Amorphous TiO2 Nanotubes as a Platform for Highly Selective Phosphopeptide Enrichment
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31460330
PubMed Central
PMC6682070
DOI
10.1021/acsomega.9b00571
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This work reports highly selective phosphopeptide enrichment using amorphous TiO2 nanotubes (TiO2NTs) and the same material decorated with superparamagnetic Fe3O4 nanoparticles (TiO2NTs@Fe3O4NPs). TiO2NTs and TiO2NTs@Fe3O4NPs materials were applied for phosphopeptide enrichment both from a simple peptide mixture (tryptic digest of bovine serum albumin and α-casein) and from a complex peptide mixture (tryptic digest of Jurkat T cell lysate). The obtained enrichment efficiency and selectivity for phosphopeptides of TiO2NTs and TiO2NTs@Fe3O4NPs were increased to 28.7 and 25.3%, respectively, as compared to those of the well-established TiO2 microspheres. The enrichment protocol was extended for a second elution step facilitating the identification of additional phosphopeptides. It further turned out that both types of amorphous TiO2 nanotubes provide qualitatively new physicochemical features that are clearly advantageous for highly selective phosphopeptide enrichment. This has been confirmed experimentally resulting in substantial reduction of non-phosphorylated peptides in the enriched samples. In addition, TiO2NTs@Fe3O4NPs combine high selectivity and ease of handling due to the superparamagnetic character of the material. The presented materials and performances are further promising for applications toward a whole range of other types of biomolecules to be treated in a similar fashion.
Zobrazit více v PubMed
Wan A. C. A.; Ying J. Y. Nanomaterials for in situ cell delivery and tissue regeneration. Adv. Drug Delivery Rev. 2010, 62, 731–740. 10.1016/j.addr.2010.02.002. PubMed DOI
Holzapfel B. M.; Wagner F.; Martine L. C.; Reppenhagen S.; Rudert M.; Schuetz M.; Denham J.; Schantz J.-T.; Hutmacher D. W. Tissue engineering and regenerative medicine in musculoskeletal oncology. Cancer Metastasis Rev. 2016, 35, 475–487. 10.1007/s10555-016-9635-z. PubMed DOI
Wang Z.-G.; Lv N.; Bi W.-Z.; Zhang J.-L.; Ni J.-Z. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS Appl. Mater. Interfaces 2015, 7, 8377–8392. 10.1021/acsami.5b01254. PubMed DOI
Knorre D. G.; Kudryashova N. V.; Godovikova T. S. Chemical and functional aspects of posttranslational modification of proteins. Acta Nat. 2009, 29–51. PubMed PMC
Johnson L. N.; Barford D. The effects of phosphorylation on the structure and function of proteins. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 199–232. 10.1146/annurev.bb.22.060193.001215. PubMed DOI
Fabrik I.; Link M.; Putzova D.; Plzakova L.; Lubovska Z.; Philimonenko V.; Pavkova I.; Rehulka P.; Krocova Z.; Hozak P.; Santic M.; Stulik J. The early dendritic cell signaling induced by virulent Francisella tularensis strain occurs in phases and involves the activation of Extracellular Signal-Regulated Kinases (ERKs) and p38 in the later stage. Mol. Cell. Proteomics 2018, 17, 81–94. 10.1074/mcp.RA117.000160. PubMed DOI PMC
Perluigi M.; Barone E.; Di Domenico F.; Butterfield D. A. Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim. Biophys. Acta 2016, 1862, 1871–1882. 10.1016/j.bbadis.2016.07.005. PubMed DOI
Hromadkova L.; Kupcik R.; Vajrychova M.; Prikryl P.; Charvatova A.; Jankovicova B.; Ripova D.; Bilkova Z.; Slovakova M. Kinase-loaded magnetic beads for sequential in vitro phosphorylation of peptides and proteins. Analyst 2018, 143, 466–474. 10.1039/C7AN01508A. PubMed DOI
Beltran L.; Cutillas P. R. Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 2012, 43, 1009–1024. 10.1007/s00726-012-1288-9. PubMed DOI
Nühse T. S.; Stensballe A.; Jensen O. N.; Peck S. C. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 2003, 2, 1234–1243. 10.1074/mcp.T300006-MCP200. PubMed DOI
Dephoure N.; Gould K. L.; Gygi S. P.; Kellogg D. R. Mapping and analysis of phosphorylation sites: A quick guide for cell biologists. Mol. Biol. Cell 2013, 24, 535–542. 10.1091/mbc.e12-09-0677. PubMed DOI PMC
Tichy A.; Salovska B.; Rehulka P.; Klimentova J.; Vavrova J.; Stulik J.; Hernychova L. Phosphoproteomics: Searching for a needle in a haystack. J. Proteomics 2011, 74, 2786–2797. 10.1016/j.jprot.2011.07.018. PubMed DOI
Shen F.; Hu Y.; Guan P.; Ren X. Ti4+-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis. J. Chromatogr. B 2012, 902, 108–115. 10.1016/j.jchromb.2012.06.033. PubMed DOI
Fíla J.; Honys D. Enrichment Techniques Employed in Phosphoproteomics. Amino Acids 2012, 43, 1025–1047. 10.1007/s00726-011-1111-z. PubMed DOI PMC
Larsen M. R.; Thingholm T. E.; Jensen O. N.; Roepstorff P.; Jørgensen T. J. D. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 2005, 4, 873–886. 10.1074/mcp.T500007-MCP200. PubMed DOI
Cheng G.; Wang Z.-G.; Liu Y.-L.; Zhang J.-L.; Sun D.-H.; Ni J.-Z. Magnetic affinity microspheres with meso–/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules. ACS Appl. Mater. Interfaces 2013, 5, 3182–3190. 10.1021/am400191u. PubMed DOI
Salovska B.; Tichy A.; Fabrik I.; Rezacova M.; Vavrova J. Comparison of resins for metal oxide affinity chromatography with mass spectrometry detection for the determination of phosphopeptides. Anal. Lett. 2013, 46, 1505–1524. 10.1080/00032719.2013.773437. DOI
Neville D. C. A.; Townsend R. R.; Rozanas C. R.; Verkman A. S.; Price E. M.; Gruis D. B. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 1997, 6, 2436–2445. 10.1002/pro.5560061117. PubMed DOI PMC
Zhou H.; Xu S.; Ye M.; Feng S.; Pan C.; Jiang X.; Li X.; Han G.; Fu Y.; Zou H. Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis. J. Proteome Res. 2006, 5, 2431–2437. 10.1021/pr060162f. PubMed DOI
Zhou H.; Ye M.; Dong J.; Han G.; Jiang X.; Wu R.; Zou H. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J. Proteome Res. 2008, 7, 3957–3967. 10.1021/pr800223m. PubMed DOI
Li Y.; Qi D.; Deng C.; Yang P.; Zhang X. Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. J. Proteome Res. 2008, 7, 1767–1777. 10.1021/pr070385l. PubMed DOI
Zhou H.; Low T. Y.; Hennrich M. L.; van der Toorn H.; Schwend T.; Zou H.; Mohammed S.; Heck A. J. R. Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Mol. Cell. Proteomics 2011, 10, M110.006452.10.1074/mcp.M110.006452. PubMed DOI PMC
Lai A. C.-Y.; Tsai C.-F.; Hsu C.-C.; Sun Y.-N.; Chen Y.-J. Complementary Fe3+- and Ti4+-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Commun. Mass Spectrom. 2012, 26, 2186–2194. 10.1002/rcm.6327. PubMed DOI
Wu J.; Shakey Q.; Liu W.; Schuller A.; Follettie M. T. Global profiling of phosphopeptides by titania affinity enrichment. J. Proteome Res. 2007, 6, 4684–4689. 10.1021/pr070481m. PubMed DOI
Sugiyama N.; Masuda T.; Shinoda K.; Nakamura A.; Tomita M.; Ishihama Y. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol. Cell. Proteomics 2007, 6, 1103–1109. 10.1074/mcp.T600060-MCP200. PubMed DOI
Wang H.; Duan Y.; Zhong W. ZrO2 Nanofiber as a Versatile Tool for Protein Analysis. ACS Appl. Mater. Interfaces 2015, 7, 26414–26420. 10.1021/acsami.5b09348. PubMed DOI
Wei J.; Ren Y.; Luo W.; Sun Z.; Cheng X.; Li Y.; Deng Y.; Elzatahry A. A.; Al-Dahyan D.; Zhao D. Ordered mesoporous alumina with ultra-large pores as an efficient absorbent for selective bioenrichment. Chem. Mater. 2017, 29, 2211–2217. 10.1021/acs.chemmater.6b05032. DOI
Choi S.; Kim J.; Cho K.; Park G.; Yoon J. H.; Park S.; Yoo J. S.; Ryu S. H.; Kim Y. H.; Kim J. Sequential Fe3O4/TiO2 enrichment for phosphopeptide analysis by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 1467–1474. 10.1002/rcm.4541. PubMed DOI
Sturm M.; Leitner A.; Smått J.-H.; Lindén M.; Lindner W. Tin dioxide microspheres as a promising material for phosphopeptide enrichment prior to liquid chromatography-(tandem) mass spectrometry analysis. Adv. Funct. Mater. 2008, 18, 2381–2389. 10.1002/adfm.200800215. DOI
Nelson C. A.; Szczech J. R.; Dooley C. J.; Xu Q.; Lawrence M. J.; Zhu H.; Jin S.; Ge Y. Effective enrichment and mass spectrometry analysis of phosphopeptides using mesoporous metal oxide nanomaterials. Anal. Chem. 2010, 82, 7193–7201. 10.1021/ac100877a. PubMed DOI PMC
Sun S.; Ma H.; Han G.; Wu R.; Zou H.; Liu Y. Efficient enrichment and identification of phosphopeptides by cerium oxide using on-plate matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Rapid Commun. Mass Spectrom. 2011, 25, 1862–1868. 10.1002/rcm.5055. PubMed DOI
Yan J.; Li X.; Cheng S.; Ke Y.; Liang X. Facile synthesis of titania-zirconia monodisperse microspheres and application for phosphopeptides enrichment. Chem. Commun. 2009, 2929–2931. 10.1039/b901424a. PubMed DOI
Wu J.-H.; Xiao K.; Zhao Y.; Zhang W.-P.; Guo L.; Feng Y.-Q. Preparation and characterization of ceria-zirconia composite for enrichment and identification of phosphopeptides. J. Sep. Sci. 2010, 33, 2361–2368. 10.1002/jssc.201000224. PubMed DOI
Li X.-S.; Yuan B.-F.; Feng Y.-Q. Recent advances in phosphopeptide enrichment: Strategies and techniques. TrAC, Trends Anal. Chem. 2016, 78, 70–83. 10.1016/j.trac.2015.11.001. DOI
Sopha H.; Jäger A.; Knotek P.; Tesař K.; Jarosova M.; Macak J. M. Self-organized anodic TiO2 nanotube layers: Influence of the Ti substrate on nanotube growth and dimensions. Electrochim. Acta 2016, 190, 744–752. 10.1016/j.electacta.2015.12.121. DOI
Oliveira W. F.; Arruda I. R. S.; Silva G. M. M.; Machado G.; Coelho L. C. B. B.; Correia M. T. S. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater. Sci. Eng., C 2017, 81, 597–606. 10.1016/j.msec.2017.08.017. PubMed DOI
Kalbacova M.; Macak J. M.; Schmidt-Stein F.; Mierke C. T.; Schmuki P. TiO2 nanotubes: photocatalyst for cancer cell killing. Phys. Status Solidi RRL 2008, 2, 194–196. 10.1002/pssr.200802080. DOI
Wang Q.; Huang J.-Y.; Li H.-Q.; Chen Z.; Zhao A. Z.-J.; Wang Y.; Zhang K.-Q.; Sun H.-T.; Al-Deyab S. S.; Lai Y.-K. TiO2 nanotube platforms for smart drug delivery: A review. Int. J. Nanomed. 2016, 11, 4819–4834. 10.2147/IJN.S108847. PubMed DOI PMC
Terracciano M.; Galstyan V.; Rea I.; Casalino M.; De Stefano L.; Sbervegleri G. Chemical modification of TiO2 nanotube arrays for label-free optical biosensing applications. Appl. Surf. Sci. 2017, 419, 235–240. 10.1016/j.apsusc.2017.05.029. DOI
Kulkarni M.; Mazare A.; Park J.; Gongadze E.; Killian M. S.; Kralj S.; von der Mark K.; Iglič A.; Schmuki P. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence. Acta Biomater. 2016, 45, 357–366. 10.1016/j.actbio.2016.08.050. PubMed DOI
Xu J.; Yang L.; Han Y.; Wang Y.; Zhou X.; Gao Z.; Song Y.-Y.; Schmuki P. Carbon-decorated TiO2 nanotube membranes: A renewable nanofilter for charge-selective enrichment of proteins. ACS Appl. Mater. Interfaces 2016, 8, 21997–22004. 10.1021/acsami.6b06232. PubMed DOI
Kupcik R.; Rehulka P.; Bilkova Z.; Sopha H.; Macak J. M. New interface for purification of proteins: One-dimensional TiO2 nanotubes decorated by Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 28233–28242. 10.1021/acsami.7b08445. PubMed DOI
Min Q.; Chen X.; Zhang X.; Zhu J.-J. Tailoring of a TiO2 nanotube array-integrated portable microdevice for efficient on-chip enrichment and isotope labeling of serum phosphopeptides. Lab Chip 2013, 13, 3853–3861. 10.1039/c3lc50548k. PubMed DOI
Wijeratne A. B.; Wijesundera D. N.; Paulose M.; Ahiabu I. B.; Chu W.-K.; Varghese O. K.; Greis K. D. Phosphopeptide separation using radially aligned titania nanotubes on titanium wire. ACS Appl. Mater. Interfaces 2015, 7, 11155–11164. 10.1021/acsami.5b00799. PubMed DOI
Shrestha N. K.; Macak J. M.; Schmidt-Stein F.; Hahn R.; Mierke C. T.; Fabry B.; Schmuki P. Magnetically Guided Titania Nanotubes for Site-Selective Photocatalysis and Drug Release. Angew. Chem., Int. Ed. 2009, 48, 969–972. 10.1002/anie.200804429. PubMed DOI
Brunauer S.; Emmett P. H.; Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. 10.1021/ja01269a023. DOI
Barrett E. P.; Joyner L. G.; Halenda P. P. The determination of pore volume and Area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. 10.1021/ja01145a126. DOI
Harkins W. D.; Jura G. Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. J. Am. Chem. Soc. 1944, 66, 1366–1373. 10.1021/ja01236a048. DOI
Huyer G.; Liu S.; Kelly J.; Moffat J.; Payette P.; Kennedy B.; Tsaprailis G.; Gresser M. J.; Ramachandran C. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 1997, 272, 843–851. 10.1074/jbc.272.2.843. PubMed DOI
Thingholm T. E.; Jensen O. N.; Robinson P. J.; Larsen M. R. SIMAC (Sequential Elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol. Cell. Proteomics 2008, 7, 661–671. 10.1074/mcp.M700362-MCP200. PubMed DOI
Li Q.-r.; Ning Z.-b.; Tang J.-s.; Nie S.; Zeng R. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J. Proteome Res. 2009, 8, 5375–5381. 10.1021/pr900659n. PubMed DOI
Franc V.; Řehulka P.; Medda R.; Padiglia A.; Floris G.; Šebela M. Analysis of the glycosylation pattern of plant copper amine oxidases by MALDI-TOF/TOF MS coupled to a manual chromatographic separation of glycans and glycopeptides. Electrophoresis 2013, 34, 2357–2367. 10.1002/elps.201200622. PubMed DOI
Rehulka P.; Zahradnikova M.; Rehulkova H.; Dvorakova P.; Nenutil R.; Valik D.; Vojtesek B.; Hernychova L.; Novotny M. V. Microgradient separation technique for purification and fractionation of permethylated N-glycans before mass spectrometric analyses. J. Sep. Sci. 2018, 41, 1973–1982. 10.1002/jssc.201701339. PubMed DOI
R Core Team . R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (Last accessed: Jan 14, 2018)
Lee A.; Yang H.-J.; Lim E.-S.; Kim J.; Kim Y. Enrichment of phosphopeptides using bare magnetic particles. Rapid Commun. Mass Spectrom. 2008, 22, 2561–2564. 10.1002/rcm.3652. PubMed DOI
Courcelles M.; Frémin C.; Voisin L.; Lemieux S.; Meloche S.; Thibault P. Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol. Syst. Biol. 2013, 9, 669.10.1038/msb.2013.25. PubMed DOI PMC
Kettenbach A. N.; Gerber S. A. Rapid and Reproducible Single-Stage Phosphopeptide Enrichment of Complex Peptide Mixtures: Application to General and Phosphotyrosine-Specific Phosphoproteomics Experiments. Anal. Chem. 2011, 83, 7635–7644. 10.1021/ac201894j. PubMed DOI PMC
Connor P. A.; McQuillan A. J. Phosphate adsorption onto TiO2 from aqueous solutions: An in situ internal reflection infrared spectroscopic study. Langmuir 1999, 15, 2916–2921. 10.1021/la980894p. DOI
Engholm-Keller K.; Larsen M. R. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds applications in acidic modification-specific proteomics. J. Proteomics 2011, 75, 317–328. 10.1016/j.jprot.2011.07.024. PubMed DOI
Krenkova J.; Foret F. Iron oxide nanoparticle coating of organic polymer-based monolithic columns for phosphopeptide enrichment. J. Sep. Sci. 2011, 34, 2106–2112. 10.1002/jssc.201100256. PubMed DOI
Balaur E.; Macak J. M.; Tsuchiya H.; Schmuki P. Wetting Behaviour of Layers of TiO2 Nanotubes with Different Diameters. J. Mater. Chem. 2005, 15, 4488–4491. 10.1039/b509672c. DOI
Phenol/Chloroform-Free TiO2-Based miRNA Extraction from Cell Lysate
SiO2 Fibers of Two Lengths and Their Effect on Cellular Responses of Macrophage-like Cells