The Ubiquitination System within Bacterial Host-Pathogen Interactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
SV/FVZ201802
Ministerstvo Školství, Mládeže a Tělovýchovy
DZRO-ZHN-2017
Ministerstvo Obrany České Republiky
PubMed
33808578
PubMed Central
PMC8003559
DOI
10.3390/microorganisms9030638
PII: microorganisms9030638
Knihovny.cz E-zdroje
- Klíčová slova
- deubiquitinating enzymes (DUBs), effector protein, host–pathogen interaction, ubiquitination,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.
Zobrazit více v PubMed
Pickart C.M., Eddins M.J. Ubiquitin: Structures, Functions, Mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 2004;1695:55–72. doi: 10.1016/j.bbamcr.2004.09.019. PubMed DOI
Nijman S.M.B., Luna-Vargas M.P.A., Velds A., Brummelkamp T.R., Dirac A.M.G., Sixma T.K., Bernards R. A Genomic and Functional Inventory of Deubiquitinating Enzymes. Cell. 2005;123:773–786. doi: 10.1016/j.cell.2005.11.007. PubMed DOI
Haglund K., Dikic I. Ubiquitylation and Cell Signaling. EMBO J. 2005;24:3353–3359. doi: 10.1038/sj.emboj.7600808. PubMed DOI PMC
Komander D., Rape M. The Ubiquitin Code. Annu. Rev. Biochem. 2012;81:203–229. doi: 10.1146/annurev-biochem-060310-170328. PubMed DOI
Park C.-W., Ryu K.-Y. Cellular Ubiquitin Pool Dynamics and Homeostasis. BMB Rep. 2014;47:475–482. doi: 10.5483/BMBRep.2014.47.9.128. PubMed DOI PMC
Thrower J.S., Hoffman L., Rechsteiner M., Pickart C.M. Recognition of the Polyubiquitin Proteolytic Signal. EMBO J. 2000;19:94–102. doi: 10.1093/emboj/19.1.94. PubMed DOI PMC
Xu P., Duong D.M., Seyfried N.T., Cheng D., Xie Y., Robert J., Rush J., Hochstrasser M., Finley D., Peng J. Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation. Cell. 2009;137:133–145. doi: 10.1016/j.cell.2009.01.041. PubMed DOI PMC
Huang T.T., D’Andrea A.D. Regulation of DNA Repair by Ubiquitylation. Nat. Rev. Mol. Cell Biol. 2006;7:323–334. doi: 10.1038/nrm1908. PubMed DOI
Yuan W.-C., Lee Y.-R., Lin S.-Y., Chang L.-Y., Tan Y.P., Hung C.-C., Kuo J.-C., Liu C.-H., Lin M.-Y., Xu M., et al. K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. Mol. Cell. 2014;54:586–600. doi: 10.1016/j.molcel.2014.03.035. PubMed DOI
Elia A.E.H., Boardman A.P., Wang D.C., Huttlin E.L., Everley R.A., Dephoure N., Zhou C., Koren I., Gygi S.P., Elledge S.J. Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response. Mol. Cell. 2015;59:867–881. doi: 10.1016/j.molcel.2015.05.006. PubMed DOI PMC
Morris J.R., Solomon E. BRCA1: BARD1 Induces the Formation of Conjugated Ubiquitin Structures, Dependent on K6 of Ubiquitin, in Cells during DNA Replication and Repair. Hum. Mol. Genet. 2004;13:807–817. doi: 10.1093/hmg/ddh095. PubMed DOI
Manzanillo P.S., Ayres J.S., Watson R.O., Collins A.C., Souza G., Rae C.S., Schneider D.S., Nakamura K., Shiloh M.U., Cox J.S. The Ubiquitin Ligase Parkin Mediates Resistance to Intracellular Pathogens. Nature. 2013;501:512–516. doi: 10.1038/nature12566. PubMed DOI PMC
Ordureau A., Sarraf S.A., Duda D.M., Heo J.-M., Jedrychowski M.P., Sviderskiy V.O., Olszewski J.L., Koerber J.T., Xie T., Beausoleil S.A., et al. Quantitative Proteomics Reveal a Feedforward Mechanism for Mitochondrial PARKIN Translocation and Ubiquitin Chain Synthesis. Mol. Cell. 2014;56:360–375. doi: 10.1016/j.molcel.2014.09.007. PubMed DOI PMC
Besche H.C., Sha Z., Kukushkin N.V., Peth A., Hock E.-M., Kim W., Gygi S., Gutierrez J.A., Liao H., Dick L., et al. Autoubiquitination of the 26S Proteasome on Rpn13 Regulates Breakdown of Ubiquitin Conjugates. EMBO J. 2014;33:1159–1176. doi: 10.1002/embj.201386906. PubMed DOI PMC
Kim W., Bennett E.J., Huttlin E.L., Guo A., Li J., Possemato A., Sowa M.E., Rad R., Rush J., Comb M.J., et al. Systematic and Quantitative Assessment of the Ubiquitin-Modified Proteome. Mol. Cell. 2011;44:325–340. doi: 10.1016/j.molcel.2011.08.025. PubMed DOI PMC
Jin J., Xie X., Xiao Y., Hu H., Zou Q., Cheng X., Sun S.-C. Epigenetic Regulation of the Expression of Il12 and Il23 and Autoimmune Inflammation by the Deubiquitinase Trabid. Nat. Immunol. 2016;17:259–268. doi: 10.1038/ni.3347. PubMed DOI PMC
Tran H., Hamada F., Schwarz-Romond T., Bienz M. Trabid, a New Positive Regulator of Wnt-Induced Transcription with Preference for Binding and Cleaving K63-Linked Ubiquitin Chains. Genes Dev. 2008;22:528–542. doi: 10.1101/gad.463208. PubMed DOI PMC
Tokunaga F., Sakata S., Saeki Y., Satomi Y., Kirisako T., Kamei K., Nakagawa T., Kato M., Murata S., Yamaoka S., et al. Involvement of Linear Polyubiquitylation of NEMO in NF-KappaB Activation. Nat. Cell Biol. 2009;11:123–132. doi: 10.1038/ncb1821. PubMed DOI
Mevissen T.E.T., Komander D. Mechanisms of Deubiquitinase Specificity and Regulation. Annu. Rev. Biochem. 2017;86:159–192. doi: 10.1146/annurev-biochem-061516-044916. PubMed DOI
Johnson E.S. Protein Modification by SUMO. Annu. Rev. Biochem. 2004;73:355–382. doi: 10.1146/annurev.biochem.73.011303.074118. PubMed DOI
Ribet D., Cossart P. Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Trends Cell Biol. 2018;28:926–940. doi: 10.1016/j.tcb.2018.07.005. PubMed DOI PMC
Panasenko O.O. Identification of Ubiquitinated Proteins. Mater. Methods. 2014;4:827. doi: 10.13070/mm.en.4.827. DOI
Mulder M.P.C., Witting K., Berlin I., Pruneda J.N., Wu K.-P., Chang J.-G., Merkx R., Bialas J., Groettrup M., Vertegaal A.C.O., et al. A Cascading Activity-Based Probe Sequentially Targets E1–E2–E3 Ubiquitin Enzymes. Nat. Chem. Biol. 2016;12:523–530. doi: 10.1038/nchembio.2084. PubMed DOI PMC
Neutzner M., Neutzner A. Enzymes of Ubiquitination and Deubiquitination. Essays Biochem. 2012;52:37–50. doi: 10.1042/bse0520037. PubMed DOI
Ye Y., Rape M. Building Ubiquitin Chains: E2 Enzymes at Work. Nat. Rev. Mol. Cell Biol. 2009;10:755–764. doi: 10.1038/nrm2780. PubMed DOI PMC
Ebner P., Versteeg G.A., Ikeda F. Ubiquitin Enzymes in the Regulation of Immune Responses. Crit. Rev. Biochem. Mol. Biol. 2017;52:425–460. doi: 10.1080/10409238.2017.1325829. PubMed DOI PMC
Metzger M.B., Pruneda J.N., Klevit R.E., Weissman A.M. RING-Type E3 Ligases: Master Manipulators of E2 Ubiquitin-Conjugating Enzymes and Ubiquitination. Biochim. Biophys. Acta. 2014;1843:47–60. doi: 10.1016/j.bbamcr.2013.05.026. PubMed DOI PMC
Metzger M.B., Hristova V.A., Weissman A.M. HECT and RING Finger Families of E3 Ubiquitin Ligases at a Glance. J. Cell Sci. 2012;125:531–537. doi: 10.1242/jcs.091777. PubMed DOI PMC
Scheffner M., Kumar S. Mammalian HECT Ubiquitin-Protein Ligases: Biological and Pathophysiological Aspects. Biochim. Biophys. Acta BBA Mol. Cell Res. 2014;1843:61–74. doi: 10.1016/j.bbamcr.2013.03.024. PubMed DOI
Smit J.J., Sixma T.K. “Ubiquitylation: Mechanism and Functions” Review Series: RBR E3-Ligases at Work. EMBO Rep. 2014;15:142–154. doi: 10.1002/embr.201338166. PubMed DOI PMC
Spratt D.E., Walden H., Shaw G.S. RBR E3 Ubiquitin Ligases: New Structures, New Insights, New Questions. Biochem. J. 2014;458:421–437. doi: 10.1042/BJ20140006. PubMed DOI PMC
Lechtenberg B.C., Rajput A., Sanishvili R., Dobaczewska M.K., Ware C.F., Mace P.D., Riedl S.J. Structure of a HOIP/E2~ubiquitin Complex Reveals RBR E3 Ligase Mechanism and Regulation. Nature. 2016;529:546–550. doi: 10.1038/nature16511. PubMed DOI PMC
Wilkinson K.D. DUBs at a Glance. J. Cell Sci. 2009;122:2325–2329. doi: 10.1242/jcs.041046. PubMed DOI PMC
Abdul Rehman S.A., Kristariyanto Y.A., Choi S.-Y., Nkosi P.J., Weidlich S., Labib K., Hofmann K., Kulathu Y. MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Mol. Cell. 2016;63:146–155. doi: 10.1016/j.molcel.2016.05.009. PubMed DOI PMC
Kwasna D., Abdul Rehman S.A., Natarajan J., Matthews S., Madden R., De Cesare V., Weidlich S., Virdee S., Ahel I., Gibbs-Seymour I., et al. Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability. Mol. Cell. 2018;70:150–164.e6. doi: 10.1016/j.molcel.2018.02.023. PubMed DOI PMC
Komander D., Clague M.J., Urbé S. Breaking the Chains: Structure and Function of the Deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009;10:550–563. doi: 10.1038/nrm2731. PubMed DOI
Hu H., Sun S.-C. Ubiquitin Signaling in Immune Responses. Cell Res. 2016;26:457–483. doi: 10.1038/cr.2016.40. PubMed DOI PMC
Kawai T., Akira S. Toll-Like Receptor and RIG-1-Like Receptor Signaling. [(accessed on 23 August 2019)]; Available online: https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1196/annals.1443.020. DOI
Mogensen T.H. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin. Microbiol. Rev. 2009;22:240–273. doi: 10.1128/CMR.00046-08. PubMed DOI PMC
Zinngrebe J., Montinaro A., Peltzer N., Walczak H. Ubiquitin in the Immune System. EMBO Rep. 2014;15:28–45. doi: 10.1002/embr.201338025. PubMed DOI PMC
Varfolomeev E., Goncharov T., Fedorova A.V., Dynek J.N., Zobel K., Deshayes K., Fairbrother W.J., Vucic D. C-IAP1 and c-IAP2 Are Critical Mediators of Tumor Necrosis Factor α (TNFα)-Induced NF-ΚB Activation. J. Biol. Chem. 2008;283:24295–24299. doi: 10.1074/jbc.C800128200. PubMed DOI PMC
Dynek J.N., Goncharov T., Dueber E.C., Fedorova A.V., Izrael-Tomasevic A., Phu L., Helgason E., Fairbrother W.J., Deshayes K., Kirkpatrick D.S., et al. C-IAP1 and UbcH5 Promote K11-Linked Polyubiquitination of RIP1 in TNF Signalling. EMBO J. 2010;29:4198–4209. doi: 10.1038/emboj.2010.300. PubMed DOI PMC
Varfolomeev E., Goncharov T., Maecker H., Zobel K., Kömüves L.G., Deshayes K., Vucic D. Cellular Inhibitors of Apoptosis Are Global Regulators of NF-ΚB and MAPK Activation by Members of the TNF Family of Receptors. Sci. Signal. 2012;5:ra22. doi: 10.1126/scisignal.2001878. PubMed DOI
Keusekotten K., Elliott P.R., Glockner L., Fiil B.K., Damgaard R.B., Kulathu Y., Wauer T., Hospenthal M.K., Gyrd-Hansen M., Krappmann D., et al. OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell. 2013;153:1312–1326. doi: 10.1016/j.cell.2013.05.014. PubMed DOI PMC
Wertz I.E., O’Rourke K.M., Zhou H., Eby M., Aravind L., Seshagiri S., Wu P., Wiesmann C., Baker R., Boone D.L., et al. De-Ubiquitination and Ubiquitin Ligase Domains of A20 Downregulate NF-ΚB Signalling. Nature. 2004;430:694–699. doi: 10.1038/nature02794. PubMed DOI
Conze D.B., Wu C.-J., Thomas J.A., Landstrom A., Ashwell J.D. Lys63-Linked Polyubiquitination of IRAK-1 Is Required for Interleukin-1 Receptor- and Toll-like Receptor-Mediated NF-KappaB Activation. Mol. Cell. Biol. 2008;28:3538–3547. doi: 10.1128/MCB.02098-07. PubMed DOI PMC
Philpott D.J., Sorbara M.T., Robertson S.J., Croitoru K., Girardin S.E. NOD Proteins: Regulators of Inflammation in Health and Disease. Nat. Rev. Immunol. 2014;14:9–23. doi: 10.1038/nri3565. PubMed DOI
Hitotsumatsu O., Ahmad R.-C., Tavares R., Wang M., Philpott D., Turer E.E., Lee B.L., Shiffin N., Advincula R., Malynn B.A., et al. The Ubiquitin-Editing Enzyme A20 Restricts Nucleotide-Binding Oligomerization Domain Containing 2-Triggered Signals. Immunity. 2008;28:381–390. doi: 10.1016/j.immuni.2008.02.002. PubMed DOI PMC
McDonald D.R., Levy O. 3—Innate Immunity. In: Rich R.R., Fleisher T.A., Shearer W.T., Schroeder H.W., Frew A.J., Weyand C.M., editors. Clinical Immunology. 5th ed. Elsevier; London, UK: 2019. pp. 39–53.
Xiao Y., Huang Q., Wu Z., Chen W. Roles of Protein Ubiquitination in Inflammatory Bowel Disease. Immunobiology. 2020;225:152026. doi: 10.1016/j.imbio.2020.152026. PubMed DOI
Taylor C., Jobin C. Ubiquitin Protein Modification and Signal Transduction: Implications for Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2005;11:1097–1107. doi: 10.1097/01.MIB.0000187577.26043.e5. PubMed DOI
Chatzidaki-Livanis M., Coyne M.J., Roelofs K.G., Gentyala R.R., Caldwell J.M., Comstock L.E. Gut Symbiont Bacteroides Fragilis Secretes a Eukaryotic-Like Ubiquitin Protein That Mediates Intraspecies Antagonism. mBio. 2017;8:e01902-17. doi: 10.1128/mBio.01902-17. PubMed DOI PMC
Rytkönen A., Holden D.W. Bacterial Interference of Ubiquitination and Deubiquitination. Cell Host Microbe. 2007;1:13–22. doi: 10.1016/j.chom.2007.02.003. PubMed DOI PMC
Pruneda J.N., Durkin C.H., Geurink P.P., Ovaa H., Santhanam B., Holden D.W., Komander D. The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases. Mol. Cell. 2016;63:261–276. doi: 10.1016/j.molcel.2016.06.015. PubMed DOI PMC
Narayanan L.A., Edelmann M.J. Ubiquitination as an Efficient Molecular Strategy Employed in Salmonella Infection. Front. Immunol. 2014;5:558. doi: 10.3389/fimmu.2014.00558. PubMed DOI PMC
Ronau J.A., Beckmann J.F., Hochstrasser M. Substrate Specificity of the Ubiquitin and Ubl Proteases. Cell Res. 2016;26:441–456. doi: 10.1038/cr.2016.38. PubMed DOI PMC
Edelmann M.J., Kramer H.B., Altun M., Kessler B.M. Post-Translational Modification of the Deubiquitinating Enzyme Otubain 1 Modulates Active RhoA Levels and Susceptibility to Yersinia Invasion. FEBS J. 2010;277:2515–2530. doi: 10.1111/j.1742-4658.2010.07665.x. PubMed DOI
Mukherjee S., Keitany G., Li Y., Wang Y., Ball H.L., Goldsmith E.J., Orth K. Yersinia YopJ Acetylates and Inhibits Kinase Activation by Blocking Phosphorylation. Science. 2006;312:1211–1214. doi: 10.1126/science.1126867. PubMed DOI
Zhou H., Monack D.M., Kayagaki N., Wertz I., Yin J., Wolf B., Dixit V.M. Yersinia Virulence Factor YopJ Acts as a Deubiquitinase to Inhibit NF-ΚB Activation. J. Exp. Med. 2005;202:1327–1332. doi: 10.1084/jem.20051194. PubMed DOI PMC
Zhang Y., Higashide W.M., McCormick B.A., Chen J., Zhou D. The Inflammation-Associated Salmonella SopA Is a HECT-like E3 Ubiquitin Ligase. Mol. Microbiol. 2006;62:786–793. doi: 10.1111/j.1365-2958.2006.05407.x. PubMed DOI
Negrate G.L., Faustin B., Welsh K., Loeffler M., Krajewska M., Hasegawa P., Mukherjee S., Orth K., Krajewski S., Godzik A., et al. Salmonella Secreted Factor L Deubiquitinase of Salmonella Typhimurium Inhibits NF-ΚB, Suppresses IκBα Ubiquitination and Modulates Innate Immune Responses. J. Immunol. 2008;180:5045–5056. doi: 10.4049/jimmunol.180.7.5045. PubMed DOI
Mesquita F.S., Thomas M., Sachse M., Santos A.J.M., Figueira R., Holden D.W. The Salmonella Deubiquitinase SseL Inhibits Selective Autophagy of Cytosolic Aggregates. PLoS Pathog. 2012;8:e1002743. doi: 10.1371/journal.ppat.1002743. PubMed DOI PMC
Ye Z., Petrof E.O., Boone D., Claud E.C., Sun J. Salmonella Effector AvrA Regulation of Colonic Epithelial Cell Inflammation by Deubiquitination. Am. J. Pathol. 2007;171:882–892. doi: 10.2353/ajpath.2007.070220. PubMed DOI PMC
Sirisaengtaksin N., O’Donoghue E.J., Jabbari S., Roe A.J., Krachler A.M. Bacterial Outer Membrane Vesicles Provide an Alternative Pathway for Trafficking of Type III Secreted Effectors into Epithelial Cells. bioRxiv. 2018:415794. doi: 10.1101/415794. PubMed DOI PMC
Bhogaraju S., Kalayil S., Liu Y., Bonn F., Colby T., Matic I., Dikic I. Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell. 2016;167:1636–1649.e13. doi: 10.1016/j.cell.2016.11.019. PubMed DOI
Shin D., Mukherjee R., Liu Y., Gonzalez A., Bonn F., Liu Y., Rogov V.V., Heinz M., Stolz A., Hummer G., et al. Regulation of Phosphoribosyl-Linked Serine Ubiquitination by Deubiquitinases DupA and DupB. Mol. Cell. 2020;77:164–179.e6. doi: 10.1016/j.molcel.2019.10.019. PubMed DOI PMC
Sheedlo M.J., Qiu J., Tan Y., Paul L.N., Luo Z.-Q., Das C. Structural Basis of Substrate Recognition by a Bacterial Deubiquitinase Important for Dynamics of Phagosome Ubiquitination. Proc. Natl. Acad. Sci. USA. 2015;112:15090–15095. doi: 10.1073/pnas.1514568112. PubMed DOI PMC
Kubori T., Kitao T., Ando H., Nagai H. LotA, a Legionella Deubiquitinase, Has Dual Catalytic Activity and Contributes to Intracellular Growth. Cell. Microbiol. 2018;20:e12840. doi: 10.1111/cmi.12840. PubMed DOI
Wan M., Wang X., Huang C., Xu D., Wang Z., Zhou Y., Zhu Y. A Bacterial Effector Deubiquitinase Specifically Hydrolyses Linear Ubiquitin Chains to Inhibit Host Inflammatory Signalling. Nat. Microbiol. 2019;4:1282–1293. doi: 10.1038/s41564-019-0454-1. PubMed DOI
Kubori T., Bui X.T., Hubber A., Nagai H. Legionella RavZ Plays a Role in Preventing Ubiquitin Recruitment to Bacteria-Containing Vacuoles. Front. Cell. Infect. Microbiol. 2017;7:384. doi: 10.3389/fcimb.2017.00384. PubMed DOI PMC
Nakagawa I. Streptococcus Pyogenes Escapes from Autophagy. Cell Host Microbe. 2013;14:604–606. doi: 10.1016/j.chom.2013.11.012. PubMed DOI
Baxt L.A., Goldberg M.B. Host and Bacterial Proteins That Repress Recruitment of LC3 to Shigella Early during Infection. PLoS ONE. 2014;9:e94653. doi: 10.1371/journal.pone.0094653. PubMed DOI PMC
Kim D.W., Lenzen G., Page A.-L., Legrain P., Sansonetti P.J., Parsot C. The Shigella Flexneri Effector OspG Interferes with Innate Immune Responses by Targeting Ubiquitin-Conjugating Enzymes. Proc. Natl. Acad. Sci. USA. 2005;102:14046–14051. doi: 10.1073/pnas.0504466102. PubMed DOI PMC
Mostowy S., Sancho-Shimizu V., Hamon M.A., Simeone R., Brosch R., Johansen T., Cossart P. P62 and NDP52 Proteins Target Intracytosolic Shigella and Listeria to Different Autophagy Pathways. J. Biol. Chem. 2011;286:26987–26995. doi: 10.1074/jbc.M111.223610. PubMed DOI PMC
Okuda J., Toyotome T., Kataoka N., Ohno M., Abe H., Shimura Y., Seyedarabi A., Pickersgill R., Sasakawa C. Shigella Effector IpaH9.8 Binds to a Splicing Factor U2AF(35) to Modulate Host Immune Responses. Biochem. Biophys. Res. Commun. 2005;333:531–539. doi: 10.1016/j.bbrc.2005.05.145. PubMed DOI
Catic A., Misaghi S., Korbel G.A., Ploegh H.L. ElaD, a Deubiquitinating Protease Expressed by E. Coli. PLoS ONE. 2007;2:e381. doi: 10.1371/journal.pone.0000381. PubMed DOI PMC
Yoshikawa Y., Ogawa M., Hain T., Yoshida M., Fukumatsu M., Kim M., Mimuro H., Nakagawa I., Yanagawa T., Ishii T., et al. Listeria Monocytogenes ActA-Mediated Escape from Autophagic Recognition. Nat. Cell Biol. 2009;11:1233–1240. doi: 10.1038/ncb1967. PubMed DOI
Dortet L., Mostowy S., Louaka A.S., Gouin E., Nahori M.-A., Wiemer E.A.C., Dussurget O., Cossart P. Recruitment of the Major Vault Protein by InlK: A Listeria Monocytogenes Strategy to Avoid Autophagy. PLoS Pathog. 2011;7:e1002168. doi: 10.1371/annotation/a70544fc-6d8b-4549-921a-9e86557b0ffc. PubMed DOI PMC
Le Negrate G., Krieg A., Faustin B., Loeffler M., Godzik A., Krajewski S., Reed J.C. ChlaDub1 of Chlamydia Trachomatis Suppresses NF-KappaB Activation and Inhibits IkappaBalpha Ubiquitination and Degradation. Cell. Microbiol. 2008;10:1879–1892. doi: 10.1111/j.1462-5822.2008.01178.x. PubMed DOI
Furtado A.R., Essid M., Perrinet S., Balañá M.E., Yoder N., Dehoux P., Subtil A. The Chlamydial OTU Domain-Containing Protein ChlaOTU Is an Early Type III Secretion Effector Targeting Ubiquitin and NDP52. Cell. Microbiol. 2013;15:2064–2079. doi: 10.1111/cmi.12171. PubMed DOI
Makarova K.S., Aravind L., Koonin E.V. A Novel Superfamily of Predicted Cysteine Proteases from Eukaryotes, Viruses and Chlamydia Pneumoniae. Trends Biochem. Sci. 2000;25:50–52. doi: 10.1016/S0968-0004(99)01530-3. PubMed DOI
Laskowski-Arce M.A., Orth K. The Elusive Activity of the Yersinia Protein Kinase A Kinase Domain Is Revealed. Trends Microbiol. 2007;15:437–440. doi: 10.1016/j.tim.2007.09.002. PubMed DOI
Bassères E., Coppotelli G., Pfirrmann T., Andersen J.B., Masucci M., Frisan T. The Ubiquitin C-Terminal Hydrolase UCH-L1 Promotes Bacterial Invasion by Altering the Dynamics of the Actin Cytoskeleton. Cell. Microbiol. 2010;12:1622–1633. doi: 10.1111/j.1462-5822.2010.01495.x. PubMed DOI
Kummari E., Alugubelly N., Hsu C.-Y., Dong B., Nanduri B., Edelmann M.J. Activity-Based Proteomic Profiling of Deubiquitinating Enzymes in Salmonella-Infected Macrophages Leads to Identification of Putative Function of UCH-L5 in Inflammasome Regulation. PLoS ONE. 2015;10:e0135531. doi: 10.1371/journal.pone.0135531. PubMed DOI PMC
Coombs N., Sompallae R., Olbermann P., Gastaldello S., Göppel D., Masucci M.G., Josenhans C. Helicobacter Pylori Affects the Cellular Deubiquitinase USP7 and Ubiquitin-Regulated Components TRAF6 and the Tumour Suppressor P53. Int. J. Med. Microbiol. 2011;301:213–224. doi: 10.1016/j.ijmm.2010.09.004. PubMed DOI
Ellis J., Oyston P.C.F., Green M., Titball R.W. Tularemia. Clin. Microbiol. Rev. 2002;15:631–646. doi: 10.1128/CMR.15.4.631-646.2002. PubMed DOI PMC
Pechous R.D., McCarthy T.R., Zahrt T.C. Working toward the Future: Insights into Francisella Tularensis Pathogenesis and Vaccine Development. Microbiol. Mol. Biol. Rev. 2009;73:684–711. doi: 10.1128/MMBR.00028-09. PubMed DOI PMC
Putzova D., Panda S., Härtlova A., Stulík J., Gekara N.O. Subversion of Innate Immune Responses by Francisella Involves the Disruption of TRAF3 and TRAF6 Signalling Complexes. Cell. Microbiol. 2017;19:e12769. doi: 10.1111/cmi.12769. PubMed DOI
Eshraghi A., Kim J., Walls A.C., Ledvina H.E., Miller C.N., Ramsey K.M., Whitney J.C., Radey M.C., Peterson S.B., Ruhland B.R., et al. Secreted Effectors Encoded within and Outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe. 2016;20:573–583. doi: 10.1016/j.chom.2016.10.008. PubMed DOI PMC
Li F., Li Y., Liang H., Xu T., Kong Y., Huang M., Xiao J., Chen X., Xia H., Wu Y., et al. HECTD3 Mediates TRAF3 Polyubiquitination and Type I Interferon Induction during Bacterial Infection. J. Clin. Investig. 2018;128:4148–4162. doi: 10.1172/JCI120406. PubMed DOI PMC
Akimana C., Al-Khodor S., Abu Kwaik Y. Host Factors Required for Modulation of Phagosome Biogenesis and Proliferation of Francisella Tularensis within the Cytosol. PLoS ONE. 2010;5:e11025. doi: 10.1371/journal.pone.0011025. PubMed DOI PMC
Guo Y., Li L., Xu T., Guo X., Wang C., Li Y., Yang Y., Yang D., Sun B., Zhao X., et al. HUWE1 Mediates Inflammasome Activation and Promotes Host Defense against Bacterial Infection. J. Clin. Investig. 2020;130:6301–6316. doi: 10.1172/JCI138234. PubMed DOI PMC
Woolard M.D., Wilson J.E., Hensley L.L., Jania L.A., Kawula T.H., Drake J.R., Frelinger J.A. Francisella Tularensis-Infected Macrophages Release Prostaglandin E2 That Blocks T Cell Proliferation and Promotes a Th2-like Response. J. Immunol. 2007;178:2065–2074. doi: 10.4049/jimmunol.178.4.2065. PubMed DOI
Wilson J.E., Katkere B., Drake J.R. Francisella Tularensis Induces Ubiquitin-Dependent Major Histocompatibility Complex Class II Degradation in Activated Macrophages. Infect. Immun. 2009;77:4953–4965. doi: 10.1128/IAI.00844-09. PubMed DOI PMC
Hunt D., Wilson J.E., Weih K.A., Ishido S., Harton J.A., Roche P.A., Drake J.R. Francisella Tularensis Elicits IL-10 via a PGE2-Inducible Factor, to Drive Macrophage MARCH1 Expression and Class II Down-Regulation. PLoS ONE. 2012;7:e37330. doi: 10.1371/journal.pone.0037330. PubMed DOI PMC
Casabona M.G., Buchanan G., Zoltner M., Harkins C.P., Holden M.T.G., Palmer T. Functional Analysis of the EsaB Component of the Staphylococcus aureus Type VII Secretion System. Microbiology. 2017;163:1851–1863. doi: 10.1099/mic.0.000580. PubMed DOI PMC
Warne B., Harkins C.P., Harris S.R., Vatsiou A., Stanley-Wall N., Parkhill J., Peacock S.J., Palmer T., Holden M.T.G. The Ess/Type VII Secretion System of Staphylococcus aureus Shows Unexpected Genetic Diversity. BMC Genomics. 2016;17:222. doi: 10.1186/s12864-016-2426-7. PubMed DOI PMC
Villeneuve N.F., Lau A., Zhang D.D. Regulation of the Nrf2–Keap1 Antioxidant Response by the Ubiquitin Proteasome System: An Insight into Cullin-Ring Ubiquitin Ligases. Antioxid. Redox Signal. 2010;13:1699–1712. doi: 10.1089/ars.2010.3211. PubMed DOI PMC
Biswas C., Shah N., Muthu M., La P., Fernando A.P., Sengupta S., Yang G., Dennery P.A. Nuclear Heme Oxygenase-1 (HO-1) Modulates Subcellular Distribution and Activation of Nrf2, Impacting Metabolic and Anti-Oxidant Defenses. J. Biol. Chem. 2014;289:26882–26894. doi: 10.1074/jbc.M114.567685. PubMed DOI PMC
Chung S.W., Hall S., Perrella M.A. Role of Heme Oxygenase-1 in Microbial Host Defense. Cell. Microbiol. 2009;11:199–207. doi: 10.1111/j.1462-5822.2008.01261.x. PubMed DOI PMC
Scharn C.R., Collins A.C., Nair V.R., Stamm C.E., Marciano D.K., Graviss E.A., Shiloh M.U. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during M. Tuberculosis Infection. J. Immunol. 2016;196:4641–4649. doi: 10.4049/jimmunol.1500434. PubMed DOI PMC
Lee C. Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. Oxid. Med. Cell. Longev. 2018;2018:6208067. doi: 10.1155/2018/6208067. PubMed DOI PMC
De Duve C., Wattiaux R. Functions of Lysosomes. Annu. Rev. Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. PubMed DOI
Klionsky D.J. Autophagy Revisited: A Conversation with Christian de Duve. Autophagy. 2008;4:740–743. doi: 10.4161/auto.6398. PubMed DOI
Dikic I., Elazar Z. Mechanism and Medical Implications of Mammalian Autophagy. Nat. Rev. Mol. Cell Biol. 2018;19:349–364. doi: 10.1038/s41580-018-0003-4. PubMed DOI
Jiang P., Mizushima N. Autophagy and Human Diseases. Cell Res. 2014;24:69–79. doi: 10.1038/cr.2013.161. PubMed DOI PMC
Murrow L., Debnath J. Autophagy as a Stress-Response and Quality-Control Mechanism: Implications for Cell Injury and Human Disease. Annu. Rev. Pathol. 2013;8:105–137. doi: 10.1146/annurev-pathol-020712-163918. PubMed DOI PMC
Klionsky D.J. Autophagy: From Phenomenology to Molecular Understanding in Less than a Decade. Nat. Rev. Mol. Cell Biol. 2007;8:931–937. doi: 10.1038/nrm2245. PubMed DOI
Mizushima N. A Brief History of Autophagy from Cell Biology to Physiology and Disease. Nat. Cell Biol. 2018;20:521–527. doi: 10.1038/s41556-018-0092-5. PubMed DOI
Grumati P., Dikic I. Ubiquitin Signaling and Autophagy. J. Biol. Chem. 2018;293:5404–5413. doi: 10.1074/jbc.TM117.000117. PubMed DOI PMC
Mizushima N., Yoshimori T., Ohsumi Y. The Role of Atg Proteins in Autophagosome Formation. Annu. Rev. Cell Dev. Biol. 2011;27:107–132. doi: 10.1146/annurev-cellbio-092910-154005. PubMed DOI
Kwon Y.T., Ciechanover A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem. Sci. 2017;42:873–886. doi: 10.1016/j.tibs.2017.09.002. PubMed DOI
Khaminets A., Behl C., Dikic I. Ubiquitin-Dependent and Independent Signals In Selective Autophagy. Trends Cell Biol. 2016;26:6–16. doi: 10.1016/j.tcb.2015.08.010. PubMed DOI
Jung C.H., Jun C.B., Ro S.-H., Kim Y.-M., Otto N.M., Cao J., Kundu M., Kim D.-H. ULK-Atg13-FIP200 Complexes Mediate MTOR Signaling to the Autophagy Machinery. Mol. Biol. Cell. 2009;20:1992–2003. doi: 10.1091/mbc.e08-12-1249. PubMed DOI PMC
Radoshevich L., Cossart P. Listeria Monocytogenes: Towards a Complete Picture of Its Physiology and Pathogenesis. Nat. Rev. Microbiol. 2018;16:32–46. doi: 10.1038/nrmicro.2017.126. PubMed DOI
Mitchell G., Ge L., Huang Q., Chen C., Kianian S., Roberts M.F., Schekman R., Portnoy D.A. Avoidance of Autophagy Mediated by PlcA or ActA Is Required for Listeria Monocytogenes Growth in Macrophages. Infect. Immun. 2015;83:2175–2184. doi: 10.1128/IAI.00110-15. PubMed DOI PMC
Ogawa M., Yoshimori T., Suzuki T., Sagara H., Mizushima N., Sasakawa C. Escape of Intracellular Shigella from Autophagy. Science. 2005;307:727–731. doi: 10.1126/science.1106036. PubMed DOI
Dong N., Zhu Y., Lu Q., Hu L., Zheng Y., Shao F. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses. Cell. 2012;150:1029–1041. doi: 10.1016/j.cell.2012.06.050. PubMed DOI
Bjørkøy G., Lamark T., Brech A., Outzen H., Perander M., Overvatn A., Stenmark H., Johansen T. P62/SQSTM1 Forms Protein Aggregates Degraded by Autophagy and Has a Protective Effect on Huntingtin-Induced Cell Death. J. Cell Biol. 2005;171:603–614. doi: 10.1083/jcb.200507002. PubMed DOI PMC
Pankiv S., Clausen T.H., Lamark T., Brech A., Bruun J.-A., Outzen H., Øvervatn A., Bjørkøy G., Johansen T. P62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. J. Biol. Chem. 2007;282:24131–24145. doi: 10.1074/jbc.M702824200. PubMed DOI
Liu W.J., Ye L., Huang W.F., Guo L.J., Xu Z.G., Wu H.L., Yang C., Liu H.F. P62 Links the Autophagy Pathway and the Ubiqutin–Proteasome System upon Ubiquitinated Protein Degradation. Cell. Mol. Biol. Lett. 2016;21:29. doi: 10.1186/s11658-016-0031-z. PubMed DOI PMC
Feng Z.-Z., Jiang A.-J., Mao A.-W., Feng Y., Wang W., Li J., Zhang X., Xing K., Peng X. The Salmonella Effectors SseF and SseG Inhibit Rab1A-Mediated Autophagy to Facilitate Intracellular Bacterial Survival and Replication. J. Biol. Chem. 2018;293:9662–9673. doi: 10.1074/jbc.M117.811737. PubMed DOI PMC
Choy A., Dancourt J., Mugo B., O’Connor T.J., Isberg R.R., Melia T.J., Roy C.R. The Legionella Effector RavZ Inhibits Host Autophagy through Irreversible Atg8 Deconjugation. Science. 2012;338:1072–1076. doi: 10.1126/science.1227026. PubMed DOI PMC
Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N., Mizushima N., Tanida I., Kominami E., Ohsumi M., et al. A Ubiquitin-like System Mediates Protein Lipidation. Nature. 2000;408:488–492. doi: 10.1038/35044114. PubMed DOI
Horenkamp F.A., Kauffman K.J., Kohler L.J., Sherwood R.K., Krueger K.P., Shteyn V., Roy C.R., Melia T.J., Reinisch K.M. The Legionella Anti-Autophagy Effector RavZ Targets the Autophagosome via PI3P- and Curvature-Sensing Motifs. Dev. Cell. 2015;34:569–576. doi: 10.1016/j.devcel.2015.08.010. PubMed DOI PMC
Yang A., Pantoom S., Wu Y.-W. Elucidation of the Anti-Autophagy Mechanism of the Legionella Effector RavZ Using Semisynthetic LC3 Proteins. eLife. 2017;6:e23905. doi: 10.7554/eLife.23905. PubMed DOI PMC
Sinha B., Fraunholz M. Staphylococcus aureus Host Cell Invasion and Post-Invasion Events. Int. J. Med. Microbiol. IJMM. 2010;300:170–175. doi: 10.1016/j.ijmm.2009.08.019. PubMed DOI
Neumann Y., Bruns S.A., Rohde M., Prajsnar T.K., Foster S.J., Schmitz I. Intracellular Staphylococcus aureus Eludes Selective Autophagy by Activating a Host Cell Kinase. Autophagy. 2016;12:2069–2084. doi: 10.1080/15548627.2016.1226732. PubMed DOI PMC
Chong A., Wehrly T.D., Child R., Hansen B., Hwang S., Virgin H.W., Celli J. Cytosolic Clearance of Replication-Deficient Mutants Reveals Francisella Tularensis Interactions with the Autophagic Pathway. Autophagy. 2012;8:1342–1356. doi: 10.4161/auto.20808. PubMed DOI PMC
Case E.D.R., Chong A., Wehrly T.D., Hansen B., Child R., Hwang S., Virgin H.W., Celli J. The Francisella O-Antigen Mediates Survival in the Macrophage Cytosol via Autophagy Avoidance. Cell. Microbiol. 2014;16:862–877. doi: 10.1111/cmi.12246. PubMed DOI PMC
Chai Q., Wang X., Qiang L., Zhang Y., Ge P., Lu Z., Zhong Y., Li B., Wang J., Zhang L., et al. A Mycobacterium Tuberculosis Surface Protein Recruits Ubiquitin to Trigger Host Xenophagy. Nat. Commun. 2019;10:1973. doi: 10.1038/s41467-019-09955-8. PubMed DOI PMC
Wang L., Wu J., Li J., Yang H., Tang T., Liang H., Zuo M., Wang J., Liu H., Liu F., et al. Host-Mediated Ubiquitination of a Mycobacterial Protein Suppresses Immunity. Nature. 2020;577:682–688. doi: 10.1038/s41586-019-1915-7. PubMed DOI
Wang J., Li B.-X., Ge P.-P., Li J., Wang Q., Gao G.F., Qiu X.-B., Liu C.H. Mycobacterium Tuberculosis Suppresses Innate Immunity by Coopting the Host Ubiquitin System. Nat. Immunol. 2015;16:237–245. doi: 10.1038/ni.3096. PubMed DOI
Cornelis G.R. The Yersinia Deadly Kiss. J. Bacteriol. 1998;180:5495–5504. doi: 10.1128/JB.180.21.5495-5504.1998. PubMed DOI PMC
Orth K. Function of the Yersinia Effector YopJ. Curr. Opin. Microbiol. 2002;5:38–43. doi: 10.1016/S1369-5274(02)00283-7. PubMed DOI
Lostroh C.P., Lee C.A. The Salmonella Pathogenicity Island-1 Type III Secretion System. Microbes Infect. 2001;3:1281–1291. doi: 10.1016/S1286-4579(01)01488-5. PubMed DOI
Oh Y.K., Alpuche-Aranda C., Berthiaume E., Jinks T., Miller S.I., Swanson J.A. Rapid and Complete Fusion of Macrophage Lysosomes with Phagosomes Containing Salmonella Typhimurium. Infect. Immun. 1996;64:3877–3883. doi: 10.1128/IAI.64.9.3877-3883.1996. PubMed DOI PMC
Rytkönen A., Poh J., Garmendia J., Boyle C., Thompson A., Liu M., Freemont P., Hinton J.C.D., Holden D.W. SseL, a Salmonella Deubiquitinase Required for Macrophage Killing and Virulence. Proc. Natl. Acad. Sci. USA. 2007;104:3502–3507. doi: 10.1073/pnas.0610095104. PubMed DOI PMC
Liao A.P., Petrof E.O., Kuppireddi S., Zhao Y., Xia Y., Claud E.C., Sun J. Salmonella Type III Effector AvrA Stabilizes Cell Tight Junctions to Inhibit Inflammation in Intestinal Epithelial Cells. PLoS ONE. 2008;3:e2369. doi: 10.1371/journal.pone.0002369. PubMed DOI PMC
Jones R.M., Wu H., Wentworth C., Luo L., Collier-Hyams L., Neish A.S. Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. Cell Host Microbe. 2008;3:233–244. doi: 10.1016/j.chom.2008.02.016. PubMed DOI
Geng S., Wang Y., Xue Y., Wang H., Cai Y., Zhang J., Barrow P., Pan Z., Jiao X. The SseL Protein Inhibits the Intracellular NF-ΚB Pathway to Enhance the Virulence of Salmonella Pullorum in a Chicken Model. Microb. Pathog. 2019;129:1–6. doi: 10.1016/j.micpath.2019.01.035. PubMed DOI
Kolodziejek A.M., Altura M.A., Fan J., Petersen E.M., Cook M., Brzovic P.S., Miller S.I. Salmonella Translocated Effectors Recruit OSBP1 to the Phagosome to Promote Vacuolar Membrane Integrity. Cell Rep. 2019;27:2147–2156.e5. doi: 10.1016/j.celrep.2019.04.021. PubMed DOI
Hermanns T., Hofmann K. Bacterial DUBs: Deubiquitination beyond the Seven Classes. Biochem. Soc. Trans. 2019;47:1857–1866. doi: 10.1042/BST20190526. PubMed DOI
Vogel J.P., Andrews H.L., Wong S.K., Isberg R.R. Conjugative Transfer by the Virulence System of Legionella Pneumophila. Science. 1998;279:873–876. doi: 10.1126/science.279.5352.873. PubMed DOI
Qiu J., Sheedlo M.J., Yu K., Tan Y., Nakayasu E.S., Das C., Liu X., Luo Z.-Q. Ubiquitination Independent of E1 and E2 Enzymes by Bacterial Effectors. Nature. 2016;533:120–124. doi: 10.1038/nature17657. PubMed DOI PMC
Dong Y., Mu Y., Xie Y., Zhang Y., Han Y., Zhou Y., Wang W., Liu Z., Wu M., Wang H., et al. Structural Basis of Ubiquitin Modification by the Legionella Effector SdeA. Nature. 2018;557:674–678. doi: 10.1038/s41586-018-0146-7. PubMed DOI
Puvar K., Iyer S., Sheedlo M.J., Das C. Chapter Fifteen—Purification and functional characterization of the DUB domain of SdeA. In: Hochstrasser M., editor. Methods in Enzymology. Volume 618. Academic Press; Cambridge, MA, USA: 2019. pp. 343–355. Ubiquitin and Ubiquitin-Like Protein Modifiers. PubMed
Pike C.M., Boyer-Andersen R., Kinch L.N., Caplan J.L., Neunuebel M.R. The Legionella Effector RavD Binds Phosphatidylinositol-3-Phosphate and Helps Suppress Endolysosomal Maturation of the Legionella-Containing Vacuole. J. Biol. Chem. 2019;294:6405–6415. doi: 10.1074/jbc.RA118.007086. PubMed DOI PMC
Schroeder G.N., Hilbi H. Molecular Pathogenesis of Shigella Spp.: Controlling Host Cell Signaling, Invasion, and Death by Type III Secretion. Clin. Microbiol. Rev. 2008;21:134–156. doi: 10.1128/CMR.00032-07. PubMed DOI PMC
Ashida H., Toyotome T., Nagai T., Sasakawa C. Shigella Chromosomal IpaH Proteins Are Secreted via the Type III Secretion System and Act as Effectors. Mol. Microbiol. 2007;63:680–693. doi: 10.1111/j.1365-2958.2006.05547.x. PubMed DOI
Tokunaga F., Iwai K. LUBAC, a Novel Ubiquitin Ligase for Linear Ubiquitination, Is Crucial for Inflammation and Immune Responses. Microbes Infect. 2012;14:563–572. doi: 10.1016/j.micinf.2012.01.011. PubMed DOI
Ashida H., Kim M., Schmidt-Supprian M., Ma A., Ogawa M., Sasakawa C. A Bacterial E3 Ubiquitin Ligase IpaH9.8 Targets NEMO/IKKgamma to Dampen the Host NF-KappaB-Mediated Inflammatory Response. Nat. Cell Biol. 2010;12:66–73. doi: 10.1038/ncb2006. PubMed DOI PMC
De Jong M.F., Liu Z., Chen D., Alto N.M. Shigella Flexneri Suppresses NF-KB Activation by Inhibiting Linear Ubiquitin Chain Ligation. Nat. Microbiol. 2016;1:16084. doi: 10.1038/nmicrobiol.2016.84. PubMed DOI PMC
Noad J., von der Malsburg A., Pathe C., Michel M.A., Komander D., Randow F. LUBAC-Synthesized Linear Ubiquitin Chains Restrict Cytosol-Invading Bacteria by Activating Autophagy and NF-ΚB. Nat. Microbiol. 2017;2:17063. doi: 10.1038/nmicrobiol.2017.63. PubMed DOI PMC
Misaghi S., Balsara Z.R., Catic A., Spooner E., Ploegh H.L., Starnbach M.N. Chlamydia Trachomatis-Derived Deubiquitinating Enzymes in Mammalian Cells during Infection. Mol. Microbiol. 2006;61:142–150. doi: 10.1111/j.1365-2958.2006.05199.x. PubMed DOI
Pruneda J.N., Bastidas R.J., Bertsoulaki E., Swatek K.N., Santhanam B., Clague M.J., Valdivia R.H., Urbé S., Komander D. A Chlamydia Effector Combining Deubiquitination and Acetylation Activities Induces Golgi Fragmentation. Nat. Microbiol. 2018;3:1377–1384. doi: 10.1038/s41564-018-0271-y. PubMed DOI PMC
Fischer A., Harrison K.S., Ramirez Y., Auer D., Chowdhury S.R., Prusty B.K., Sauer F., Dimond Z., Kisker C., Hefty P.S., et al. Chlamydia Trachomatis-Containing Vacuole Serves as Deubiquitination Platform to Stabilize Mcl-1 and to Interfere with Host Defense. eLife. 2017;6:e21465. doi: 10.7554/eLife.21465. PubMed DOI PMC
Field-Smith A., Morgan G.J., Davies F.E. Bortezomib (VelcadeTM) in the Treatment of Multiple Myeloma. Ther. Clin. Risk Manag. 2006;2:271–279. doi: 10.2147/tcrm.2006.2.3.271. PubMed DOI PMC
Chen D., Frezza M., Schmitt S., Kanwar J., Dou Q.P. Bortezomib as the First Proteasome Inhibitor Anticancer Drug: Current Status and Future Perspectives. Curr. Cancer Drug Targets. 2011;11:239–253. doi: 10.2174/156800911794519752. PubMed DOI PMC
Groen K., van de Donk N., Stege C., Zweegman S., Nijhof I.S. Carfilzomib for Relapsed and Refractory Multiple Myeloma. Cancer Manag. Res. 2019;11:2663–2675. doi: 10.2147/CMAR.S150653. PubMed DOI PMC
Nawrocki S.T., Griffin P., Kelly K.R., Carew J.S. MLN4924: A Novel First-in-Class Inhibitor of NEDD8-Activating Enzyme for Cancer Therapy. Expert Opin. Investig. Drugs. 2012;21:1563–1573. doi: 10.1517/13543784.2012.707192. PubMed DOI
Millennium Pharmaceuticals, Inc . MLN4924 for the Treatment of Acute Myelogenous Leukemia, Myelodysplastic Syndrome, and Acute Lymphoblastic Leukemia. Millennium Pharmaceuticals Inc.; Cambridge, MA, USA: 2013.
Zhuang J., Shirazi F., Singh R.K., Kuiatse I., Wang H., Lee H.C., Berkova Z., Berger A., Hyer M., Chattopadhyay N., et al. Ubiquitin-Activating Enzyme Inhibition Induces an Unfolded Protein Response and Overcomes Drug Resistance in Myeloma. Blood. 2019;133:1572–1584. doi: 10.1182/blood-2018-06-859686. PubMed DOI PMC
Charbonneau M.-E., Gonzalez-Hernandez M.J., Showalter H.D., Donato N.J., Wobus C.E., O’Riordan M.X.D. Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity. PLoS ONE. 2014;9:e104096. doi: 10.1371/journal.pone.0104096. PubMed DOI PMC
Kapuria V., Peterson L.F., Fang D., Bornmann W.G., Talpaz M., Donato N.J. Deubiquitinase Inhibition by Small-Molecule WP1130 Triggers Aggresome Formation and Tumor Cell Apoptosis. Cancer Res. 2010;70:9265–9276. doi: 10.1158/0008-5472.CAN-10-1530. PubMed DOI
Lindner H.A. Deubiquitination in Virus Infection. Virology. 2007;362:245–256. doi: 10.1016/j.virol.2006.12.035. PubMed DOI PMC
Longhitano L., Tibullo D., Giallongo C., Lazzarino G., Tartaglia N., Galimberti S., Li Volti G., Palumbo G.A., Liso A. Proteasome Inhibitors as a Possible Therapy for SARS-CoV-2. Int. J. Mol. Sci. 2020;21:3622. doi: 10.3390/ijms21103622. PubMed DOI PMC