Phenol/Chloroform-Free TiO2-Based miRNA Extraction from Cell Lysate

. 2022 Aug 09 ; 23 (16) : . [epub] 20220809

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36012112

Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007421 Ministry of Education Youth and Sports

While microRNAs are considered as excellent biomarkers of various diseases, there are still several remaining challenges regarding their isolation. In this study, we aimed to design a novel RNA isolation method that would help to overcome those challenges. Therefore, we present a novel phenol/chloroform-free, low-cost method for miRNA extraction. Within this method, RNA is extracted from cell lysate with an isopropanol/water/NaCl system, followed by solid-phase extraction using TiO2 microspheres to effectively separate short RNAs from long RNA molecules. We also demonstrated the pH-dependent selectivity of TiO2 microspheres towards different sizes of RNA. We were able to regulate the size range of extracted RNAs with simple adjustments in binding conditions used during the solid-phase extraction.

Zobrazit více v PubMed

Bartel D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Calin G.A., Sevignani C., Dumitru C.D., Hyslop T., Noch E., Yendamuri S., Shimizu M., Rattan S., Bullrich F., Negrini M., et al. Human MicroRNA Genes Are Frequently Located at Fragile Sites and Genomic Regions Involved in Cancers. Proc. Natl. Acad. Sci. USA. 2004;101:2999–3004. doi: 10.1073/pnas.0307323101. PubMed DOI PMC

Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA Expression Profiles Classify Human Cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI

Barad O., Meiri E., Avniel A., Aharonov R., Barzilai A., Bentwich I., Einav U., Gilad S., Hurban P., Karov Y., et al. MicroRNA Expression Detected by Oligonucleotide Microarrays: System Establishment and Expression Profiling in Human Tissues. Genome Res. 2004;14:2486–2494. doi: 10.1101/gr.2845604. PubMed DOI PMC

Calin G.A., Liu C.-G., Sevignani C., Ferracin M., Felli N., Dumitru C.D., Shimizu M., Cimmino A., Zupo S., Dono M., et al. MicroRNA Profiling Reveals Distinct Signatures in B Cell Chronic Lymphocytic Leukemias. Proc. Natl. Acad. Sci. USA. 2004;101:11755–11760. doi: 10.1073/pnas.0404432101. PubMed DOI PMC

Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010;56:1733–1741. doi: 10.1373/clinchem.2010.147405. PubMed DOI PMC

Brunet-Vega A., Pericay C., Quílez M.E., Ramírez-Lázaro M.J., Calvet X., Lario S. Variability in MicroRNA Recovery from Plasma: Comparison of Five Commercial Kits. Anal. Biochem. 2015;488:28–35. doi: 10.1016/j.ab.2015.07.018. PubMed DOI

Ntelios D., Georgiou E., Alexouda S., Malousi A., Efthimiadis G., Tzimagiorgis G. A Critical Approach for Successful Use of Circulating MicroRNAs as Biomarkers in Cardiovascular Diseases: The Case of Hypertrophic Cardiomyopathy. Heart Fail. Rev. 2022;27:281–294. doi: 10.1007/s10741-021-10084-y. PubMed DOI

Dong H., Lei J., Ding L., Wen Y., Ju H., Zhang X. MicroRNA: Function, Detection, and Bioanalysis. Chem. Rev. 2013;113:6207–6233. doi: 10.1021/cr300362f. PubMed DOI

Brown R.A.M., Epis M.R., Horsham J.L., Kabir T.D., Richardson K.L., Leedman P.J. Total RNA Extraction from Tissues for MicroRNA and Target Gene Expression Analysis: Not All Kits Are Created Equal. BMC Biotechnol. 2018;18:16. doi: 10.1186/s12896-018-0421-6. PubMed DOI PMC

Zaporozhchenko I.A., Morozkin E.S., Skvortsova T.E., Bryzgunova O.E., Bondar A.A., Loseva E.M., Vlassov V.V., Laktionov P.P. A Phenol-Free Method for Isolation of MicroRNA from Biological Fluids. Anal. Biochem. 2015;479:43–47. doi: 10.1016/j.ab.2015.03.028. PubMed DOI

Toni L.S., Garcia A.M., Jeffrey D.A., Jiang X., Stauffer B.L., Miyamoto S.D., Sucharov C.C. Optimization of Phenol-Chloroform RNA Extraction. MethodsX. 2018;5:599–608. doi: 10.1016/j.mex.2018.05.011. PubMed DOI PMC

Ali N., Rampazzo R.d.C.P., Costa A.D.T., Krieger M.A. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. Biomed Res. Int. 2017;2017:9306564. doi: 10.1155/2017/9306564. PubMed DOI PMC

Boom R., Sol C.J., Salimans M.M., Jansen C.L., Dillen P.M.W., Noordaa J.v.d. Rapid and Simple Method for Purification of Nucleic Acids. J. Clin. Microbiol. 1990;28:495–503. doi: 10.1128/jcm.28.3.495-503.1990. PubMed DOI PMC

Hashemi E., Akhavan O., Shamsara M., Rahighi R., Esfandiar A., Tayefeh A.R. Cyto and Genotoxicities of Graphene Oxide and Reduced Graphene Oxide Sheets on Spermatozoa. RSC Adv. 2014;4:27213–27223. doi: 10.1039/c4ra01047g. DOI

Park J.S., Goo N.-I., Kim D.-E. Mechanism of DNA Adsorption and Desorption on Graphene Oxide. Langmuir. 2014;30:12587–12595. doi: 10.1021/la503401d. PubMed DOI

Saha S., Sarkar P. Understanding the Interaction of DNA–RNA Nucleobases with Different ZnO Nanomaterials. Phys. Chem. Chem. Phys. 2014;16:15355–15366. doi: 10.1039/c4cp01041h. PubMed DOI

Nandy B., Santosh M., Maiti P.K. Interaction of Nucleic Acids with Carbon Nanotubes and Dendrimers. J. Biosci. 2012;37:457–474. doi: 10.1007/s12038-012-9220-8. PubMed DOI

Saiyed Z.M., Bochiwal C., Gorasia H., Telang S.D., Ramchand C.N. Application of Magnetic Particles (Fe3O4) for Isolation of Genomic DNA from Mammalian Cells. Anal. Biochem. 2006;356:306–308. doi: 10.1016/j.ab.2006.06.027. PubMed DOI

Kupcik R., Macak J.M., Rehulkova H., Sopha H., Fabrik I., Anitha V.C., Klimentova J., Murasova P., Bilkova Z., Rehulka P. Amorphous TiO2 Nanotubes as a Platform for Highly Selective Phosphopeptide Enrichment. ACS Omega. 2019;4:12156–12166. doi: 10.1021/acsomega.9b00571. PubMed DOI PMC

Amano T., Toyooka T., Ibuki Y. Preparation of DNA-Adsorbed TiO2 Particles—Augmentation of Performance for Environmental Purification by Increasing DNA Adsorption by External PH Regulation. Sci. Total Environ. 2010;408:480–485. doi: 10.1016/j.scitotenv.2009.10.037. PubMed DOI

Jimenez L.A., Gionet-Gonzales M.A., Sedano S., Carballo J.G., Mendez Y., Zhong W. Extraction of MicroRNAs from Biological Matrices with Titanium Dioxide Nanofibers. Anal. Bioanal. Chem. 2018;410:1053–1060. doi: 10.1007/s00216-017-0649-3. PubMed DOI PMC

Laemmli U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Oakley B.R., Kirsch D.R., Morris N.R. A Simplified Ultrasensitive Silver Stain for Detecting Proteins in Polyacrylamide Gels. Anal. Biochem. 1980;105:361–363. doi: 10.1016/0003-2697(80)90470-4. PubMed DOI

Aryal U.K., Ross A.R.S. Enrichment and Analysis of Phosphopeptides under Different Experimental Conditions Using Titanium Dioxide Affinity Chromatography and Mass Spectrometry. Rapid Commun. Mass Spectrom. 2010;24:219–231. doi: 10.1002/rcm.4377. PubMed DOI

Wu T., Xu T., Chen Y., Yang Y., Xu L.-P., Zhang X., Wang S. Renewable Superwettable Biochip for MiRNA Detection. Sens. Actuators B Chem. 2018;258:715–721. doi: 10.1016/j.snb.2017.11.109. DOI

Molina-Reyes J., Romero-Morán A., Sánchez-Salas J.L. Enhanced Photocatalytic Bacterial Inactivation of Atomic-Layer Deposited Anatase-TiO2 Thin Films on Rutile-TiO2 Nanotubes. Photochem. Photobiol. Sci. 2020;19:399–405. doi: 10.1039/C9PP00348G. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...