The Ubiquitination System within Bacterial Host-Pathogen Interactions

. 2021 Mar 19 ; 9 (3) : . [epub] 20210319

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33808578

Grantová podpora
SV/FVZ201802 Ministerstvo Školství, Mládeže a Tělovýchovy
DZRO-ZHN-2017 Ministerstvo Obrany České Republiky

Odkazy

PubMed 33808578
PubMed Central PMC8003559
DOI 10.3390/microorganisms9030638
PII: microorganisms9030638
Knihovny.cz E-zdroje

Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.

Zobrazit více v PubMed

Pickart C.M., Eddins M.J. Ubiquitin: Structures, Functions, Mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 2004;1695:55–72. doi: 10.1016/j.bbamcr.2004.09.019. PubMed DOI

Nijman S.M.B., Luna-Vargas M.P.A., Velds A., Brummelkamp T.R., Dirac A.M.G., Sixma T.K., Bernards R. A Genomic and Functional Inventory of Deubiquitinating Enzymes. Cell. 2005;123:773–786. doi: 10.1016/j.cell.2005.11.007. PubMed DOI

Haglund K., Dikic I. Ubiquitylation and Cell Signaling. EMBO J. 2005;24:3353–3359. doi: 10.1038/sj.emboj.7600808. PubMed DOI PMC

Komander D., Rape M. The Ubiquitin Code. Annu. Rev. Biochem. 2012;81:203–229. doi: 10.1146/annurev-biochem-060310-170328. PubMed DOI

Park C.-W., Ryu K.-Y. Cellular Ubiquitin Pool Dynamics and Homeostasis. BMB Rep. 2014;47:475–482. doi: 10.5483/BMBRep.2014.47.9.128. PubMed DOI PMC

Thrower J.S., Hoffman L., Rechsteiner M., Pickart C.M. Recognition of the Polyubiquitin Proteolytic Signal. EMBO J. 2000;19:94–102. doi: 10.1093/emboj/19.1.94. PubMed DOI PMC

Xu P., Duong D.M., Seyfried N.T., Cheng D., Xie Y., Robert J., Rush J., Hochstrasser M., Finley D., Peng J. Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation. Cell. 2009;137:133–145. doi: 10.1016/j.cell.2009.01.041. PubMed DOI PMC

Huang T.T., D’Andrea A.D. Regulation of DNA Repair by Ubiquitylation. Nat. Rev. Mol. Cell Biol. 2006;7:323–334. doi: 10.1038/nrm1908. PubMed DOI

Yuan W.-C., Lee Y.-R., Lin S.-Y., Chang L.-Y., Tan Y.P., Hung C.-C., Kuo J.-C., Liu C.-H., Lin M.-Y., Xu M., et al. K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. Mol. Cell. 2014;54:586–600. doi: 10.1016/j.molcel.2014.03.035. PubMed DOI

Elia A.E.H., Boardman A.P., Wang D.C., Huttlin E.L., Everley R.A., Dephoure N., Zhou C., Koren I., Gygi S.P., Elledge S.J. Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response. Mol. Cell. 2015;59:867–881. doi: 10.1016/j.molcel.2015.05.006. PubMed DOI PMC

Morris J.R., Solomon E. BRCA1: BARD1 Induces the Formation of Conjugated Ubiquitin Structures, Dependent on K6 of Ubiquitin, in Cells during DNA Replication and Repair. Hum. Mol. Genet. 2004;13:807–817. doi: 10.1093/hmg/ddh095. PubMed DOI

Manzanillo P.S., Ayres J.S., Watson R.O., Collins A.C., Souza G., Rae C.S., Schneider D.S., Nakamura K., Shiloh M.U., Cox J.S. The Ubiquitin Ligase Parkin Mediates Resistance to Intracellular Pathogens. Nature. 2013;501:512–516. doi: 10.1038/nature12566. PubMed DOI PMC

Ordureau A., Sarraf S.A., Duda D.M., Heo J.-M., Jedrychowski M.P., Sviderskiy V.O., Olszewski J.L., Koerber J.T., Xie T., Beausoleil S.A., et al. Quantitative Proteomics Reveal a Feedforward Mechanism for Mitochondrial PARKIN Translocation and Ubiquitin Chain Synthesis. Mol. Cell. 2014;56:360–375. doi: 10.1016/j.molcel.2014.09.007. PubMed DOI PMC

Besche H.C., Sha Z., Kukushkin N.V., Peth A., Hock E.-M., Kim W., Gygi S., Gutierrez J.A., Liao H., Dick L., et al. Autoubiquitination of the 26S Proteasome on Rpn13 Regulates Breakdown of Ubiquitin Conjugates. EMBO J. 2014;33:1159–1176. doi: 10.1002/embj.201386906. PubMed DOI PMC

Kim W., Bennett E.J., Huttlin E.L., Guo A., Li J., Possemato A., Sowa M.E., Rad R., Rush J., Comb M.J., et al. Systematic and Quantitative Assessment of the Ubiquitin-Modified Proteome. Mol. Cell. 2011;44:325–340. doi: 10.1016/j.molcel.2011.08.025. PubMed DOI PMC

Jin J., Xie X., Xiao Y., Hu H., Zou Q., Cheng X., Sun S.-C. Epigenetic Regulation of the Expression of Il12 and Il23 and Autoimmune Inflammation by the Deubiquitinase Trabid. Nat. Immunol. 2016;17:259–268. doi: 10.1038/ni.3347. PubMed DOI PMC

Tran H., Hamada F., Schwarz-Romond T., Bienz M. Trabid, a New Positive Regulator of Wnt-Induced Transcription with Preference for Binding and Cleaving K63-Linked Ubiquitin Chains. Genes Dev. 2008;22:528–542. doi: 10.1101/gad.463208. PubMed DOI PMC

Tokunaga F., Sakata S., Saeki Y., Satomi Y., Kirisako T., Kamei K., Nakagawa T., Kato M., Murata S., Yamaoka S., et al. Involvement of Linear Polyubiquitylation of NEMO in NF-KappaB Activation. Nat. Cell Biol. 2009;11:123–132. doi: 10.1038/ncb1821. PubMed DOI

Mevissen T.E.T., Komander D. Mechanisms of Deubiquitinase Specificity and Regulation. Annu. Rev. Biochem. 2017;86:159–192. doi: 10.1146/annurev-biochem-061516-044916. PubMed DOI

Johnson E.S. Protein Modification by SUMO. Annu. Rev. Biochem. 2004;73:355–382. doi: 10.1146/annurev.biochem.73.011303.074118. PubMed DOI

Ribet D., Cossart P. Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Trends Cell Biol. 2018;28:926–940. doi: 10.1016/j.tcb.2018.07.005. PubMed DOI PMC

Panasenko O.O. Identification of Ubiquitinated Proteins. Mater. Methods. 2014;4:827. doi: 10.13070/mm.en.4.827. DOI

Mulder M.P.C., Witting K., Berlin I., Pruneda J.N., Wu K.-P., Chang J.-G., Merkx R., Bialas J., Groettrup M., Vertegaal A.C.O., et al. A Cascading Activity-Based Probe Sequentially Targets E1–E2–E3 Ubiquitin Enzymes. Nat. Chem. Biol. 2016;12:523–530. doi: 10.1038/nchembio.2084. PubMed DOI PMC

Neutzner M., Neutzner A. Enzymes of Ubiquitination and Deubiquitination. Essays Biochem. 2012;52:37–50. doi: 10.1042/bse0520037. PubMed DOI

Ye Y., Rape M. Building Ubiquitin Chains: E2 Enzymes at Work. Nat. Rev. Mol. Cell Biol. 2009;10:755–764. doi: 10.1038/nrm2780. PubMed DOI PMC

Ebner P., Versteeg G.A., Ikeda F. Ubiquitin Enzymes in the Regulation of Immune Responses. Crit. Rev. Biochem. Mol. Biol. 2017;52:425–460. doi: 10.1080/10409238.2017.1325829. PubMed DOI PMC

Metzger M.B., Pruneda J.N., Klevit R.E., Weissman A.M. RING-Type E3 Ligases: Master Manipulators of E2 Ubiquitin-Conjugating Enzymes and Ubiquitination. Biochim. Biophys. Acta. 2014;1843:47–60. doi: 10.1016/j.bbamcr.2013.05.026. PubMed DOI PMC

Metzger M.B., Hristova V.A., Weissman A.M. HECT and RING Finger Families of E3 Ubiquitin Ligases at a Glance. J. Cell Sci. 2012;125:531–537. doi: 10.1242/jcs.091777. PubMed DOI PMC

Scheffner M., Kumar S. Mammalian HECT Ubiquitin-Protein Ligases: Biological and Pathophysiological Aspects. Biochim. Biophys. Acta BBA Mol. Cell Res. 2014;1843:61–74. doi: 10.1016/j.bbamcr.2013.03.024. PubMed DOI

Smit J.J., Sixma T.K. “Ubiquitylation: Mechanism and Functions” Review Series: RBR E3-Ligases at Work. EMBO Rep. 2014;15:142–154. doi: 10.1002/embr.201338166. PubMed DOI PMC

Spratt D.E., Walden H., Shaw G.S. RBR E3 Ubiquitin Ligases: New Structures, New Insights, New Questions. Biochem. J. 2014;458:421–437. doi: 10.1042/BJ20140006. PubMed DOI PMC

Lechtenberg B.C., Rajput A., Sanishvili R., Dobaczewska M.K., Ware C.F., Mace P.D., Riedl S.J. Structure of a HOIP/E2~ubiquitin Complex Reveals RBR E3 Ligase Mechanism and Regulation. Nature. 2016;529:546–550. doi: 10.1038/nature16511. PubMed DOI PMC

Wilkinson K.D. DUBs at a Glance. J. Cell Sci. 2009;122:2325–2329. doi: 10.1242/jcs.041046. PubMed DOI PMC

Abdul Rehman S.A., Kristariyanto Y.A., Choi S.-Y., Nkosi P.J., Weidlich S., Labib K., Hofmann K., Kulathu Y. MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Mol. Cell. 2016;63:146–155. doi: 10.1016/j.molcel.2016.05.009. PubMed DOI PMC

Kwasna D., Abdul Rehman S.A., Natarajan J., Matthews S., Madden R., De Cesare V., Weidlich S., Virdee S., Ahel I., Gibbs-Seymour I., et al. Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability. Mol. Cell. 2018;70:150–164.e6. doi: 10.1016/j.molcel.2018.02.023. PubMed DOI PMC

Komander D., Clague M.J., Urbé S. Breaking the Chains: Structure and Function of the Deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009;10:550–563. doi: 10.1038/nrm2731. PubMed DOI

Hu H., Sun S.-C. Ubiquitin Signaling in Immune Responses. Cell Res. 2016;26:457–483. doi: 10.1038/cr.2016.40. PubMed DOI PMC

Kawai T., Akira S. Toll-Like Receptor and RIG-1-Like Receptor Signaling. [(accessed on 23 August 2019)]; Available online: https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1196/annals.1443.020. DOI

Mogensen T.H. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin. Microbiol. Rev. 2009;22:240–273. doi: 10.1128/CMR.00046-08. PubMed DOI PMC

Zinngrebe J., Montinaro A., Peltzer N., Walczak H. Ubiquitin in the Immune System. EMBO Rep. 2014;15:28–45. doi: 10.1002/embr.201338025. PubMed DOI PMC

Varfolomeev E., Goncharov T., Fedorova A.V., Dynek J.N., Zobel K., Deshayes K., Fairbrother W.J., Vucic D. C-IAP1 and c-IAP2 Are Critical Mediators of Tumor Necrosis Factor α (TNFα)-Induced NF-ΚB Activation. J. Biol. Chem. 2008;283:24295–24299. doi: 10.1074/jbc.C800128200. PubMed DOI PMC

Dynek J.N., Goncharov T., Dueber E.C., Fedorova A.V., Izrael-Tomasevic A., Phu L., Helgason E., Fairbrother W.J., Deshayes K., Kirkpatrick D.S., et al. C-IAP1 and UbcH5 Promote K11-Linked Polyubiquitination of RIP1 in TNF Signalling. EMBO J. 2010;29:4198–4209. doi: 10.1038/emboj.2010.300. PubMed DOI PMC

Varfolomeev E., Goncharov T., Maecker H., Zobel K., Kömüves L.G., Deshayes K., Vucic D. Cellular Inhibitors of Apoptosis Are Global Regulators of NF-ΚB and MAPK Activation by Members of the TNF Family of Receptors. Sci. Signal. 2012;5:ra22. doi: 10.1126/scisignal.2001878. PubMed DOI

Keusekotten K., Elliott P.R., Glockner L., Fiil B.K., Damgaard R.B., Kulathu Y., Wauer T., Hospenthal M.K., Gyrd-Hansen M., Krappmann D., et al. OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell. 2013;153:1312–1326. doi: 10.1016/j.cell.2013.05.014. PubMed DOI PMC

Wertz I.E., O’Rourke K.M., Zhou H., Eby M., Aravind L., Seshagiri S., Wu P., Wiesmann C., Baker R., Boone D.L., et al. De-Ubiquitination and Ubiquitin Ligase Domains of A20 Downregulate NF-ΚB Signalling. Nature. 2004;430:694–699. doi: 10.1038/nature02794. PubMed DOI

Conze D.B., Wu C.-J., Thomas J.A., Landstrom A., Ashwell J.D. Lys63-Linked Polyubiquitination of IRAK-1 Is Required for Interleukin-1 Receptor- and Toll-like Receptor-Mediated NF-KappaB Activation. Mol. Cell. Biol. 2008;28:3538–3547. doi: 10.1128/MCB.02098-07. PubMed DOI PMC

Philpott D.J., Sorbara M.T., Robertson S.J., Croitoru K., Girardin S.E. NOD Proteins: Regulators of Inflammation in Health and Disease. Nat. Rev. Immunol. 2014;14:9–23. doi: 10.1038/nri3565. PubMed DOI

Hitotsumatsu O., Ahmad R.-C., Tavares R., Wang M., Philpott D., Turer E.E., Lee B.L., Shiffin N., Advincula R., Malynn B.A., et al. The Ubiquitin-Editing Enzyme A20 Restricts Nucleotide-Binding Oligomerization Domain Containing 2-Triggered Signals. Immunity. 2008;28:381–390. doi: 10.1016/j.immuni.2008.02.002. PubMed DOI PMC

McDonald D.R., Levy O. 3—Innate Immunity. In: Rich R.R., Fleisher T.A., Shearer W.T., Schroeder H.W., Frew A.J., Weyand C.M., editors. Clinical Immunology. 5th ed. Elsevier; London, UK: 2019. pp. 39–53.

Xiao Y., Huang Q., Wu Z., Chen W. Roles of Protein Ubiquitination in Inflammatory Bowel Disease. Immunobiology. 2020;225:152026. doi: 10.1016/j.imbio.2020.152026. PubMed DOI

Taylor C., Jobin C. Ubiquitin Protein Modification and Signal Transduction: Implications for Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2005;11:1097–1107. doi: 10.1097/01.MIB.0000187577.26043.e5. PubMed DOI

Chatzidaki-Livanis M., Coyne M.J., Roelofs K.G., Gentyala R.R., Caldwell J.M., Comstock L.E. Gut Symbiont Bacteroides Fragilis Secretes a Eukaryotic-Like Ubiquitin Protein That Mediates Intraspecies Antagonism. mBio. 2017;8:e01902-17. doi: 10.1128/mBio.01902-17. PubMed DOI PMC

Rytkönen A., Holden D.W. Bacterial Interference of Ubiquitination and Deubiquitination. Cell Host Microbe. 2007;1:13–22. doi: 10.1016/j.chom.2007.02.003. PubMed DOI PMC

Pruneda J.N., Durkin C.H., Geurink P.P., Ovaa H., Santhanam B., Holden D.W., Komander D. The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases. Mol. Cell. 2016;63:261–276. doi: 10.1016/j.molcel.2016.06.015. PubMed DOI PMC

Narayanan L.A., Edelmann M.J. Ubiquitination as an Efficient Molecular Strategy Employed in Salmonella Infection. Front. Immunol. 2014;5:558. doi: 10.3389/fimmu.2014.00558. PubMed DOI PMC

Ronau J.A., Beckmann J.F., Hochstrasser M. Substrate Specificity of the Ubiquitin and Ubl Proteases. Cell Res. 2016;26:441–456. doi: 10.1038/cr.2016.38. PubMed DOI PMC

Edelmann M.J., Kramer H.B., Altun M., Kessler B.M. Post-Translational Modification of the Deubiquitinating Enzyme Otubain 1 Modulates Active RhoA Levels and Susceptibility to Yersinia Invasion. FEBS J. 2010;277:2515–2530. doi: 10.1111/j.1742-4658.2010.07665.x. PubMed DOI

Mukherjee S., Keitany G., Li Y., Wang Y., Ball H.L., Goldsmith E.J., Orth K. Yersinia YopJ Acetylates and Inhibits Kinase Activation by Blocking Phosphorylation. Science. 2006;312:1211–1214. doi: 10.1126/science.1126867. PubMed DOI

Zhou H., Monack D.M., Kayagaki N., Wertz I., Yin J., Wolf B., Dixit V.M. Yersinia Virulence Factor YopJ Acts as a Deubiquitinase to Inhibit NF-ΚB Activation. J. Exp. Med. 2005;202:1327–1332. doi: 10.1084/jem.20051194. PubMed DOI PMC

Zhang Y., Higashide W.M., McCormick B.A., Chen J., Zhou D. The Inflammation-Associated Salmonella SopA Is a HECT-like E3 Ubiquitin Ligase. Mol. Microbiol. 2006;62:786–793. doi: 10.1111/j.1365-2958.2006.05407.x. PubMed DOI

Negrate G.L., Faustin B., Welsh K., Loeffler M., Krajewska M., Hasegawa P., Mukherjee S., Orth K., Krajewski S., Godzik A., et al. Salmonella Secreted Factor L Deubiquitinase of Salmonella Typhimurium Inhibits NF-ΚB, Suppresses IκBα Ubiquitination and Modulates Innate Immune Responses. J. Immunol. 2008;180:5045–5056. doi: 10.4049/jimmunol.180.7.5045. PubMed DOI

Mesquita F.S., Thomas M., Sachse M., Santos A.J.M., Figueira R., Holden D.W. The Salmonella Deubiquitinase SseL Inhibits Selective Autophagy of Cytosolic Aggregates. PLoS Pathog. 2012;8:e1002743. doi: 10.1371/journal.ppat.1002743. PubMed DOI PMC

Ye Z., Petrof E.O., Boone D., Claud E.C., Sun J. Salmonella Effector AvrA Regulation of Colonic Epithelial Cell Inflammation by Deubiquitination. Am. J. Pathol. 2007;171:882–892. doi: 10.2353/ajpath.2007.070220. PubMed DOI PMC

Sirisaengtaksin N., O’Donoghue E.J., Jabbari S., Roe A.J., Krachler A.M. Bacterial Outer Membrane Vesicles Provide an Alternative Pathway for Trafficking of Type III Secreted Effectors into Epithelial Cells. bioRxiv. 2018:415794. doi: 10.1101/415794. PubMed DOI PMC

Bhogaraju S., Kalayil S., Liu Y., Bonn F., Colby T., Matic I., Dikic I. Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell. 2016;167:1636–1649.e13. doi: 10.1016/j.cell.2016.11.019. PubMed DOI

Shin D., Mukherjee R., Liu Y., Gonzalez A., Bonn F., Liu Y., Rogov V.V., Heinz M., Stolz A., Hummer G., et al. Regulation of Phosphoribosyl-Linked Serine Ubiquitination by Deubiquitinases DupA and DupB. Mol. Cell. 2020;77:164–179.e6. doi: 10.1016/j.molcel.2019.10.019. PubMed DOI PMC

Sheedlo M.J., Qiu J., Tan Y., Paul L.N., Luo Z.-Q., Das C. Structural Basis of Substrate Recognition by a Bacterial Deubiquitinase Important for Dynamics of Phagosome Ubiquitination. Proc. Natl. Acad. Sci. USA. 2015;112:15090–15095. doi: 10.1073/pnas.1514568112. PubMed DOI PMC

Kubori T., Kitao T., Ando H., Nagai H. LotA, a Legionella Deubiquitinase, Has Dual Catalytic Activity and Contributes to Intracellular Growth. Cell. Microbiol. 2018;20:e12840. doi: 10.1111/cmi.12840. PubMed DOI

Wan M., Wang X., Huang C., Xu D., Wang Z., Zhou Y., Zhu Y. A Bacterial Effector Deubiquitinase Specifically Hydrolyses Linear Ubiquitin Chains to Inhibit Host Inflammatory Signalling. Nat. Microbiol. 2019;4:1282–1293. doi: 10.1038/s41564-019-0454-1. PubMed DOI

Kubori T., Bui X.T., Hubber A., Nagai H. Legionella RavZ Plays a Role in Preventing Ubiquitin Recruitment to Bacteria-Containing Vacuoles. Front. Cell. Infect. Microbiol. 2017;7:384. doi: 10.3389/fcimb.2017.00384. PubMed DOI PMC

Nakagawa I. Streptococcus Pyogenes Escapes from Autophagy. Cell Host Microbe. 2013;14:604–606. doi: 10.1016/j.chom.2013.11.012. PubMed DOI

Baxt L.A., Goldberg M.B. Host and Bacterial Proteins That Repress Recruitment of LC3 to Shigella Early during Infection. PLoS ONE. 2014;9:e94653. doi: 10.1371/journal.pone.0094653. PubMed DOI PMC

Kim D.W., Lenzen G., Page A.-L., Legrain P., Sansonetti P.J., Parsot C. The Shigella Flexneri Effector OspG Interferes with Innate Immune Responses by Targeting Ubiquitin-Conjugating Enzymes. Proc. Natl. Acad. Sci. USA. 2005;102:14046–14051. doi: 10.1073/pnas.0504466102. PubMed DOI PMC

Mostowy S., Sancho-Shimizu V., Hamon M.A., Simeone R., Brosch R., Johansen T., Cossart P. P62 and NDP52 Proteins Target Intracytosolic Shigella and Listeria to Different Autophagy Pathways. J. Biol. Chem. 2011;286:26987–26995. doi: 10.1074/jbc.M111.223610. PubMed DOI PMC

Okuda J., Toyotome T., Kataoka N., Ohno M., Abe H., Shimura Y., Seyedarabi A., Pickersgill R., Sasakawa C. Shigella Effector IpaH9.8 Binds to a Splicing Factor U2AF(35) to Modulate Host Immune Responses. Biochem. Biophys. Res. Commun. 2005;333:531–539. doi: 10.1016/j.bbrc.2005.05.145. PubMed DOI

Catic A., Misaghi S., Korbel G.A., Ploegh H.L. ElaD, a Deubiquitinating Protease Expressed by E. Coli. PLoS ONE. 2007;2:e381. doi: 10.1371/journal.pone.0000381. PubMed DOI PMC

Yoshikawa Y., Ogawa M., Hain T., Yoshida M., Fukumatsu M., Kim M., Mimuro H., Nakagawa I., Yanagawa T., Ishii T., et al. Listeria Monocytogenes ActA-Mediated Escape from Autophagic Recognition. Nat. Cell Biol. 2009;11:1233–1240. doi: 10.1038/ncb1967. PubMed DOI

Dortet L., Mostowy S., Louaka A.S., Gouin E., Nahori M.-A., Wiemer E.A.C., Dussurget O., Cossart P. Recruitment of the Major Vault Protein by InlK: A Listeria Monocytogenes Strategy to Avoid Autophagy. PLoS Pathog. 2011;7:e1002168. doi: 10.1371/annotation/a70544fc-6d8b-4549-921a-9e86557b0ffc. PubMed DOI PMC

Le Negrate G., Krieg A., Faustin B., Loeffler M., Godzik A., Krajewski S., Reed J.C. ChlaDub1 of Chlamydia Trachomatis Suppresses NF-KappaB Activation and Inhibits IkappaBalpha Ubiquitination and Degradation. Cell. Microbiol. 2008;10:1879–1892. doi: 10.1111/j.1462-5822.2008.01178.x. PubMed DOI

Furtado A.R., Essid M., Perrinet S., Balañá M.E., Yoder N., Dehoux P., Subtil A. The Chlamydial OTU Domain-Containing Protein ChlaOTU Is an Early Type III Secretion Effector Targeting Ubiquitin and NDP52. Cell. Microbiol. 2013;15:2064–2079. doi: 10.1111/cmi.12171. PubMed DOI

Makarova K.S., Aravind L., Koonin E.V. A Novel Superfamily of Predicted Cysteine Proteases from Eukaryotes, Viruses and Chlamydia Pneumoniae. Trends Biochem. Sci. 2000;25:50–52. doi: 10.1016/S0968-0004(99)01530-3. PubMed DOI

Laskowski-Arce M.A., Orth K. The Elusive Activity of the Yersinia Protein Kinase A Kinase Domain Is Revealed. Trends Microbiol. 2007;15:437–440. doi: 10.1016/j.tim.2007.09.002. PubMed DOI

Bassères E., Coppotelli G., Pfirrmann T., Andersen J.B., Masucci M., Frisan T. The Ubiquitin C-Terminal Hydrolase UCH-L1 Promotes Bacterial Invasion by Altering the Dynamics of the Actin Cytoskeleton. Cell. Microbiol. 2010;12:1622–1633. doi: 10.1111/j.1462-5822.2010.01495.x. PubMed DOI

Kummari E., Alugubelly N., Hsu C.-Y., Dong B., Nanduri B., Edelmann M.J. Activity-Based Proteomic Profiling of Deubiquitinating Enzymes in Salmonella-Infected Macrophages Leads to Identification of Putative Function of UCH-L5 in Inflammasome Regulation. PLoS ONE. 2015;10:e0135531. doi: 10.1371/journal.pone.0135531. PubMed DOI PMC

Coombs N., Sompallae R., Olbermann P., Gastaldello S., Göppel D., Masucci M.G., Josenhans C. Helicobacter Pylori Affects the Cellular Deubiquitinase USP7 and Ubiquitin-Regulated Components TRAF6 and the Tumour Suppressor P53. Int. J. Med. Microbiol. 2011;301:213–224. doi: 10.1016/j.ijmm.2010.09.004. PubMed DOI

Ellis J., Oyston P.C.F., Green M., Titball R.W. Tularemia. Clin. Microbiol. Rev. 2002;15:631–646. doi: 10.1128/CMR.15.4.631-646.2002. PubMed DOI PMC

Pechous R.D., McCarthy T.R., Zahrt T.C. Working toward the Future: Insights into Francisella Tularensis Pathogenesis and Vaccine Development. Microbiol. Mol. Biol. Rev. 2009;73:684–711. doi: 10.1128/MMBR.00028-09. PubMed DOI PMC

Putzova D., Panda S., Härtlova A., Stulík J., Gekara N.O. Subversion of Innate Immune Responses by Francisella Involves the Disruption of TRAF3 and TRAF6 Signalling Complexes. Cell. Microbiol. 2017;19:e12769. doi: 10.1111/cmi.12769. PubMed DOI

Eshraghi A., Kim J., Walls A.C., Ledvina H.E., Miller C.N., Ramsey K.M., Whitney J.C., Radey M.C., Peterson S.B., Ruhland B.R., et al. Secreted Effectors Encoded within and Outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe. 2016;20:573–583. doi: 10.1016/j.chom.2016.10.008. PubMed DOI PMC

Li F., Li Y., Liang H., Xu T., Kong Y., Huang M., Xiao J., Chen X., Xia H., Wu Y., et al. HECTD3 Mediates TRAF3 Polyubiquitination and Type I Interferon Induction during Bacterial Infection. J. Clin. Investig. 2018;128:4148–4162. doi: 10.1172/JCI120406. PubMed DOI PMC

Akimana C., Al-Khodor S., Abu Kwaik Y. Host Factors Required for Modulation of Phagosome Biogenesis and Proliferation of Francisella Tularensis within the Cytosol. PLoS ONE. 2010;5:e11025. doi: 10.1371/journal.pone.0011025. PubMed DOI PMC

Guo Y., Li L., Xu T., Guo X., Wang C., Li Y., Yang Y., Yang D., Sun B., Zhao X., et al. HUWE1 Mediates Inflammasome Activation and Promotes Host Defense against Bacterial Infection. J. Clin. Investig. 2020;130:6301–6316. doi: 10.1172/JCI138234. PubMed DOI PMC

Woolard M.D., Wilson J.E., Hensley L.L., Jania L.A., Kawula T.H., Drake J.R., Frelinger J.A. Francisella Tularensis-Infected Macrophages Release Prostaglandin E2 That Blocks T Cell Proliferation and Promotes a Th2-like Response. J. Immunol. 2007;178:2065–2074. doi: 10.4049/jimmunol.178.4.2065. PubMed DOI

Wilson J.E., Katkere B., Drake J.R. Francisella Tularensis Induces Ubiquitin-Dependent Major Histocompatibility Complex Class II Degradation in Activated Macrophages. Infect. Immun. 2009;77:4953–4965. doi: 10.1128/IAI.00844-09. PubMed DOI PMC

Hunt D., Wilson J.E., Weih K.A., Ishido S., Harton J.A., Roche P.A., Drake J.R. Francisella Tularensis Elicits IL-10 via a PGE2-Inducible Factor, to Drive Macrophage MARCH1 Expression and Class II Down-Regulation. PLoS ONE. 2012;7:e37330. doi: 10.1371/journal.pone.0037330. PubMed DOI PMC

Casabona M.G., Buchanan G., Zoltner M., Harkins C.P., Holden M.T.G., Palmer T. Functional Analysis of the EsaB Component of the Staphylococcus aureus Type VII Secretion System. Microbiology. 2017;163:1851–1863. doi: 10.1099/mic.0.000580. PubMed DOI PMC

Warne B., Harkins C.P., Harris S.R., Vatsiou A., Stanley-Wall N., Parkhill J., Peacock S.J., Palmer T., Holden M.T.G. The Ess/Type VII Secretion System of Staphylococcus aureus Shows Unexpected Genetic Diversity. BMC Genomics. 2016;17:222. doi: 10.1186/s12864-016-2426-7. PubMed DOI PMC

Villeneuve N.F., Lau A., Zhang D.D. Regulation of the Nrf2–Keap1 Antioxidant Response by the Ubiquitin Proteasome System: An Insight into Cullin-Ring Ubiquitin Ligases. Antioxid. Redox Signal. 2010;13:1699–1712. doi: 10.1089/ars.2010.3211. PubMed DOI PMC

Biswas C., Shah N., Muthu M., La P., Fernando A.P., Sengupta S., Yang G., Dennery P.A. Nuclear Heme Oxygenase-1 (HO-1) Modulates Subcellular Distribution and Activation of Nrf2, Impacting Metabolic and Anti-Oxidant Defenses. J. Biol. Chem. 2014;289:26882–26894. doi: 10.1074/jbc.M114.567685. PubMed DOI PMC

Chung S.W., Hall S., Perrella M.A. Role of Heme Oxygenase-1 in Microbial Host Defense. Cell. Microbiol. 2009;11:199–207. doi: 10.1111/j.1462-5822.2008.01261.x. PubMed DOI PMC

Scharn C.R., Collins A.C., Nair V.R., Stamm C.E., Marciano D.K., Graviss E.A., Shiloh M.U. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during M. Tuberculosis Infection. J. Immunol. 2016;196:4641–4649. doi: 10.4049/jimmunol.1500434. PubMed DOI PMC

Lee C. Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. Oxid. Med. Cell. Longev. 2018;2018:6208067. doi: 10.1155/2018/6208067. PubMed DOI PMC

De Duve C., Wattiaux R. Functions of Lysosomes. Annu. Rev. Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. PubMed DOI

Klionsky D.J. Autophagy Revisited: A Conversation with Christian de Duve. Autophagy. 2008;4:740–743. doi: 10.4161/auto.6398. PubMed DOI

Dikic I., Elazar Z. Mechanism and Medical Implications of Mammalian Autophagy. Nat. Rev. Mol. Cell Biol. 2018;19:349–364. doi: 10.1038/s41580-018-0003-4. PubMed DOI

Jiang P., Mizushima N. Autophagy and Human Diseases. Cell Res. 2014;24:69–79. doi: 10.1038/cr.2013.161. PubMed DOI PMC

Murrow L., Debnath J. Autophagy as a Stress-Response and Quality-Control Mechanism: Implications for Cell Injury and Human Disease. Annu. Rev. Pathol. 2013;8:105–137. doi: 10.1146/annurev-pathol-020712-163918. PubMed DOI PMC

Klionsky D.J. Autophagy: From Phenomenology to Molecular Understanding in Less than a Decade. Nat. Rev. Mol. Cell Biol. 2007;8:931–937. doi: 10.1038/nrm2245. PubMed DOI

Mizushima N. A Brief History of Autophagy from Cell Biology to Physiology and Disease. Nat. Cell Biol. 2018;20:521–527. doi: 10.1038/s41556-018-0092-5. PubMed DOI

Grumati P., Dikic I. Ubiquitin Signaling and Autophagy. J. Biol. Chem. 2018;293:5404–5413. doi: 10.1074/jbc.TM117.000117. PubMed DOI PMC

Mizushima N., Yoshimori T., Ohsumi Y. The Role of Atg Proteins in Autophagosome Formation. Annu. Rev. Cell Dev. Biol. 2011;27:107–132. doi: 10.1146/annurev-cellbio-092910-154005. PubMed DOI

Kwon Y.T., Ciechanover A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem. Sci. 2017;42:873–886. doi: 10.1016/j.tibs.2017.09.002. PubMed DOI

Khaminets A., Behl C., Dikic I. Ubiquitin-Dependent and Independent Signals In Selective Autophagy. Trends Cell Biol. 2016;26:6–16. doi: 10.1016/j.tcb.2015.08.010. PubMed DOI

Jung C.H., Jun C.B., Ro S.-H., Kim Y.-M., Otto N.M., Cao J., Kundu M., Kim D.-H. ULK-Atg13-FIP200 Complexes Mediate MTOR Signaling to the Autophagy Machinery. Mol. Biol. Cell. 2009;20:1992–2003. doi: 10.1091/mbc.e08-12-1249. PubMed DOI PMC

Radoshevich L., Cossart P. Listeria Monocytogenes: Towards a Complete Picture of Its Physiology and Pathogenesis. Nat. Rev. Microbiol. 2018;16:32–46. doi: 10.1038/nrmicro.2017.126. PubMed DOI

Mitchell G., Ge L., Huang Q., Chen C., Kianian S., Roberts M.F., Schekman R., Portnoy D.A. Avoidance of Autophagy Mediated by PlcA or ActA Is Required for Listeria Monocytogenes Growth in Macrophages. Infect. Immun. 2015;83:2175–2184. doi: 10.1128/IAI.00110-15. PubMed DOI PMC

Ogawa M., Yoshimori T., Suzuki T., Sagara H., Mizushima N., Sasakawa C. Escape of Intracellular Shigella from Autophagy. Science. 2005;307:727–731. doi: 10.1126/science.1106036. PubMed DOI

Dong N., Zhu Y., Lu Q., Hu L., Zheng Y., Shao F. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses. Cell. 2012;150:1029–1041. doi: 10.1016/j.cell.2012.06.050. PubMed DOI

Bjørkøy G., Lamark T., Brech A., Outzen H., Perander M., Overvatn A., Stenmark H., Johansen T. P62/SQSTM1 Forms Protein Aggregates Degraded by Autophagy and Has a Protective Effect on Huntingtin-Induced Cell Death. J. Cell Biol. 2005;171:603–614. doi: 10.1083/jcb.200507002. PubMed DOI PMC

Pankiv S., Clausen T.H., Lamark T., Brech A., Bruun J.-A., Outzen H., Øvervatn A., Bjørkøy G., Johansen T. P62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. J. Biol. Chem. 2007;282:24131–24145. doi: 10.1074/jbc.M702824200. PubMed DOI

Liu W.J., Ye L., Huang W.F., Guo L.J., Xu Z.G., Wu H.L., Yang C., Liu H.F. P62 Links the Autophagy Pathway and the Ubiqutin–Proteasome System upon Ubiquitinated Protein Degradation. Cell. Mol. Biol. Lett. 2016;21:29. doi: 10.1186/s11658-016-0031-z. PubMed DOI PMC

Feng Z.-Z., Jiang A.-J., Mao A.-W., Feng Y., Wang W., Li J., Zhang X., Xing K., Peng X. The Salmonella Effectors SseF and SseG Inhibit Rab1A-Mediated Autophagy to Facilitate Intracellular Bacterial Survival and Replication. J. Biol. Chem. 2018;293:9662–9673. doi: 10.1074/jbc.M117.811737. PubMed DOI PMC

Choy A., Dancourt J., Mugo B., O’Connor T.J., Isberg R.R., Melia T.J., Roy C.R. The Legionella Effector RavZ Inhibits Host Autophagy through Irreversible Atg8 Deconjugation. Science. 2012;338:1072–1076. doi: 10.1126/science.1227026. PubMed DOI PMC

Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N., Mizushima N., Tanida I., Kominami E., Ohsumi M., et al. A Ubiquitin-like System Mediates Protein Lipidation. Nature. 2000;408:488–492. doi: 10.1038/35044114. PubMed DOI

Horenkamp F.A., Kauffman K.J., Kohler L.J., Sherwood R.K., Krueger K.P., Shteyn V., Roy C.R., Melia T.J., Reinisch K.M. The Legionella Anti-Autophagy Effector RavZ Targets the Autophagosome via PI3P- and Curvature-Sensing Motifs. Dev. Cell. 2015;34:569–576. doi: 10.1016/j.devcel.2015.08.010. PubMed DOI PMC

Yang A., Pantoom S., Wu Y.-W. Elucidation of the Anti-Autophagy Mechanism of the Legionella Effector RavZ Using Semisynthetic LC3 Proteins. eLife. 2017;6:e23905. doi: 10.7554/eLife.23905. PubMed DOI PMC

Sinha B., Fraunholz M. Staphylococcus aureus Host Cell Invasion and Post-Invasion Events. Int. J. Med. Microbiol. IJMM. 2010;300:170–175. doi: 10.1016/j.ijmm.2009.08.019. PubMed DOI

Neumann Y., Bruns S.A., Rohde M., Prajsnar T.K., Foster S.J., Schmitz I. Intracellular Staphylococcus aureus Eludes Selective Autophagy by Activating a Host Cell Kinase. Autophagy. 2016;12:2069–2084. doi: 10.1080/15548627.2016.1226732. PubMed DOI PMC

Chong A., Wehrly T.D., Child R., Hansen B., Hwang S., Virgin H.W., Celli J. Cytosolic Clearance of Replication-Deficient Mutants Reveals Francisella Tularensis Interactions with the Autophagic Pathway. Autophagy. 2012;8:1342–1356. doi: 10.4161/auto.20808. PubMed DOI PMC

Case E.D.R., Chong A., Wehrly T.D., Hansen B., Child R., Hwang S., Virgin H.W., Celli J. The Francisella O-Antigen Mediates Survival in the Macrophage Cytosol via Autophagy Avoidance. Cell. Microbiol. 2014;16:862–877. doi: 10.1111/cmi.12246. PubMed DOI PMC

Chai Q., Wang X., Qiang L., Zhang Y., Ge P., Lu Z., Zhong Y., Li B., Wang J., Zhang L., et al. A Mycobacterium Tuberculosis Surface Protein Recruits Ubiquitin to Trigger Host Xenophagy. Nat. Commun. 2019;10:1973. doi: 10.1038/s41467-019-09955-8. PubMed DOI PMC

Wang L., Wu J., Li J., Yang H., Tang T., Liang H., Zuo M., Wang J., Liu H., Liu F., et al. Host-Mediated Ubiquitination of a Mycobacterial Protein Suppresses Immunity. Nature. 2020;577:682–688. doi: 10.1038/s41586-019-1915-7. PubMed DOI

Wang J., Li B.-X., Ge P.-P., Li J., Wang Q., Gao G.F., Qiu X.-B., Liu C.H. Mycobacterium Tuberculosis Suppresses Innate Immunity by Coopting the Host Ubiquitin System. Nat. Immunol. 2015;16:237–245. doi: 10.1038/ni.3096. PubMed DOI

Cornelis G.R. The Yersinia Deadly Kiss. J. Bacteriol. 1998;180:5495–5504. doi: 10.1128/JB.180.21.5495-5504.1998. PubMed DOI PMC

Orth K. Function of the Yersinia Effector YopJ. Curr. Opin. Microbiol. 2002;5:38–43. doi: 10.1016/S1369-5274(02)00283-7. PubMed DOI

Lostroh C.P., Lee C.A. The Salmonella Pathogenicity Island-1 Type III Secretion System. Microbes Infect. 2001;3:1281–1291. doi: 10.1016/S1286-4579(01)01488-5. PubMed DOI

Oh Y.K., Alpuche-Aranda C., Berthiaume E., Jinks T., Miller S.I., Swanson J.A. Rapid and Complete Fusion of Macrophage Lysosomes with Phagosomes Containing Salmonella Typhimurium. Infect. Immun. 1996;64:3877–3883. doi: 10.1128/IAI.64.9.3877-3883.1996. PubMed DOI PMC

Rytkönen A., Poh J., Garmendia J., Boyle C., Thompson A., Liu M., Freemont P., Hinton J.C.D., Holden D.W. SseL, a Salmonella Deubiquitinase Required for Macrophage Killing and Virulence. Proc. Natl. Acad. Sci. USA. 2007;104:3502–3507. doi: 10.1073/pnas.0610095104. PubMed DOI PMC

Liao A.P., Petrof E.O., Kuppireddi S., Zhao Y., Xia Y., Claud E.C., Sun J. Salmonella Type III Effector AvrA Stabilizes Cell Tight Junctions to Inhibit Inflammation in Intestinal Epithelial Cells. PLoS ONE. 2008;3:e2369. doi: 10.1371/journal.pone.0002369. PubMed DOI PMC

Jones R.M., Wu H., Wentworth C., Luo L., Collier-Hyams L., Neish A.S. Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. Cell Host Microbe. 2008;3:233–244. doi: 10.1016/j.chom.2008.02.016. PubMed DOI

Geng S., Wang Y., Xue Y., Wang H., Cai Y., Zhang J., Barrow P., Pan Z., Jiao X. The SseL Protein Inhibits the Intracellular NF-ΚB Pathway to Enhance the Virulence of Salmonella Pullorum in a Chicken Model. Microb. Pathog. 2019;129:1–6. doi: 10.1016/j.micpath.2019.01.035. PubMed DOI

Kolodziejek A.M., Altura M.A., Fan J., Petersen E.M., Cook M., Brzovic P.S., Miller S.I. Salmonella Translocated Effectors Recruit OSBP1 to the Phagosome to Promote Vacuolar Membrane Integrity. Cell Rep. 2019;27:2147–2156.e5. doi: 10.1016/j.celrep.2019.04.021. PubMed DOI

Hermanns T., Hofmann K. Bacterial DUBs: Deubiquitination beyond the Seven Classes. Biochem. Soc. Trans. 2019;47:1857–1866. doi: 10.1042/BST20190526. PubMed DOI

Vogel J.P., Andrews H.L., Wong S.K., Isberg R.R. Conjugative Transfer by the Virulence System of Legionella Pneumophila. Science. 1998;279:873–876. doi: 10.1126/science.279.5352.873. PubMed DOI

Qiu J., Sheedlo M.J., Yu K., Tan Y., Nakayasu E.S., Das C., Liu X., Luo Z.-Q. Ubiquitination Independent of E1 and E2 Enzymes by Bacterial Effectors. Nature. 2016;533:120–124. doi: 10.1038/nature17657. PubMed DOI PMC

Dong Y., Mu Y., Xie Y., Zhang Y., Han Y., Zhou Y., Wang W., Liu Z., Wu M., Wang H., et al. Structural Basis of Ubiquitin Modification by the Legionella Effector SdeA. Nature. 2018;557:674–678. doi: 10.1038/s41586-018-0146-7. PubMed DOI

Puvar K., Iyer S., Sheedlo M.J., Das C. Chapter Fifteen—Purification and functional characterization of the DUB domain of SdeA. In: Hochstrasser M., editor. Methods in Enzymology. Volume 618. Academic Press; Cambridge, MA, USA: 2019. pp. 343–355. Ubiquitin and Ubiquitin-Like Protein Modifiers. PubMed

Pike C.M., Boyer-Andersen R., Kinch L.N., Caplan J.L., Neunuebel M.R. The Legionella Effector RavD Binds Phosphatidylinositol-3-Phosphate and Helps Suppress Endolysosomal Maturation of the Legionella-Containing Vacuole. J. Biol. Chem. 2019;294:6405–6415. doi: 10.1074/jbc.RA118.007086. PubMed DOI PMC

Schroeder G.N., Hilbi H. Molecular Pathogenesis of Shigella Spp.: Controlling Host Cell Signaling, Invasion, and Death by Type III Secretion. Clin. Microbiol. Rev. 2008;21:134–156. doi: 10.1128/CMR.00032-07. PubMed DOI PMC

Ashida H., Toyotome T., Nagai T., Sasakawa C. Shigella Chromosomal IpaH Proteins Are Secreted via the Type III Secretion System and Act as Effectors. Mol. Microbiol. 2007;63:680–693. doi: 10.1111/j.1365-2958.2006.05547.x. PubMed DOI

Tokunaga F., Iwai K. LUBAC, a Novel Ubiquitin Ligase for Linear Ubiquitination, Is Crucial for Inflammation and Immune Responses. Microbes Infect. 2012;14:563–572. doi: 10.1016/j.micinf.2012.01.011. PubMed DOI

Ashida H., Kim M., Schmidt-Supprian M., Ma A., Ogawa M., Sasakawa C. A Bacterial E3 Ubiquitin Ligase IpaH9.8 Targets NEMO/IKKgamma to Dampen the Host NF-KappaB-Mediated Inflammatory Response. Nat. Cell Biol. 2010;12:66–73. doi: 10.1038/ncb2006. PubMed DOI PMC

De Jong M.F., Liu Z., Chen D., Alto N.M. Shigella Flexneri Suppresses NF-KB Activation by Inhibiting Linear Ubiquitin Chain Ligation. Nat. Microbiol. 2016;1:16084. doi: 10.1038/nmicrobiol.2016.84. PubMed DOI PMC

Noad J., von der Malsburg A., Pathe C., Michel M.A., Komander D., Randow F. LUBAC-Synthesized Linear Ubiquitin Chains Restrict Cytosol-Invading Bacteria by Activating Autophagy and NF-ΚB. Nat. Microbiol. 2017;2:17063. doi: 10.1038/nmicrobiol.2017.63. PubMed DOI PMC

Misaghi S., Balsara Z.R., Catic A., Spooner E., Ploegh H.L., Starnbach M.N. Chlamydia Trachomatis-Derived Deubiquitinating Enzymes in Mammalian Cells during Infection. Mol. Microbiol. 2006;61:142–150. doi: 10.1111/j.1365-2958.2006.05199.x. PubMed DOI

Pruneda J.N., Bastidas R.J., Bertsoulaki E., Swatek K.N., Santhanam B., Clague M.J., Valdivia R.H., Urbé S., Komander D. A Chlamydia Effector Combining Deubiquitination and Acetylation Activities Induces Golgi Fragmentation. Nat. Microbiol. 2018;3:1377–1384. doi: 10.1038/s41564-018-0271-y. PubMed DOI PMC

Fischer A., Harrison K.S., Ramirez Y., Auer D., Chowdhury S.R., Prusty B.K., Sauer F., Dimond Z., Kisker C., Hefty P.S., et al. Chlamydia Trachomatis-Containing Vacuole Serves as Deubiquitination Platform to Stabilize Mcl-1 and to Interfere with Host Defense. eLife. 2017;6:e21465. doi: 10.7554/eLife.21465. PubMed DOI PMC

Field-Smith A., Morgan G.J., Davies F.E. Bortezomib (VelcadeTM) in the Treatment of Multiple Myeloma. Ther. Clin. Risk Manag. 2006;2:271–279. doi: 10.2147/tcrm.2006.2.3.271. PubMed DOI PMC

Chen D., Frezza M., Schmitt S., Kanwar J., Dou Q.P. Bortezomib as the First Proteasome Inhibitor Anticancer Drug: Current Status and Future Perspectives. Curr. Cancer Drug Targets. 2011;11:239–253. doi: 10.2174/156800911794519752. PubMed DOI PMC

Groen K., van de Donk N., Stege C., Zweegman S., Nijhof I.S. Carfilzomib for Relapsed and Refractory Multiple Myeloma. Cancer Manag. Res. 2019;11:2663–2675. doi: 10.2147/CMAR.S150653. PubMed DOI PMC

Nawrocki S.T., Griffin P., Kelly K.R., Carew J.S. MLN4924: A Novel First-in-Class Inhibitor of NEDD8-Activating Enzyme for Cancer Therapy. Expert Opin. Investig. Drugs. 2012;21:1563–1573. doi: 10.1517/13543784.2012.707192. PubMed DOI

Millennium Pharmaceuticals, Inc . MLN4924 for the Treatment of Acute Myelogenous Leukemia, Myelodysplastic Syndrome, and Acute Lymphoblastic Leukemia. Millennium Pharmaceuticals Inc.; Cambridge, MA, USA: 2013.

Zhuang J., Shirazi F., Singh R.K., Kuiatse I., Wang H., Lee H.C., Berkova Z., Berger A., Hyer M., Chattopadhyay N., et al. Ubiquitin-Activating Enzyme Inhibition Induces an Unfolded Protein Response and Overcomes Drug Resistance in Myeloma. Blood. 2019;133:1572–1584. doi: 10.1182/blood-2018-06-859686. PubMed DOI PMC

Charbonneau M.-E., Gonzalez-Hernandez M.J., Showalter H.D., Donato N.J., Wobus C.E., O’Riordan M.X.D. Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity. PLoS ONE. 2014;9:e104096. doi: 10.1371/journal.pone.0104096. PubMed DOI PMC

Kapuria V., Peterson L.F., Fang D., Bornmann W.G., Talpaz M., Donato N.J. Deubiquitinase Inhibition by Small-Molecule WP1130 Triggers Aggresome Formation and Tumor Cell Apoptosis. Cancer Res. 2010;70:9265–9276. doi: 10.1158/0008-5472.CAN-10-1530. PubMed DOI

Lindner H.A. Deubiquitination in Virus Infection. Virology. 2007;362:245–256. doi: 10.1016/j.virol.2006.12.035. PubMed DOI PMC

Longhitano L., Tibullo D., Giallongo C., Lazzarino G., Tartaglia N., Galimberti S., Li Volti G., Palumbo G.A., Liso A. Proteasome Inhibitors as a Possible Therapy for SARS-CoV-2. Int. J. Mol. Sci. 2020;21:3622. doi: 10.3390/ijms21103622. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...