Modified activities of macrophages' deubiquitinating enzymes after Francisella infection

. 2023 ; 14 () : 1252827. [epub] 20230929

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37841261

Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.

Zobrazit více v PubMed

Prokšová M, Bavlovic J, Klimentova J, Pejchal J, Štulík J. Tularemia - zoonosis carrying a potential risk of bioterrorism. Epidemiol Mikrobiol Imunol Cas Spolecnosti Epidemiol Mikrobiol Ceske Lek Spolecnosti JE Purkyne (2019) 68:82–9. PubMed

Keim P, Johansson A, Wagner DM. Molecular epidemiology, evolution, and ecology of francisella. Ann N Y Acad Sci (2007) 1105:30–66. doi: 10.1196/annals.1409.011 PubMed DOI

Ellis J, Oyston PCF, Green M, Titball RW. Tularemia. Clin Microbiol Rev (2002) 15:631–46. doi: 10.1128/CMR.15.4.631-646.2002 PubMed DOI PMC

Pechous RD, McCarthy TR, Zahrt TC. Working toward the Future: Insights into Francisella tularensis Pathogenesis and Vaccine Development. Microbiol Mol Biol Rev MMBR (2009) 73:684–711. doi: 10.1128/MMBR.00028-09 PubMed DOI PMC

Clemens DL, Lee B-Y, Horwitz MA. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun (2004) 72:3204–17. doi: 10.1128/IAI.72.6.3204-3217.2004 PubMed DOI PMC

Celli J, Zahrt TC. Mechanisms of francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med (2013) 3:a010314. doi: 10.1101/cshperspect.a010314 PubMed DOI PMC

Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta BBA - Mol Cell Res Ubiquitin-Proteasome System (2004) 1695:55–72. doi: 10.1016/j.bbamcr.2004.09.019 PubMed DOI

Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO J (2005) 24:3353–9. doi: 10.1038/sj.emboj.7600808 PubMed DOI PMC

Kulathu Y, Komander D. Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol (2012) 13:508–23. doi: 10.1038/nrm3394 PubMed DOI

Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. The ubiquitination system within bacterial host–pathogen interactions. Microorganisms (2021) 9:638. doi: 10.3390/microorganisms9030638 PubMed DOI PMC

Putzova D, Panda S, Härtlova A, Stulík J, Gekara NO. Subversion of innate immune responses by Francisella involves the disruption of TRAF3 and TRAF6 signalling complexes. Cell Microbiol (2017) 19:n/a–a. doi: 10.1111/cmi.12769 PubMed DOI

Akimana C, Al-Khodor S, Abu Kwaik Y. Host Factors Required for Modulation of Phagosome Biogenesis and Proliferation of Francisella tularensis within the Cytosol. PLoS One (2010) 5:e11025. doi: 10.1371/journal.pone.0011025 PubMed DOI PMC

Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. . HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest (2018) 128:4148–62. doi: 10.1172/JCI120406 PubMed DOI PMC

Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci (2019) 9:19. doi: 10.1186/s13578-019-0282-2 PubMed DOI PMC

Howitt J, Hill AF. Exosomes in the pathology of neurodegenerative diseases*. J Biol Chem (2016) 291:26589–97. doi: 10.1074/jbc.R116.757955 PubMed DOI PMC

Kishore R, Garikipati VNS, Gumpert A. Tiny shuttles for information transfer: exosomes in cardiac health and disease. J Cardiovasc Transl Res (2016) 9:169–75. doi: 10.1007/s12265-016-9682-4 PubMed DOI PMC

Salem KZ, Moschetta M, Sacco A, Imberti L, Rossi G, Ghobrial IM, et al. . Exosomes in tumor angiogenesis. In: Ribatti D, editor. Tumor Angiogenesis Assays: Methods and Protocols, Methods in Molecular Biology. New York, NY: Springer; (2016). p. 25–34. doi: 10.1007/978-1-4939-3999-2_3 PubMed DOI

Crenshaw BJ, Sims B, Matthews QL, Crenshaw BJ, Sims B, Matthews QL. Biological function of exosomes as diagnostic markers and therapeutic delivery vehicles in carcinogenesis and infectious diseases, nanomedicines. IntechOpen (2018). doi: 10.5772/intechopen.80225 DOI

Cypryk W, Nyman TA, Matikainen S. From inflammasome to exosome—Does extracellular vesicle secretion constitute an inflammasome-dependent immune response? Front Immunol (2018) 9:2188. doi: 10.3389/fimmu.2018.02188 PubMed DOI PMC

Zhong B, Liu X, Wang X, Chang SH, Liu X, Wang A, et al. . Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol (2012) 13:1110–7. doi: 10.1038/ni.2427 PubMed DOI PMC

Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. . Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles (2018) 7:1535750. doi: 10.1080/20013078.2018.1535750 PubMed DOI PMC

Kirimanjeswara GS, Olmos S, Bakshi CS, Metzger DW. Humoral and cell-mediated immunity to the intracellular pathogen Francisella tularensis. Immunol Rev (2008) 225:244–55. doi: 10.1111/j.1600-065X.2008.00689.x PubMed DOI PMC

Fabrik I, Link M, Putzova D, Plzakova L, Lubovska Z, Philimonenko V, et al. . The Early Dendritic Cell Signaling Induced by Virulent Francisella tularensis Strain Occurs in Phases and Involves the Activation of Extracellular Signal-Regulated Kinases (ERKs) and p38 In the Later Stage. Mol Cell Proteomics (2018) 17:81–94. doi: 10.1074/mcp.RA117.000160 PubMed DOI PMC

Bhattacharya U, Neizer-Ashun F, Mukherjee P, Bhattacharya R. When the chains do not break: the role of USP10 in physiology and pathology. Cell Death Dis (2020) 11:1–10. doi: 10.1038/s41419-020-03246-7 PubMed DOI PMC

Bomberger JM, Barnaby RL, Stanton BA. The deubiquitinating enzyme USP10 regulates the post-endocytic sorting of cystic fibrosis transmembrane conductance regulator in airway epithelial cells. J Biol Chem (2009) 284:18778–89. doi: 10.1074/jbc.M109.001685 PubMed DOI PMC

Bomberger JM, Ye S, MacEachran DP, Koeppen K, Barnaby RL, O’Toole GA, et al. . A pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system. PLoS Pathog (2011) 7:e1001325. doi: 10.1371/journal.ppat.1001325 PubMed DOI PMC

Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, et al. . Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell (2011) 147:223–34. doi: 10.1016/j.cell.2011.08.037 PubMed DOI PMC

Boutouja F, Brinkmeier R, Mastalski T, El Magraoui F, Platta HW. Regulation of the tumor-suppressor BECLIN 1 by distinct ubiquitination cascades. Int J Mol Sci (2017) 18:2541. doi: 10.3390/ijms18122541 PubMed DOI PMC

Jia R, Bonifacino JS. The ubiquitin isopeptidase USP10 deubiquitinates LC3B to increase LC3B levels and autophagic activity. J Biol Chem (2021) 296:100405. doi: 10.1016/j.jbc.2021.100405 PubMed DOI PMC

Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci USA (2006) 103:14578–83. doi: 10.1073/pnas.0601838103 PubMed DOI PMC

Hrstka R, Krocová Z, Cerný J, Vojtesek B, Macela A, Stulík J. Francisella tularensis strain LVS resides in MHC II-positive autophagic vacuoles in macrophages. Folia Microbiol (Praha) (2007) 52:631–6. doi: 10.1007/BF02932193 PubMed DOI

Cremer TJ, Amer A, Tridandapani S, Butchar JP. Francisella tularensis regulates autophagy-related host cell signaling pathways. Autophagy (2009) 5:125–8. doi: 10.4161/auto.5.1.7305 PubMed DOI PMC

Kelava I, Mihelčić M, Ožanič M, Marečić V, Knežević M, Ćurlin M, et al. . Atg5-deficient mice infected with francisella tularensis LVS demonstrate increased survival and less severe pathology in internal organs. Microorganisms (2020) 8:1531. doi: 10.3390/microorganisms8101531 PubMed DOI PMC

Wang W, Huang X, Xin H-B, Fu M, Xue A, Wu Z-H. TRAF family member-associated NF-κB activator (TANK) inhibits genotoxic nuclear factor κB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. J Biol Chem (2015) 290:13372–85. doi: 10.1074/jbc.M115.643767 PubMed DOI PMC

Lam YA, Xu W, DeMartino GN, Cohen RE. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature (1997) 385:737–40. doi: 10.1038/385737a0 PubMed DOI

Lee Y-TC, Chang C-Y, Chen S-Y, Pan Y-R, Ho M-R, Hsu S-TD. Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome. Sci Rep (2017) 7:45174. doi: 10.1038/srep45174 PubMed DOI PMC

Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK, et al. . Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol (2006) 8:994–1002. doi: 10.1038/ncb1460 PubMed DOI

Mahanic CS, Budhavarapu V, Graves JD, Li G, Lin W-C. Regulation of E2 promoter binding factor 1 (E2F1) transcriptional activity through a deubiquitinating enzyme, UCH37. J Biol Chem (2015) 290:26508–22. doi: 10.1074/jbc.M115.659425 PubMed DOI PMC

Ramachandran A, Kumar B, Waris G, Everly D. Deubiquitination and activation of the NLRP3 inflammasome by UCHL5 in HCV-infected cells. Microbiol Spectr (2021) 9:e0075521. doi: 10.1128/Spectrum.00755-21 PubMed DOI PMC

Kummari E, Alugubelly N, Hsu C-Y, Dong B, Nanduri B, Edelmann MJ. Activity-based proteomic profiling of deubiquitinating enzymes in salmonella-infected macrophages leads to identification of putative function of UCH-L5 in inflammasome regulation. PLoS One (2015) 10:e0135531. doi: 10.1371/journal.pone.0135531 PubMed DOI PMC

Qu Z, Zhou J, Zhou Y, Xie Y, Jiang Y, Wu J, et al. . Mycobacterial EST12 activates a RACK1–NLRP3–gasdermin D pyroptosis–IL-1β immune pathway. Sci Adv (2020) 6:eaba4733. doi: 10.1126/sciadv.aba4733 PubMed DOI PMC

Fernandes-Alnemri T, Yu J-W, Juliana C, Solorzano L, Kang S, Wu J, et al. . The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol (2010) 11:385–93. doi: 10.1038/ni.1859 PubMed DOI PMC

Sharma BR, Karki R, Kanneganti T-D. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur J Immunol (2019) 49:1998–2011. doi: 10.1002/eji.201848070 PubMed DOI PMC

Suresh RV, Bradley EW, Higgs M, Russo VC, Alqahtani M, Huang W, et al. . Nlrp3 increases the host’s susceptibility to tularemia. Front Microbiol (2021) 12:725572. doi: 10.3389/fmicb.2021.725572 PubMed DOI PMC

Zhong B, Liu X, Wang X, Liu X, Li H, Darnay BG, et al. . Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor protein TRAF3. Sci Signal (2013) 6:ra35–5. doi: 10.1126/scisignal.2003708 PubMed DOI PMC

Wang X-M, Yang C, Zhao Y, Xu Z-G, Yang W, Wang P, et al. . The deubiquitinase USP25 supports colonic inflammation and bacterial infection and promotes colorectal cancer. Nat Cancer (2020) 1:811–25. doi: 10.1038/s43018-020-0089-4 PubMed DOI

Zhu W, Zheng D, Wang D, Yang L, Zhao C, Huang X. Emerging roles of ubiquitin-specific protease 25 in diseases. Front Cell Dev Biol (2021) 9:698751. doi: 10.3389/fcell.2021.698751 PubMed DOI PMC

Chen R, Pang X, Li L, Zeng Z, Chen M, Zhang S. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Cell Death Dis (2022) 13:1–11. doi: 10.1038/s41419-022-04566-6 PubMed DOI PMC

Long C, Lai Y, Li J, Huang J, Zou C. LPS promotes HBO1 stability via USP25 to modulate inflammatory gene transcription in THP-1 cells. Biochim Biophys Acta Gene Regul Mech (2018) 1861:773–82. doi: 10.1016/j.bbagrm.2018.08.001 PubMed DOI PMC

Baghban N, Kodam SP, Ullah M. Role of CD9 sensing, AI, and exosomes in cellular communication of cancer. Int J Stem Cell Res Ther (2023) 10:79. doi: 10.23937/2469-570X/1410079 PubMed DOI PMC

Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo . Blood (2007) 110:3234–44. doi: 10.1182/blood-2007-03-079152 PubMed DOI PMC

Buschow SI, Liefhebber JMP, Wubbolts R, Stoorvogel W. Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis (2005) 35:398–403. doi: 10.1016/j.bcmd.2005.08.005 PubMed DOI

Giri PK, Kruh NA, Dobos KM, Schorey JS. Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics (2010) 10:3190–202. doi: 10.1002/pmic.200900840 PubMed DOI PMC

Smith VL, Jackson L, Schorey JS. Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J Immunol Baltim Md 1950 (2015) 195:2722–30. doi: 10.4049/jimmunol.1403186 PubMed DOI PMC

Hui WW, Hercik K, Belsare S, Alugubelly N, Clapp B, Rinaldi C, et al. . Salmonella enterica serovar typhimurium alters the extracellular proteome of macrophages and leads to the production of proinflammatory exosomes. Infect Immun (2018) 86:e00386–17. doi: 10.1128/IAI.00386-17 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Breaking the cellular defense: the role of autophagy evasion in Francisella virulence

. 2024 ; 14 () : 1523597. [epub] 20241224

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...