia. The disease is characterized by the suboptimal innate immune response and consequently by the impaired adaptive immunity. The virulence of this pathogen depends on proteins encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). However, the precise biological roles of most of the FPI-encoded proteins remain to be clarified. In this study, we employed stable isotope labeling by amino acids in cell culture (SILAC) in combination with affinity protein purification coupled with liquid chromatography-mass spectrometry to identify potential protein-effector binding pairs for two FPI virulence effectors IglJ and VgrG. Our results may indicate that while the IglJ protein interactions primarily affect mitochondria, the VgrG interactions affect phagosome and/or autophagosome biogenesis via targeting components of the host's exocyst complex.
CIRI International Center for Infectiology Research Inserm U1111 UMR5308 CNRS Lyon France
Faculty of Pharmacy Charles University Hradec Kralove Czech Republic
Zobrazit více v PubMed
McLendon MK, Apicella MA, Allen L-AH. Francisella tularensis: taxonomy, genetics, and immunopathogenesis of a potential agent of biowarfare. Annu. Rev. Microbiol. 2006;60:167–185. PubMed PMC
Dennis DT, et al. Tularemia as a biological weapon: medical and public health management. JAMA. 2001;285:2763–2773. PubMed
Celli J, Zahrt TC. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb. Perspect. Med. 2013;3:a10314. PubMed PMC
Geier H, Celli J. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect. Immun. 2011;79:2204–2214. PubMed PMC
Clemens DL, Lee B-Y, Horwitz MA. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun. 2004;72:3204–3217. PubMed PMC
Santic M, Molmeret M, Abu Kwaik Y. Modulation of biogenesis of the Francisella tularensis subsp. novicida-containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN-gamma. Cell. Microbiol. 2005;7:957–967. PubMed
Chong A, et al. The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect. Immun. 2008;76:5488–5499. PubMed PMC
Barker JR, et al. The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol. Microbiol. 2009;74:1459–1470. PubMed PMC
Bröms JE, Meyer L, Lavander M, Larsson P, Sjöstedt A. DotU and VgrG, core components of Type VI secretion systems, are essential for Francisella LVS pathogenicity. PLoS ONE. 2012;7:e34659. PubMed PMC
Long ME, Lindemann SR, Rasmussen JA, Jones BD, Allen L-AH. Disruption of Francisella tularensis Schu S4 iglI, iglJ, and pdpC genes results in attenuation for growth in human macrophages and in vivo virulence in mice and reveals a unique phenotype for pdpC. Infect. Immun. 2013;81:850–861. PubMed PMC
Ramond E, Gesbert G, Barel M, Charbit A. Proteins involved in Francisella tularensis survival and replication inside macrophages. Future Microbiol. 2012;7:1255–1268. PubMed
Lindgren H, et al. Factors affecting the escape of Francisella tularensis from the phagolysosome. J. Med. Microbiol. 2004;53:953–958. PubMed
Qin A, Mann BJ. Identification of transposon insertion mutants of Francisella tularensis tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2. BMC Microbiol. 2006;6:69. PubMed PMC
Law HT, et al. IglC and PdpA are important for promoting Francisella invasion and intracellular growth in epithelial cells. PLoS ONE. 2014;9:e104881. PubMed PMC
Nano FE, Schmerk C. The Francisella pathogenicity island. Ann. N. Y. Acad. Sci. 2007;1105:122–137. PubMed
Cambronne ED, Roy CR. Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic Cph. Den. 2006;7:929–939. PubMed
Filloux A, Hachani A, Bleves S. The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology. 2008;154:1570–1583. PubMed
Pukatzki S, McAuley SB, Miyata ST. The type VI secretion system: translocation of effectors and effector-domains. Curr. Opin. Microbiol. 2009;12:11–17. PubMed
Schwarz S, Hood RD, Mougous JD. What is type VI secretion doing in all those bugs? Trends Microbiol. 2010;18:531–537. PubMed PMC
Bröms JE, Meyer L, Sun K, Lavander M, Sjöstedt A. Unique substrates secreted by the type VI secretion system of Francisella tularensis during intramacrophage infection. PLoS ONE. 2012;7:e5073. PubMed PMC
Hare RF, Hueffer K. Francisella novicida pathogenicity island encoded proteins were secreted during infection of macrophage-like cells. PLoS ONE. 2014;9:e105773. PubMed PMC
Eshraghi A, et al. Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intramacrophage growth. Cell Host Microbe. 2016;20:573–583. PubMed PMC
Rigard M, et al. Francisella tularensis IglG belongs to a novel family of PAAR-Like T6SS proteins and harbors a unique N-terminal extension required for virulence. PLoS Pathog. 2016;12:e100581. PubMed PMC
de Bruin OM, et al. The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiol. Read. Engl. 2011;157:3483–3491. PubMed PMC
Brodmann M, Dreier RF, Broz P, Basler M. Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat. Commun. 2017;8:15853. PubMed PMC
Wan B, et al. Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS) PLoS Pathog. 2017;13:e1006246. PubMed PMC
Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl. Acad. Sci. USA. 2007;104:15508–15513. PubMed PMC
Ma AT, Mekalanos JJ. In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc. Natl. Acad. Sci. USA. 2010;107:4365–4370. PubMed PMC
Hardt W-D, Chen L-M, Schuebel KE, Bustelo XR, Galán JES. Typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998;93:815–826. PubMed
Hayward RD, Koronakiss V. Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol. 2002;12:15–20. PubMed
Navarro L, et al. Identification of a molecular target for the yersinia protein kinase A. Mol. Cell. 2007;26:465–477. PubMed
Hamiaux C, van Eerde A, Parsot C, Broos J, Dijkstra BW. Structural mimicry for vinculin activation by IpaA, a virulence factor of Shigella flexneri. EMBO Rep. 2006;7:794–799. PubMed PMC
Yoshida S, et al. Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 2002;21:2923–2935. PubMed PMC
Holding AN. XL-MS: Protein cross-linking coupled with mass spectrometry. Methods. 2015;89:54–63. PubMed
Dunham WH, Mullin M, Gingras A-C. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics. 2012;12:1576–1590. PubMed
Auweter SD, et al. Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners. J. Biol. Chem. 2011;286:24023–24035. PubMed PMC
Zhang H, et al. Identification of protein-protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol. Cell. Proteom. 2009;8:409–420. PubMed PMC
Leitner A, et al. Expanding the chemical cross-linking toolbox by the use of multiple proteases and enrichment by size exclusion chromatography. Mol. Cell. Proteom. 2012;11:014126. PubMed PMC
Fritzsche R, Ihling CH, Götze M, Sinz A. Optimizing the enrichment of cross-linked products for mass spectrometric protein analysis. Rapid Commun. Mass Spectrom. 2012;26:653–658. PubMed
Collins MO, Choudhary JS. Mapping multiprotein complexes by affinity purification and mass spectrometry. Curr. Opin. Biotechnol. 2008;19:324–330. PubMed
Trinkle-Mulcahy L, et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 2008;183:223–239. PubMed PMC
Kaake RM, Wang X, Huang L. Profiling of protein interaction networks of protein complexes using affinity purification and quantitative mass spectrometry. Mol. Cell. Proteom. 2010;9:1650–1665. PubMed PMC
Park S-S, et al. Effective correction of experimental errors in quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC) J. Proteom. 2012;75:3720–3732. PubMed PMC
Nunnari J, Suomalainen A. Mitochondria: sickness and in Health. Cell. 2012;148:1145–1159. PubMed PMC
Elmore S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 2007;35:495–516. PubMed PMC
Daugas E, et al. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett. 2000;476:118–123. PubMed
McCracken JM, Kinkead LC, McCaffrey RL, Allen L-AH. Francisella tularensis modulates a distinct subset of regulatory factors and sustains mitochondrial integrity to impair human neutrophil apoptosis. J. Innate Immun. 2016;8:299–313. PubMed PMC
Schwartz JT, et al. Francisella tularensis inhibits the intrinsic and extrinsic pathways to delay constitutive apoptosis and prolong human neutrophil lifespan. J. Immunol. Baltim. Md. 2012;1950(188):3351–3363. PubMed PMC
Jessop F, et al. Temporal manipulation of mitochondrial function by virulent Francisella tularensis to limit inflammation and control cell death. Infect. Immun. 2018;86:e00044. PubMed PMC
Dubey RK. Assuming the role of mitochondria in mycobacterial infection. Int. J. Mycobacteriol. 2016;5:379–383. PubMed
Banga S, et al. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc. Natl. Acad. Sci. USA. 2007;104:5121–5126. PubMed PMC
Laguna RK, Creasey EA, Li Z, Valtz N, Isberg RR. A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc. Natl. Acad. Sci. USA. 2006;103:18745–18750. PubMed PMC
Escoll P, et al. Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages. Cell Host Microbe. 2017;22:302–316.e7. PubMed
Ruan H, et al. The Salmonella effector SopB prevents ROS-induced apoptosis of epithelial cells by retarding TRAF6 recruitment to mitochondria. Biochem. Biophys. Res. Commun. 2016;478:618–623. PubMed
Sukumaran SK, et al. A soluble form of the pilus protein FimA targets the VDAC-hexokinase complex at mitochondria to suppress host cell apoptosis. Mol. Cell. 2010;37:768–783. PubMed
Heider MR, Munson M. Exorcising the exocyst complex. Traffic Cph. Den. 2012;13:898–907. PubMed PMC
Mei K, Guo W. The exocyst complex. Curr. Biol. 2018;28:R922–R925. PubMed
Mei K, Guo W. Exocytosis: a new exocyst movie. Curr. Biol. 2019;29:R30–R32. PubMed
Hamasaki M, Noda T, Ohsumi Y. The early secretory pathway contributes to autophagy in yeast. Cell Struct. Funct. 2003;28:49–54. PubMed
Yen W-L, et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J. Cell Biol. 2010;188:101–114. PubMed PMC
Singh S, et al. Exocyst subcomplex functions in autophagosome biogenesis by regulating Atg9 trafficking. J. Mol. Biol. 2019;431:2821–2834. PubMed PMC
Arasaki K, Kimura H, Tagaya M, Roy CR. Legionella remodels the plasma membrane–derived vacuole by utilizing exocyst components as tethers. J. Cell Biol. 2018;217:3863–3872. PubMed PMC
Bhalla M, Ngo HV, Gyanwali GC, Ireton K. The host scaffolding protein filamin A and the exocyst complex control exocytosis during InlB-mediated entry of listeria monocytogenes. Infect. Immun. 2019;87:e0069. PubMed PMC
Nichols CD, Casanova JE. Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex. Curr. Biol. CB. 2010;20:1316–1320. PubMed PMC
Zhao S, et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 2016;17:1037–1052. PubMed PMC
Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl Coenzyme A: a central metabolite and second messenger. Cell Metab. 2015;21:805–821. PubMed
Infantino V, Iacobazzi V, Palmieri F, Menga A. ATP-citrate lyase is essential for macrophage inflammatory response. Biochem. Biophys. Res. Commun. 2013;440:105–111. PubMed
Rehulka P, et al. Microgradient separation technique for purification and fractionation of permethylated N-glycans before mass spectrometric analyses. J. Sep. Sci. 2018;41:1973–1982. PubMed
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed
Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. PubMed